1
|
Aliper ET, Efremov RG. Inconspicuous Yet Indispensable: The Coronavirus Spike Transmembrane Domain. Int J Mol Sci 2023; 24:16421. [PMID: 38003610 PMCID: PMC10671605 DOI: 10.3390/ijms242216421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Membrane-spanning portions of proteins' polypeptide chains are commonly known as their transmembrane domains (TMDs). The structural organisation and dynamic behaviour of TMDs from proteins of various families, be that receptors, ion channels, enzymes etc., have been under scrutiny on the part of the scientific community for the last few decades. The reason for such attention is that, apart from their obvious role as an "anchor" in ensuring the correct orientation of the protein's extra-membrane domains (in most cases functionally important), TMDs often actively and directly contribute to the operation of "the protein machine". They are capable of transmitting signals across the membrane, interacting with adjacent TMDs and membrane-proximal domains, as well as with various ligands, etc. Structural data on TMD arrangement are still fragmentary at best due to their complex molecular organisation as, most commonly, dynamic oligomers, as well as due to the challenges related to experimental studies thereof. Inter alia, this is especially true for viral fusion proteins, which have been the focus of numerous studies for quite some time, but have provoked unprecedented interest in view of the SARS-CoV-2 pandemic. However, despite numerous structure-centred studies of the spike (S) protein effectuating target cell entry in coronaviruses, structural data on the TMD as part of the entire spike protein are still incomplete, whereas this segment is known to be crucial to the spike's fusogenic activity. Therefore, in attempting to bring together currently available data on the structure and dynamics of spike proteins' TMDs, the present review aims to tackle a highly pertinent task and contribute to a better understanding of the molecular mechanisms underlying virus-mediated fusion, also offering a rationale for the design of novel efficacious methods for the treatment of infectious diseases caused by SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Elena T. Aliper
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, Moscow 101000, Russia
- L.D. Landau School of Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny 141701, Russia
| |
Collapse
|
2
|
Aliper ET, Krylov NA, Nolde DE, Polyansky AA, Efremov RG. A Uniquely Stable Trimeric Model of SARS-CoV-2 Spike Transmembrane Domain. Int J Mol Sci 2022; 23:ijms23169221. [PMID: 36012488 PMCID: PMC9409440 DOI: 10.3390/ijms23169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on its primary structure. We performed amino acid sequence pattern matching and compared the molecular hydrophobicity potential (MHP) distribution on the helix surface against TM homotrimers with known 3D structures and selected an appropriate template for homology modeling. We then iteratively built a model of spike TMD, adjusting “dynamic MHP portraits” and residue variability motifs. The stability of this model, with and without palmitoyl modifications downstream of the TMD, and several alternative configurations (including a recent NMR structure), was tested in all-atom molecular dynamics simulations in a POPC bilayer mimicking the viral envelope. Our model demonstrated unique stability under the conditions applied and conforms to known basic principles of TM helix packing. The original computational framework looks promising and could potentially be employed in the construction of 3D models of TM trimers for a wide range of membrane proteins.
Collapse
Affiliation(s)
- Elena T. Aliper
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Nikolay A. Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Dmitry E. Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Anton A. Polyansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna BioCenter 5, A-1030 Vienna, Austria
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Correspondence:
| |
Collapse
|
3
|
Malik C, Ghosh S. A mutation in the S6 segment of the KvAP channel changes the secondary structure and alters ion channel activity in a lipid bilayer membrane. Amino Acids 2022; 54:1461-1475. [PMID: 35896819 DOI: 10.1007/s00726-022-03188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
The peptide segment S6 is known to form the inner lining of the voltage-gated K+ channel KvAP (potassium channel of archaea-bacterium, Aeropyrum pernix). In our previous work, it has been demonstrated that S6 itself can form an ion channel on a bilayer lipid membrane (BLM). In the present work, the role of a specific amino acid sequence 'LIG' in determining the secondary structure of S6 has been investigated. For this purpose, 22-residue synthetic peptides named S6-Wild (S6W) and S6-Mutant (S6M) were used. Sequences of these peptides are similar except that the two amino acids isoleucine and glycine of the wild peptide interchanged in the mutant peptide. Channel forming capabilities of both the peptides were checked electro-physiologically on BLM composed of DPhPC and cholesterol. Bilayer electrophysiological experiments showed that the conductance of S6M is higher than that of S6W. Significant differences in the current versus voltage (I-V) plot, open probability, and gating characteristics were observed. Interestingly, two sub-types of channels, S6M Type 1 and Type 2, were identified in S6M differing in conductances and open probability patterns. Circular dichroism (CD) spectroscopy indicated that the secondary structures of the two peptides are different in phosphatidyl choline/asolectin liposomes and 1% SDS detergent. Reduced helicity of S6M was also noticed in membrane mimetic liposomes and 1% SDS detergent micelles. These results are interpreted in view of the difference in hydrophobicity of the two amino acids, isoleucine and glycine. It is concluded that the 'LIG' stretch regulates the structure and pore-forming ability of the S6 peptide.
Collapse
Affiliation(s)
- Chetan Malik
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
4
|
Wonganu B, Berger BW. A specific, transmembrane interface regulates fibroblast activation protein (FAP) homodimerization, trafficking and exopeptidase activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1876-82. [PMID: 27155568 DOI: 10.1016/j.bbamem.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022]
Abstract
Fibroblast activation protein (FAP) is a cell-surface serine protease which promotes invasiveness of certain epithelial cancers and is therefore a potential target for cancer drug development and delivery. Unlike dipeptidyl peptidase IV (DPPIV), FAP exhibits prolyl endopeptidase activity and is active as a homodimer with specificity for type I collagen. The mechanism that regulates FAP homodimerization and its relation to prolyl endopeptidase activity is not completely understood. Here, we investigate key residues in the FAP TM domain that may be significant for FAP homodimerization. Mutations to predicted TM interfacial residues (G10L, S14L, and A18L) comprising a small-X3-small motif reduced FAP TM-CYTO dimerization relative to wild type as measured using the AraTM assay, whereas predicted off-interface residues showed no significant change from wild type. The results implied that the predicted small-X3-small dimer interface affect stabilization of FAP TM-CYTO homodimerization. Compared with FAPwild-type, the interfacial TM residue G10L significantly decreased FAP endopeptidase activity more than 25%, and also reduced cell-surface versus intracellular expression relative to other interfacial residues S14L and A18L. Thus, our results suggest FAP dimerization is important for both trafficking and protease activity, and is dependent on a specific TM interface.
Collapse
Affiliation(s)
- Benjamaporn Wonganu
- Program in Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Bryan W Berger
- Program in Bioengineering, Lehigh University, Bethlehem, PA 18015, United States; Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, United States.
| |
Collapse
|
5
|
Li E, Wimley WC, Hristova K. Transmembrane helix dimerization: beyond the search for sequence motifs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:183-93. [PMID: 21910966 DOI: 10.1016/j.bbamem.2011.08.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 01/07/2023]
Abstract
Studies of the dimerization of transmembrane (TM) helices have been ongoing for many years now, and have provided clues to the fundamental principles behind membrane protein (MP) folding. Our understanding of TM helix dimerization has been dominated by the idea that sequence motifs, simple recognizable amino acid sequences that drive lateral interaction, can be used to explain and predict the lateral interactions between TM helices in membrane proteins. But as more and more unique interacting helices are characterized, it is becoming clear that the sequence motif paradigm is incomplete. Experimental evidence suggests that the search for sequence motifs, as mediators of TM helix dimerization, cannot solve the membrane protein folding problem alone. Here we review the current understanding in the field, as it has evolved from the paradigm of sequence motifs into a view in which the interactions between TM helices are much more complex. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, PA 19131, USA
| | | | | |
Collapse
|
6
|
Janosi L, Prakash A, Doxastakis M. Lipid-modulated sequence-specific association of glycophorin A in membranes. Biophys J 2010; 99:284-92. [PMID: 20655857 DOI: 10.1016/j.bpj.2010.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/26/2022] Open
Abstract
Protein association in lipid membranes is a complex process with thermodynamics directed by a multitude of different factors. Amino-acid sequence is a molecular parameter that affects dimerization as shown by limited directed mutations along the transmembrane domains. Membrane-mediated interactions are also important although details of such contributions remain largely unclear. In this study, we probe directly the free energy of association of Glycophorin A by means of extensive parallel Monte Carlo simulations with recently developed methods and a model that accounts for sequence-specificity while representing lipid membranes faithfully. We find that lipid-induced interactions are significant both at short and intermediate separations. The ability of molecules to tilt in a specific hydrophobic environment extends their accessible interfaces, leading to intermittent contacts during protein recognition. The dimer with the lowest free energy is largely determined by the favorable lipid-induced attractive interactions at the closest distance. Finally, the coarse-grained model employed herein, together with the extensive sampling performed, provides estimates of the free energy of association that are in excellent agreement with existing data.
Collapse
Affiliation(s)
- Lorant Janosi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, USA
| | | | | |
Collapse
|
7
|
Braun R, Engelman DM, Schulten K. Molecular Dynamics Simulations of Micelle Formation around Dimeric Glycophorin A Transmembrane Helices. Biophys J 2005; 87:754-63. [PMID: 15298884 PMCID: PMC1304485 DOI: 10.1529/biophysj.104.040279] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insertion and formation of membrane proteins involves the interaction of protein helices with one another in lipid environments. Researchers have studied glycophorin A (GpA) transmembrane helices embedded in sodium dodecyl sulfate (SDS) micelles to identify contacts significant for helix dimerization. However, a detailed picture of the conformation and dynamics of the GpA-SDS system cannot be obtained solely through experiment. Molecular dynamics simulations of SDS and a GpA dimer can provide an atomic-level picture of SDS aggregation and helix association. We report 2.5-ns simulations of GpA wild-type and mutants in a preformed micelle as well as a 32-ns simulation showing the formation of a complete micelle around wild-type GpA from an initially random placement of SDS molecules in an aqueous environment. In the latter case, an initial instability of GpA helices in water is reversed after the helices become surrounded by SDS. The properties of the spontaneously formed micelle surrounding the GpA are indistinguishable from those of the preformed micelle surrounding the GpA dimer.
Collapse
Affiliation(s)
- Rosemary Braun
- Theoretical and Computational Biophysics Group, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
8
|
Rosenbusch JP. Stability of membrane proteins: relevance for the selection of appropriate methods for high-resolution structure determinations. J Struct Biol 2001; 136:144-57. [PMID: 11886216 DOI: 10.1006/jsbi.2001.4431] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High stability is a prominent characteristic of integral membrane proteins of known atomic structure. But rather than being an intrinsic property, it may be due to a selection exerted by biochemical procedures prior to structure determination, since solubilization results in the transient exposure of membrane proteins to solution conditions. This may cause structural perturbations that interfere with 3D crystallization and hence with X-ray analysis. This problem also affects the preparation of samples for electron crystallography and NMR studies and may account for the fact that high-resolution structures of representatives of whole groups, such as transport proteins and signal transducers, have not been elucidated so far by any method. A knowledge of the proportion of labile proteins among membrane proteins, and of the kinetics of their denaturation, is therefore necessary. Establishing stability profiles, developing methods to maintain lateral pressure, or preventing contact with water (or both) should prove significant in establishing the structures of conformationally flexible proteins.
Collapse
|
9
|
Gromiha MM, Selvaraj S. Role of medium--and long-range interactions in discriminating globular and membrane proteins. Int J Biol Macromol 2001; 29:25-34. [PMID: 11429186 DOI: 10.1016/s0141-8130(01)00150-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The analysis of inter-residue interactions in protein structures provides considerable insight to understand their folding and stability. We have previously analyzed the role of medium- and long-range interactions in the folding of globular proteins. In this work, we study the distinct role of such interactions in the three-dimensional structures of membrane proteins. We observed a higher number of long-range contacts in the termini of transmembrane helical (TMH) segments, implying their role in the stabilization of helix-helix interactions. The transmembrane strand (TMS) proteins are having appreciably higher long-range contacts than that in all-beta class of globular proteins, indicating closer packing of the strands in TMS proteins. The residues in membrane spanning segments of TMH proteins have 1.3 times higher medium-range contacts than long-range contacts whereas that of TMS proteins have 14 times higher long-range contacts than medium-range contacts. Residue-wise analysis indicates that in TMH proteins, the residues Cys, Glu, Gly, Pro, Gln, Ser and Tyr have higher long-range contacts than medium-range contacts in contrast with all-alpha class of globular proteins. The charged residue pairs have higher medium-range contacts in all-alpha proteins, whereas hydrophobic residue pairs are dominant in TMH proteins. The information on the preference of residue pairs to form medium-range contacts has been successfully used to discriminate the TMH proteins from all-alpha proteins. The statistical significance of the results obtained from the present study has been verified using randomized structures of TMH and TMS protein templates.
Collapse
Affiliation(s)
- M M Gromiha
- RIKEN Tsukuba Institute, The Institute of Physical and Chemical Research (RIKEN), 3-1-1 Koyadai, Ibaraki 305-0074, Tsukuba, Japan.
| | | |
Collapse
|
10
|
Bishop CM, Walkenhorst WF, Wimley WC. Folding of beta-sheets in membranes: specificity and promiscuity in peptide model systems. J Mol Biol 2001; 309:975-88. [PMID: 11399073 DOI: 10.1006/jmbi.2001.4715] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interactions that drive the folding of beta-barrel membrane proteins have not been well studied because there have been few available model systems for membrane beta-sheets. In this work, we expand on a recently described model system to explore the contributions of interstrand hydrogen bonds, side-chain/side-chain interactions and side-chain/membrane interactions to beta-sheet formation in membranes. These experiments are based on the observation that the hydrophobic hexapeptide acetyl-Trp-Leu-Leu-Leu-Leu-Leu-OH (AcWLLLLL) folds, cooperatively and reversibly, into oligomeric, antiparallel beta-sheets in phosphatidylcholine membranes. To systematically characterize the important interactions that drive beta-sheet formation in membranes, we have used circular dichroism spectroscopy to determine the membrane secondary structure of each member of a complete host-guest family of related peptides of the form AcWLL-X-LL, where X is one of the natural amino acids. Peptides with hydrophobic X-residues of any size or character (X=Ala, Val, Ile, Leu, Cys, Met, Phe and Trp) form similar beta-sheets in membranes, while peptides with any polar X-residue or Gly or Pro at the X-position are random-coils, even when bound to membranes at high concentrations. The observed membrane sheet preferences correlate poorly with intrinsic sheet propensity scales measured in soluble proteins, but they correlate well with several membrane hydrophobicity scales. These results support the idea that the predominant interactions of the side-chains in membrane-bound beta-sheets are with the membrane lipids, and that backbone hydrogen bonding is the major driving force for the stabilization of beta-sheets in membranes.
Collapse
Affiliation(s)
- C M Bishop
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA
| | | | | |
Collapse
|
11
|
Leeds JA, Beckwith J. A gene fusion method for assaying interactions of protein transmembrane segments in vivo. Methods Enzymol 2001; 327:165-75. [PMID: 11044981 DOI: 10.1016/s0076-6879(00)27274-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- J A Leeds
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
12
|
Cohen I, Guillerault F, Girard J, Prip-Buus C. The N-terminal domain of rat liver carnitine palmitoyltransferase 1 contains an internal mitochondrial import signal and residues essential for folding of its C-terminal catalytic domain. J Biol Chem 2001; 276:5403-11. [PMID: 11087756 DOI: 10.1074/jbc.m009555200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that the first 147 N-terminal residues of the rat liver carnitine palmitoyltransferase 1 (CPT1), encompassing its two transmembrane (TM) segments, specify both mitochondrial targeting and anchorage at the outer mitochondrial membrane (OMM). In the present study, we have identified the precise import sequence in this polytopic OMM protein. In vitro import studies with fusion and deletion CPT1 proteins demonstrated that none of its TM segments behave as a signal anchor sequence. Analysis of the regions flanking the TM segments revealed that residues 123-147, located immediately downstream of TM2, function as a noncleavable, matrix-targeting signal. They specify mitochondrial targeting, whereas the hydrophobic TM segment(s) acts as a stop-transfer sequence that stops and anchors the translocating CPT1 into the OMM. Heterologous expression in Saccharomyces cerevisiae of several deleted CPT1 proteins not only confirms the validity of the "stop-transfer" import model but also indicates that residues 1-82 of CPT1 contain a putative microsomal targeting signal whose cellular significance awaits further investigation. Finally, we identified a highly folded core within the C-terminal domain of CPT1 that is hidden in the entire protein by its cytosolic N-terminal residues. Functional analysis of the deleted CPT1 proteins indicates that this folded C-terminal core, which may belong to the catalytic domain of CPT1, requires TM2 for its correct folding achievement and is in close proximity to residues 1-47.
Collapse
Affiliation(s)
- I Cohen
- Endocrinologie, Métabolisme et Développement, CNRS-UPR 1524, 9 Rue J. Hetzel, 92190 Meudon, France
| | | | | | | |
Collapse
|
13
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
14
|
Cohen I, Girard J, Prip-Buus C. Biogenesis of the rat liver mitochondrial carnitine palmitoyltransferase I. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 466:1-16. [PMID: 10709623 DOI: 10.1007/0-306-46818-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- I Cohen
- Endocrinologie, Métabolisme et Développement CNRS UPR1524, Meudon, France
| | | | | |
Collapse
|
15
|
Abstract
Inwardly rectifying potassium channels (K(ir)), comprising four subunits each with two transmembrane domains, M1 and M2, regulate many important physiological processes. We employed a yeast genetic screen to identify functional channels from libraries of K(ir) 2.1 containing mutagenized M1 or M2 domains. Patterns in the allowed sequences indicate that M1 and M2 are helices. Protein-lipid and protein-water interaction surfaces identified by the patterns were verified by sequence minimization experiments. Second-site suppressor analyses of helix packing indicate that the M2 pore-lining inner helices are surrounded by the M1 lipid-facing outer helices, arranged such that the M1 helices participate in subunit-subunit interactions. This arrangement is distinctly different from the structure of a bacterial potassium channel with the same topology and identifies helix-packing residues as hallmark sequences common to all K(ir) superfamily members.
Collapse
Affiliation(s)
- D L Minor
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco 94143-0725, USA
| | | | | | | |
Collapse
|
16
|
Burke CL, Stern DF. Activation of Neu (ErbB-2) mediated by disulfide bond-induced dimerization reveals a receptor tyrosine kinase dimer interface. Mol Cell Biol 1998; 18:5371-9. [PMID: 9710621 PMCID: PMC109122 DOI: 10.1128/mcb.18.9.5371] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1997] [Accepted: 06/03/1998] [Indexed: 01/08/2023] Open
Abstract
Receptor dimerization is a crucial intermediate step in activation of signaling by receptor tyrosine kinases (RTKs). However, dimerization of the RTK Neu (also designated ErbB-2, HER-2, and p185(neu)), while necessary, is not sufficient for signaling. Earlier work in our laboratory had shown that introduction of an ectopic cysteine into the Neu juxtamembrane domain induces Neu dimerization but not signaling. Since Neu signaling does require dimerization, we hypothesized that there are additional constraints that govern signaling ability. With the importance of the interreceptor cross-phosphorylation reaction, a likely constraint was the relative geometry of receptors within the dimer. We have tested this possibility by constructing a consecutive series of cysteine substitutions in the Neu juxtamembrane domain in order to force dimerization along a series of interreceptor faces. Within the group that dimerized constitutively, a subset had transforming activity. The substitutions in this subset all mapped to the same face of a predicted alpha helix, the most likely conformation for the intramembrane domain. Furthermore, this face of interaction aligns with the projected Neu* V664E substitution and with a predicted amphipathic interface in the Neu juxtamembrane domain. We propose that these results identify an RTK dimer interface and that dimerization of this RTK induces an extended contact between juxtamembrane and intramembrane alpha helices.
Collapse
Affiliation(s)
- C L Burke
- Department of Pathology, Yale University, New Haven, Connecticut 06520-8023, USA
| | | |
Collapse
|
17
|
Leeds JA, Beckwith J. Lambda repressor N-terminal DNA-binding domain as an assay for protein transmembrane segment interactions in vivo. J Mol Biol 1998; 280:799-810. [PMID: 9671551 DOI: 10.1006/jmbi.1998.1893] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the determinants of membrane protein interactions, we have developed an in vivo genetic assay system for detecting homodimerization of transmembrane (TM) segments from integral membrane proteins. Our approach is to generate gene fusions between potentially dimerizing TM segments and a cytoplasmic DNA-binding protein that lacks its intrinsic dimerization domain. This genetic approach allows us to screen and distinguish among known dimerizing domains and weakly dimerizing mutants, as well as non-dimerizing TM segments. We replaced the bacteriophage lambda cI repressor C-terminal dimerization domain with the human erythrocyte glycophorin A transmembrane segment (GpA TM). GpA TM forms SDS-resistant homodimers in vitro. Expression of this membrane-associated fusion in Escherichia coli conferred the same degree of immunity to lambda cI phages as the wild-type, intact lambda repressor. Single amino acid substitutions that disrupt the GpA TM dimer interface were introduced into the lambda-GpA TM fusion proteins. These mutations dramatically reduced immunity of E. coli to lambda cI, such that the efficiency of plating these phages increased by greater than 10,000-fold over that conferred by the wild-type lambda-GpA TM fusion. Introduction of the putatively non-dimerizing first TM from E. coli MalF into the lambda-TM fusion vector resulted in no immunity to lambda cI phages. Fusion of the homodimeric, periplasmically localized, mature alkaline phosphatase domain to the C terminus of the lambda-TM fusion proteins containing weakly to non-dimerizing TM segments restored immunity to lambda cI phages. Results from this in vivo genetic assay system demonstrate that (1) dimerization of the lambda cI DNA-binding domain can be promoted by dimerizing TM segments, (2) strongly, weakly, and non-dimerizing TM segments can be distinguished on the basis of their ability to confer immunity to lambda cI phages, and (3) introduction of a dimerizing periplasmic domain can provide functionality to lambda-TM fusions containing weakly to non-dimerizing TM segments.
Collapse
Affiliation(s)
- J A Leeds
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
18
|
Jonassen T, Proft M, Randez-Gil F, Schultz JR, Marbois BN, Entian KD, Clarke CF. Yeast Clk-1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis. J Biol Chem 1998; 273:3351-7. [PMID: 9452453 DOI: 10.1074/jbc.273.6.3351] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in the clk-1 gene result in slower development and increased life span in Caenorhabditis elegans. The Saccharomyces cerevisiae homologue COQ7/CAT5 is essential for several metabolic pathways including ubiquinone biosynthesis, respiration, and gluconeogenic gene activation. We show here that Coq7p/Cat5p is a mitochondrial inner membrane protein directly involved in ubiquinone biosynthesis, and that the defect in gluconeogenic gene activation in coq7/cat5 null mutants is a general consequence of a defect in respiration. These results obtained in the yeast model suggest that the effects on development and life span in C. elegans clk-1 mutants may relate to changes in the amount of ubiquinone, an essential electron transport component and a lipid soluble antioxidant.
Collapse
Affiliation(s)
- T Jonassen
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Gromiha MM, Ponnuswamy PK. Hydrophobic distribution and spatial arrangement of amino acid residues in membrane proteins. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1996; 48:452-60. [PMID: 8956078 DOI: 10.1111/j.1399-3011.1996.tb00863.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The analysis of known three-dimensional structures of membrane proteins provides an opportunity to understand their structure and stability. In this article we analyse the hydrophobic variation of amino acid residues at various ranges in membrane and aqueous parts of membrane proteins. The numerical indices for several properties of amino acid residues in membrane proteins, such as surrounding hydrophobicity, gain in surrounding hydrophobicity, hydrophobic gain ratio, accessible surface area, preference of amino acid residues in the interior and surface parts, solvent accessible reduction ratio and buriedness, were set up. The relative preference of amino acid residues at various positions of membrane proteins were obtained in a very realistic approach.
Collapse
Affiliation(s)
- M M Gromiha
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | |
Collapse
|
21
|
Ben-Efraim I, Shai Y. Secondary structure, membrane localization, and coassembly within phospholipid membranes of synthetic segments derived from the N- and C-termini regions of the ROMK1 K+ channel. Protein Sci 1996; 5:2287-97. [PMID: 8931147 PMCID: PMC2143299 DOI: 10.1002/pro.5560051115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hydropathy plot of the inwardly rectifying ROMK1 K+ channel, which reveals two transmembrane and a pore region domains, also reveals areas of intermediate hydrophobicity in the N terminus (M0) and in the C terminus (post-M2). Peptides that correspond to M0, post-M2, and a control peptide, pre-M0, were synthesized and characterized for their structure, affinity to phospholipid membranes, organizational state in membranes, and ability to self-assemble and coassemble in the membrane-bound state. CD spectroscopy revealed that both M0 and post-M2 adopt highly alpha-helical structures in 1% SDS and 40% TFE/water, whereas pre-M0 is not alpha-helical in either 1% SDS or 40% TFE/water. Binding experiments with NBD-labeled peptides demonstrated that both M0 and post-M2, but not pre-M0, bind to zwitterionic phospholipid membranes with partition coefficients of 10(3)-10(5) M-1. A surface localization for both post-M2 and M0 was indicated by NBD shift, tryptophan quenching experiments with brominated phospholipids, and enzymatic cleavage. Resonance energy transfer measurements between fluorescently labeled pairs of donor (NBD)/ acceptor (rhodamine) peptides revealed that M0 and post-M2 can coassemble in their membrane-bound state, but cannot self-associate when membrane-bound. The results are in agreement with recent data indicating that amino acids in the carboxy terminus of inwardly rectifying K+ channels have a major role in specifying the pore properties of the channels (Taglialatela M, Wible BA, Caporaso R, Brown AM, 1994 Science 264:844-847; Pessia M, Bond CT, Kavanaugh MP, Adelman JP, 1995, Neuron 14:1039-1045). The relevance of the results presented herein to the suggested model for the structure of the ROMK1 channel and to general aspects of molecular recognition between membrane-bound polypeptides are also discussed.
Collapse
Affiliation(s)
- I Ben-Efraim
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
22
|
Wen J, Chen X, Bowie JU. Exploring the allowed sequence space of a membrane protein. NATURE STRUCTURAL BIOLOGY 1996; 3:141-8. [PMID: 8564540 DOI: 10.1038/nsb0296-141] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We present a comprehensive view of the tolerance of a membrane protein to sequence substitution. We find that the protein, diacylglycerol kinase from Escherichia coli, is extremely tolerant to sequence changes with three-quarters of the residues tolerating non-conservative changes. The conserved residues are distributed with approximately the same frequency in the soluble and transmembrane portions of the protein, but the most critical active-site residues appear to residue in the second cytoplasmic domain. It is remarkable that a unique structure of the membrane embedded portion of the protein can be encoded by a sequence that is so tolerant to substitution.
Collapse
Affiliation(s)
- J Wen
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90095-1570, USA
| | | | | |
Collapse
|
23
|
Repke KR, Sweadner KJ, Weiland J, Megges R, Schön R. In search of ideal inotropic steroids: recent progress. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1996; 47:9-52. [PMID: 8961763 DOI: 10.1007/978-3-0348-8998-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K R Repke
- Max Delbrück Center of Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
24
|
Efremov RG, Vergoten G. Hydrophobic organization of alpha-helix membrane bundle in bacteriorhodopsin. JOURNAL OF PROTEIN CHEMISTRY 1996; 15:63-76. [PMID: 8838591 DOI: 10.1007/bf01886812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hydrophobic organization of the intramembrane alpha-helical bundle in bacteriorhodopsin (BRh) was assessed based on a new approach to characterization of spatial hydrophobic properties of transmembrane (TM) alpha-helical peptides. The method employs two independent techniques: Monte Carlo simulations of nonpolar solvent around TM peptides and analysis of molecular hydrophobicity potential on their surfaces. The results obtained by the two methods agree with each other and permit precise hydrophobicity mapping of TM peptides. Superimposition of such data on the experimentally derived spatial model of the membrane moiety together with 2D maps of hydrophobic hydrophilic contacts provide considerable insight into the hydrophobic organization of BRh. The helix bundle is stabilized to a large extent by hydrophobic interactions between helices--neighbors in the sequence of BRh, by long-range interactions in helix pairs C-E, C-F, and C-G, and by nonpolar contracts between retinal and helices C, D, E, F. Unlike globular proteins, no polar contacts between residues distantly separated in the sequence of BRh were found in the bundle. One of the most striking results of this study is the finding that the hydrophobic organization of BRh is significantly different from those in bacterial photoreaction centers. Thus, TM alpha-helices in BRh expose their most nonpolar sides to the bilayer as well as to the neighboring helices and to the interior of the bundle. Some of them contact lipids with their relatively hydrophilic surfaces. No correlation was found between disposition of the most hydrophobic and the most variable sides of the TM helices.
Collapse
Affiliation(s)
- R G Efremov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
25
|
Repke KR, Weiland J, Megges R, Schön R. Modeling of the three-dimensional structure of the digitalis intercalating matrix in Na+/K(+)-ATPase protodimer. JOURNAL OF ENZYME INHIBITION 1996; 10:147-57. [PMID: 8835940 DOI: 10.3109/14756369609030308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Based on the knowledge that the digitalis receptor site in Na+/K(+)-ATPase is the interface between two interacting alpha-subunits of the protodimer (alpha beta)2, the present review makes an approach towards modeling the three-dimensional structure of the digitalis intercalating matrix by exploiting the information on: the primary structure and predicted membrane topology of the catalytic alpha-subunit; the determinants of the secondary, tertiary and quaternary structure of the membrane-spanning protein domains; the impact of mutational amino acid substitutions on the affinity of digitalis compounds, and the structural characteristics in potent representatives. The designed model proves its validity by allowing quantitative interpretations of the contributions of distinct amino acid side chains to the special bondings of the three structural elements of digitalis compounds.
Collapse
Affiliation(s)
- K R Repke
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | |
Collapse
|
26
|
Isenman L, Liebow C, Rothman S. Transport of proteins across membranes--a paradigm in transition. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:341-70. [PMID: 8547300 DOI: 10.1016/0304-4157(95)00009-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- L Isenman
- Department of Physiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
27
|
Bayle D, Weeks D, Sachs G. The membrane topology of the rat sarcoplasmic and endoplasmic reticulum calcium ATPases by in vitro translation scanning. J Biol Chem 1995; 270:25678-84. [PMID: 7592746 DOI: 10.1074/jbc.270.43.25678] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The membrane topology of the rat endoplasmic reticulum (ER) and sarcoplasmic reticulum (SR) Ca2+ ATPases were investigated using in vitro transcription/translation of fusion vectors containing DNA sequences encoding putative membrane-spanning domains. The sequences of these Ca2+ ATPases are identical except for the COOH-terminal end, which contains an additional predicted transmembrane segment in the ER ATPase. The M0 and M1 fusion vectors (Bamberg, K., and Sachs, G. (1994) J. Biol. Chem. 269, 16909-16919) encode the NH2-terminal 101 (M0 vector) or 139 (M1 vector) amino acids of the H,K-ATPase alpha subunit followed by a linker region for insertion of putative transmembrane sequences and, finally, the COOH-terminal 177 amino acids of the H,K-ATPase beta subunit containing five N-linked glycosylation consensus sequences. The linker region was replaced by the putative transmembrane domains of the Ca2+ ATPases, either individually or in pairs. Transcription and translation were performed using [35S]methionine in a reticulocyte lysate system in the absence or presence of canine pancreatic microsomes. The translated fusion protein was identified by autoradiography following separation using SDS-polyacrylamide gel electrophoresis. When testing single transmembrane segments, this method detects signal anchor activity with M0 or stop transfer activity with M1. The first four predicted SERCA transmembrane domains acted as both signal anchor and stop transfer sequences. A construct containing the fifth predicted transmembrane segment was able to act only as a stop transfer sequence. The sixth transmembrane segment did not insert cotranslationally into the membrane. The seventh was able to act as both a signal anchor and stop transfer sequence, and the eighth showed stop transfer ability in the M1 vector. The ninth transmembrane segment had both signal anchor and stop transfer capacity, whereas the tenth transmembrane segment showed only stop transfer sequence properties. The eleventh transmembrane sequence, unique to the ER Ca2+ ATPase, had both signal anchor and stop transfer properties. These translation data provide direct experimental evidence for 8 or 9 of the 10 or 11 predicted transmembrane sequences in the current topological models for the SR or ER Ca2+ ATPases, respectively.
Collapse
Affiliation(s)
- D Bayle
- Department of Medicine and Physiology, UCLA 90073, USA
| | | | | |
Collapse
|
28
|
Haltia T, Freire E. Forces and factors that contribute to the structural stability of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:295-322. [PMID: 7640299 DOI: 10.1016/0304-4157(94)00161-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
While a considerable amount of literature deals with the structural energetics of water-soluble proteins, relatively little is known about the forces that determine the stability of membrane proteins. Similarly, only a few membrane protein structures are known at atomic resolution, although new structures have recently been described. In this article, we review the current knowledge about the structural features of membrane proteins. We then proceed to summarize the existing literature regarding the thermal stability of bacteriorhodopsin, cytochrome-c oxidase, the band 3 protein, Photosystem II and porins. We conclude that a fundamental difference between soluble and membrane proteins is the high thermal stability of intrabilayer secondary structure elements in membrane proteins. This property manifests itself as incomplete unfolding, and is reflected in the observed low enthalpies of denaturation of most membrane proteins. By contrast, the extramembranous parts of membrane proteins may behave much like soluble proteins. A brief general account of thermodynamics factors that contribute to the stability of water soluble and membrane proteins is presented.
Collapse
Affiliation(s)
- T Haltia
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
29
|
Groves JD, Tanner MJ. Co-expressed complementary fragments of the human red cell anion exchanger (band 3, AE1) generate stilbene disulfonate-sensitive anion transport. J Biol Chem 1995; 270:9097-105. [PMID: 7721823 DOI: 10.1074/jbc.270.16.9097] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have constructed cDNA clones encoding various portions of the human red cell anion transporter (band 3), a well characterized integral membrane protein with up to 14 transmembrane segments. The biosynthesis, stability, cell surface expression, and functionality of these band 3 fragments were investigated by expression from the cRNAs into microsomal membranes using the reticulocyte cell-free translation system and in Xenopus oocytes. Co-expression of the pairs of recombinants encoding the first 8 and last 6 transmembrane spans (8 + 6) or the first 12 and last 2 spans (12 + 2) of band 3 generated stilbene disulfonate-sensitive anion transport in oocytes. When the pairs of fragments 8 + 6 or 12 + 2 were co-expressed with glycophorin A (GPA), translocation to the plasma membrane of the fragment corresponding to the first 12 or the first 8 transmembrane spans was greater than in the absence of GPA. Only the fragment encoding the first 12 transmembrane spans showed GPA-dependent translocation when expressed in the absence of its complementary fragment. A truncated form of band 3 encoding all 14 transmembrane spans but lacking the carboxyl-terminal 30 amino acids of the cytoplasmic tail did not induce anion transport activity in oocytes and was not translocated to the plasma membrane but appeared to be degraded in oocytes. Our results suggest that there is no single signal for the insertion of the different transmembrane spans of band 3 into membranes and that the integrity of the loops between transmembrane spans 8-9 or 12-13 is not essential for anion transport function. Our data also suggest that a region of transmembrane spans 9-12 of band 3 is involved in the process by which GPA facilitates the translocation of band 3 to the surface.
Collapse
Affiliation(s)
- J D Groves
- Department of Biochemistry, School of Medical Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
30
|
Haltia T, Freire E. Forces and factors that contribute to the structural stability of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1228:1-27. [PMID: 7857960 DOI: 10.1016/0005-2728(94)00161-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
While a considerable amount of literature deals with the structural energetics of water-soluble proteins, relatively little is known about the forces that determine the stability of membrane proteins. Similarly, only a few membrane protein structures are known at atomic resolution, although new structures have recently been described. In this article, we review the current knowledge about the structural features of membrane proteins. We then proceed to summarize the existing literature regarding the thermal stability of bacteriorhodopsin, cytochrome-c oxidase, the band 3 protein, Photosystem II and porins. We conclude that a fundamental difference between soluble and membrane proteins is the high thermal stability of intrabilayer secondary structure elements in membrane proteins. This property manifests itself as incomplete unfolding, and is reflected in the observed low enthalpies of denaturation of most membrane proteins. By contrast, the extramembranous parts of membrane proteins may behave much like soluble proteins. A brief general account of thermodynamics factors that contribute to the stability of water soluble and membrane proteins is presented.
Collapse
Affiliation(s)
- T Haltia
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
31
|
Gazit E, Shai Y. The assembly and organization of the alpha 5 and alpha 7 helices from the pore-forming domain of Bacillus thuringiensis delta-endotoxin. Relevance to a functional model. J Biol Chem 1995; 270:2571-8. [PMID: 7852320 DOI: 10.1074/jbc.270.6.2571] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The pore-forming domain of Bacillus thuringiensis insecticidal CryIIIA delta-endotoxin contains two helices, alpha 5 and alpha 7, that are highly conserved within all different Cry delta-endotoxins. To gain information on the mode of action of delta-endotoxins, we have used a spectrofluorimetric approach and characterized the structure, the organization state, and the ability to self-assemble and to co-assemble within lipid membranes of alpha 5 and alpha 7. Circular dichroism (CD) spectroscopy revealed that alpha 7 adopts a predominantly alpha-helical structure in methanol, similar to what has been found for alpha 5, and consistent with its structure in the intact molecule. The hydrophobic moment of alpha 7 is higher than that calculated for alpha 5; however, alpha 7 has a lesser ability to permeate phospholipids as compared to alpha 5. Binding experiments with 7-nitrobenz-2-oxa-1,3-diazole-4-yl (NBD)-labeled peptide demonstrated that alpha 7 binds to phospholipid vesicles with a partition coefficient in the order of 10(4) M-1 similar to alpha 5, but with reduced kinetics and in a noncooperative manner, as opposed to the fast kinetics and cooperativity found with alpha 5. Resonance energy transfer measurements between fluorescently labeled pairs of donor (NBD)/acceptor (rhodamine) peptides revealed that, in their membrane-bound state, alpha 5 self-associates but alpha 7 does not, and that alpha 5 coassembles with alpha 7 but not with an unrelated membrane bound alpha-helical peptide. Furthermore, resonance energy transfer experiments, using alpha 5 segments, specifically labeled in either the N- or C-terminal sides, suggest a parallel organization of alpha 5 monomers within the membranes. Taken together the results are consistent with an umbrella model suggested for the pore forming activity of delta-endotoxin (Li, J., Caroll, J., and Ellar, D. J. (1991) Nature 353, 815-821), where alpha 5 has transmembrane localization and may be part of the pore lining segment(s) while alpha 7 may serve as a binding sensor that initiates the binding of the pore domain to the membrane.
Collapse
Affiliation(s)
- E Gazit
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
32
|
Abstract
Synthetic model membrane-interactive peptides--both of natural and designed sequence--have become convenient and systematic tools for determination of how the membrane-spanning segments within integral membrane proteins confer protein structure and biology. Conformational studies on these peptides demonstrate that the alpha-helix is the natural choice of conformation for a peptide segment in a membrane, and that a helical conformation will arise "automatically" in a peptide above a threshold hydrophobicity that allows it to associate stably with the membrane. Environmental and sequential contexts thus impart conformational versatility to many of the amino acids, thereby providing a mechanism for producing the diverse structural and functional properties of proteins.
Collapse
Affiliation(s)
- C M Deber
- Division of Biochemistry Research, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Eisenhaber F, Persson B, Argos P. Protein structure prediction: recognition of primary, secondary, and tertiary structural features from amino acid sequence. Crit Rev Biochem Mol Biol 1995; 30:1-94. [PMID: 7587278 DOI: 10.3109/10409239509085139] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This review attempts a critical stock-taking of the current state of the science aimed at predicting structural features of proteins from their amino acid sequences. At the primary structure level, methods are considered for detection of remotely related sequences and for recognizing amino acid patterns to predict posttranslational modifications and binding sites. The techniques involving secondary structural features include prediction of secondary structure, membrane-spanning regions, and secondary structural class. At the tertiary structural level, methods for threading a sequence into a mainchain fold, homology modeling and assigning sequences to protein families with similar folds are discussed. A literature analysis suggests that, to date, threading techniques are not able to show their superiority over sequence pattern recognition methods. Recent progress in the state of ab initio structure calculation is reviewed in detail. The analysis shows that many structural features can be predicted from the amino acid sequence much better than just a few years ago and with attendant utility in experimental research. Best prediction can be achieved for new protein sequences that can be assigned to well-studied protein families. For single sequences without homologues, the folding problem has not yet been solved.
Collapse
Affiliation(s)
- F Eisenhaber
- Institut für Biochemie der Charité, Medizinische Fakultät, Humboldt-Universität zu Berlin, Fed. Rep. Germany
| | | | | |
Collapse
|
34
|
Esmann M, Karlish SJ, Sottrup-Jensen L, Marsh D. Structural integrity of the membrane domains in extensively trypsinized Na,K-ATPase from shark rectal glands. Biochemistry 1994; 33:8044-50. [PMID: 8025109 DOI: 10.1021/bi00192a008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Removal of extramembranous portions of the integral membrane protein Na,K-ATPase from shark salt glands by trypsin in the presence of Rb+ (a K+ congener) preserves the intramembranous association of the remaining membrane-spanning tryptic peptides. This is evidenced from comparison of the rotational mobility of native and trypsinized Na,K-ATPase using saturation transfer electron spin resonance spectroscopy (ESR) and from study of the lipid-protein interactions using conventional ESR spectroscopy. The interface between the lipids and the intramembranous domains is conserved on removal of the extramembranous parts of the protein, since the population of motionally restricted boundary lipids remains essentially the same in the native and trypsinized preparations. The ability to occlude Rb+ is also retained by the trypsinized membranes, as previously observed with pig kidney Na,K-ATPase. A 19-kDa fragment remaining when Na,K-ATPase is trypsinized in the presence of Rb+ is degraded further when the trypsinization is carried out in the presence of Na+ instead of Rb+. The rotational mobility of the tryptic fragments in the Na(+)-trypsinized membranes is lower than for the Rb(+)-trypsinized membranes, indicating rearrangement of the peptides. In addition, occlusion capacity is lost when trypsinization is carried out in Na+, suggesting a correlation between structure and function in the trypsinized membranes. The sequences of four membrane-spanning tryptic fragments of shark Na,K-ATPase are found to be almost identical to corresponding sequences in pig kidney Na,K-ATPase.
Collapse
Affiliation(s)
- M Esmann
- Department of Biophysics, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
35
|
Ben-Efraim I, Strahilevitz J, Bach D, Shai Y. Secondary structure and membrane localization of synthetic segments and a truncated form of the IsK (minK) protein. Biochemistry 1994; 33:6966-73. [PMID: 8204631 DOI: 10.1021/bi00188a028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
IsK, also referred to as minK, is a membrane protein consisting of 130 amino acids and localized mainly in epithelial cells but also in human T lymphocytes. Depending on the cRNA concentration that was injected into Xenopus oocytes, IsK and its truncated forms can induce either a K+ current alone or both K+ and Cl- currents [Attali et al. (1993) Nature 365, 850-852]. To obtain information on the secondary structure and the topology of IsK in a membrane-bound state, the synthesis, fluorescent-labeling, and structural and functional characterization of five polypeptides of 20-63 amino acids within the rat IsK protein were examined. The alpha-helical content of the segments, assessed in methanol using circular dichroism, suggests that both the N-terminal and transmembrane segments of IsK adopt alpha-helical structures. Binding experiments and the blue shift of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled peptides suggest that while both the alpha-helical transmembrane segment and the N-terminal of IsK are located within the lipid bilayer, the linking segment between the two segments lies on the surface of the membrane. The fluorescence energy transfer, between donor and acceptor-labeled truncated IsK, suggests that it aggregates within phospholipid membranes. Although a protein whose sequence is similar to that of truncated IsK can induce K+ channel activity when expressed in Xenopus oocytes, the inability of a truncated IsK to form functional K+ channels in planar lipid membranes supports increasing evidence that the protein alone cannot form a K+ channel.
Collapse
Affiliation(s)
- I Ben-Efraim
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
36
|
Abstract
Transmembrane alpha-helices can associate with one another in lipid bilayers. This association is important in the folding and oligomerization of many integral membrane proteins, and may also play a role in their function. The interactions between helices may be highly specific or relatively non-specific, and their roles may differ accordingly. These two cases are discussed.
Collapse
Affiliation(s)
- M A Lemmon
- Department of Pharmacology, New York University Medical Center, NY 10016
| | | |
Collapse
|
37
|
Adair BD, Engelman DM. Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 1994; 33:5539-44. [PMID: 8180176 DOI: 10.1021/bi00184a024] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycophorin A and its isolated transmembrane region (GpATM) are each known to form sequence-specific dimers in SDS micelles. Whether this behavior accurately reflects behavior in red cell membranes or lipid bilayers, however, has remained unclear. Resonance energy transfer between labeled GpATM peptides has been used to observe dimerization of GpATM in bilayers. Separate populations of GpATM peptides were labeled with 2,6-dansyl chloride as the donor chromophore and dabsyl chloride as the acceptor. Quenching of the 2,6-dansyl chloride by the dabsyl group demonstrated an association of the labeled peptides. The quenching was not affected by increases in the amount of lipid present or by unlabeled heterologous peptides but was decreased by the addition of unlabeled GpATM. GpATM was determined to form dimers by fitting the observed energy transfer for a number of donor to acceptor ratios and fitting to the expected number of donor labeled peptides in an oligomer with an acceptor as a function of oligomer number. The finding that the GpATM peptide forms helical dimers in lipid bilayers supports the idea that GpA is a dimer in the erythrocyte membrane. The resonance energy transfer approach may extend to the study of other oligomeric complexes.
Collapse
Affiliation(s)
- B D Adair
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | | |
Collapse
|
38
|
Lemmon MA, Treutlein HR, Adams PD, Brünger AT, Engelman DM. A dimerization motif for transmembrane alpha-helices. NATURE STRUCTURAL BIOLOGY 1994; 1:157-63. [PMID: 7656033 DOI: 10.1038/nsb0394-157] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Specific helix-helix interactions inside lipid bilayers guide the folding and assembly of many integral membrane proteins and their complexes. We report here a pattern of 7 amino acids (LIxxGVxxGVxxT) which when introduced into several hydrophobic transmembrane alpha-helices promotes their specific dimerization. Dimerization is driven by interactions that are specific, dominated by the helix-helix interface, and involve no potentially ionizable groups. The motif may provide a useful tool for the functional analysis of such interactions in a variety of systems. Further, since this particular motif is rare, whilst specific helix association is not, many other such motifs may exist, which could permit sorting within complex membranes as well as guiding folding and oligomerization.
Collapse
Affiliation(s)
- M A Lemmon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
39
|
Gazit E, Shai Y. Structural characterization, membrane interaction, and specific assembly within phospholipid membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin. Biochemistry 1993; 32:12363-71. [PMID: 8241124 DOI: 10.1021/bi00097a013] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Bacillus thuringiensis var. israelensis (Bti) cytolytic toxin is hypothesized to exert its toxic activity via pore formation in the cell membrane as a result of the aggregation of several monomers. To gain insight into the toxin's mode of action, 2 putative hydrophobic 22 amino acid peptides were synthesized and characterized spectroscopically and functionally. One peptide corresponded to the putative amphiphilic alpha-helical region (amino acids 110-131, termed helix-2), and the other to amino acids 50-71 (termed helix-1) [Ward, E. S., Ellar, D. J., & Chilcott, C. N. (1988) J. Mol. Biol. 202, 527-535] of the toxin. Circular dichroism spectroscopy revealed that both segments adopt high alpha-helical content in a hydrophobic environment, in agreement with previous models. To monitor peptide-lipid and peptide-peptide interactions, the peptides were labeled selectively with either 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) (to serve as donor) or tetramethylrhodamine (to serve as an acceptor), at their N-terminal amino acids. Both segments bind strongly to small unilamellar vesicles, composed of zwitterionic phospholipids, with surface partition coefficients on the order of 10(4) M-1. The shape of the binding isotherms indicates that helix-2 forms large aggregates within phospholipid membranes. Resonance energy transfer experiments demonstrated that the segments self-associate and interact with each other, but do not associate with unrelated membrane-bound peptides. Functional characterization demonstrated that helix-2 permeates phospholipid SUV with a potency similar to that of naturally occurring pore-forming peptides. Thus, the results support a role for helices-1 and -2 in the assembly and in the pore formation by Bti toxin.
Collapse
Affiliation(s)
- E Gazit
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
40
|
|
41
|
Abstract
The recent proliferation of data obtained from mutant forms of cytochrome oxidase and analogous enzymes has necessitated a re-examination of existing structural models. A new model is proposed, consistent with these data, which brings several protonatable residues (Y244, D298, D300, T309, T316, K319, T326) into the vicinity of the binuclear centre, suggestive of a proton-transferring function. In addition, we also consider those residues which may participate in electron transport between CuA and haem a. We suggest several potential lines of investigation.
Collapse
Affiliation(s)
- S Brown
- Glynn Research Institute, Bodmin, Cornwall, UK
| | | | | | | |
Collapse
|
42
|
Treutlein HR, Lemmon MA, Engelman DM, Brünger AT. The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices. Biochemistry 1992; 31:12726-32. [PMID: 1463744 DOI: 10.1021/bi00166a003] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent studies suggest specific roles for transmembrane helix association in a range of functions, but understanding of the conformation and energetics of these interactions has been elusive. We have studied the specific dimerization of the transmembrane helix of glycophorin A by calculating the minimized interaction energies of a large number of conformations using simulated annealing techniques and tested the models against mutational analysis data. We find that the dimer is best modeled as a right-handed supercoil with an extensive region of close packing along the dimer interface. Furthermore, we observe a sequence-specific propensity for a right-handed supercoil to form when starting the simulated annealing modeling from a dimer of helices with parallel axes, in contrast with the dimerization region of the transcription factor GCN4 which shows a high propensity for the more prevalent left-handed supercoiling.
Collapse
Affiliation(s)
- H R Treutlein
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06511
| | | | | | | |
Collapse
|
43
|
Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM. Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry 1992; 31:12719-25. [PMID: 1463743 DOI: 10.1021/bi00166a002] [Citation(s) in RCA: 413] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While several reports have suggested a role for helix-helix interactions in membrane protein oligomerization, there are few direct biochemical data bearing on this subject. Here, using mutational analysis, we show that dimerization of the transmembrane alpha-helix of glycophorin A in a detergent environment is spontaneous and highly specific. Very subtle changes in the side-chain structure at certain sensitive positions disrupt the helix-helix association. These sensitive positions occur at approximately every 3.9 residues along the helix, consistent with their comprising the interface of a closely fit transmembranous supercoil of alpha-helices. By contrast with other reported cases of interactions between transmembrane helices, the set of interfacial residues in this case contains no highly polar groups. Amino acids with aliphatic side chains define much of the interface, indicating that precise packing interactions between the helices may provide much of the energy for association. These data highlight the potential general importance of specific interactions between the hydrophobic anchors of integral membrane proteins.
Collapse
Affiliation(s)
- M A Lemmon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | | | |
Collapse
|