1
|
Vakharia VN, Ammayappan A, Yusuff S, Tesfaye TM, Kurath G. Heterologous Exchanges of Glycoprotein and Non-Virion Protein in Novirhabdoviruses: Assessment of Virulence in Yellow Perch ( Perca flavescens) and Rainbow Trout ( Oncorhynchus mykiss). Viruses 2024; 16:652. [PMID: 38675990 PMCID: PMC11054476 DOI: 10.3390/v16040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses in two different species belonging to the Novirhabdovirus genus. IHNV has a narrow host range restricted to trout and salmon species, and viruses in the M genogroup of IHNV have high virulence in rainbow trout (Oncorhynchus mykiss). In contrast, the VHSV genotype IVb that invaded the Great Lakes in the United States has a broad host range, with high virulence in yellow perch (Perca flavescens), but not in rainbow trout. By using reverse-genetic systems of IHNV-M and VHSV-IVb strains, we generated six IHNV:VHSV chimeric viruses in which the glycoprotein (G), non-virion-protein (NV), or both G and NV genes of IHNV-M were replaced with the analogous genes from VHSV-IVb, and vice versa. These chimeric viruses were used to challenge groups of rainbow trout and yellow perch. The parental recombinants rIHNV-M and rVHSV-IVb were highly virulent in rainbow trout and yellow perch, respectively. Parental rIHNV-M was avirulent in yellow perch, and chimeric rIHNV carrying G, NV, or G and NV genes from VHSV-IVb remained low in virulence in yellow perch. Similarly, the parental rVHSV-IVb exhibited low virulence in rainbow trout, and chimeric rVHSV with substituted G, NV, or G and NV genes from IHNV-M remained avirulent in rainbow trout. Thus, the G and NV genes of either virus were not sufficient to confer high host-specific virulence when exchanged into a heterologous species genome. Some exchanges of G and/or NV genes caused a loss of host-specific virulence, providing insights into possible roles in viral virulence or fitness, and interactions between viral proteins.
Collapse
Affiliation(s)
- Vikram N. Vakharia
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | - Arun Ammayappan
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | - Shamila Yusuff
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (A.A.); (S.Y.)
| | | | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA
| |
Collapse
|
2
|
Kim SY, Kwak JS, Jung W, Kim MS, Kim KH. Compensatory mutations in the matrix protein of viral hemorrhagic septicemia virus (VHSV) genotype IVa in response to artificial mutation of two amino acids (D62A E181A). Virus Res 2023; 326:199067. [PMID: 36754291 DOI: 10.1016/j.virusres.2023.199067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
The matrix (M) protein of rhabdoviruses locates between the inner line of the viral envelope and the nucleocapsids core and plays an important role in viral replication. In the present study, we aimed to rescue a mutant of VHSV genotype IVa that has artificial mutations in the M protein (M-D62A E181A). However, most rescued recombinant viruses unexpectedly showed non-targeted secondary mutations in the M protein. Therefore, this study was conducted to know whether the targeted artificial mutation can lead to specific non-targeted secondary mutations in the M protein and whether the secondary mutations are compensatory for the targeted artificial mutations. Experiments were conducted to rescue three kinds of M protein mutants (rVHSV-M-D62A, -E181A, and -D62A E181A), and rVHSV-M-E181A and rVHSV-M-D62A E181A without the secondary mutations were rescued only from IRF-9 gene-knockout EPC cells. Recombinant VHSVs having only targeted mutation(s) (rVHSV-M-D62A, -E181A, and -D62A E181A) showed slower CPE progression and retarded growth compared to rVHSV-wild. Although the sites of secondary mutations were changed in every transfection experiment to generate recombinant VHSVs, the positions of the secondary mutations were not random. Some amino acid residues in the M protein showed more frequent mutations than others, and the changed amino acid residues were always the same. EPC cells infected with rVHSV-M-D62A E181A showed significantly higher type I interferon response and NF-κB activity, and the inhibitory activity against type I interferon response and NF-κB activity in other recombinant VHSVs having secondary mutations in M gene were similar to those of rVHSV-wild. In conclusion, the present results showed that VHSV actively responded to the artificial mutation of M protein through the secondary mutations, and those secondary mutations occurred when the artificial mutations were deleterious to viral replication and protein stability. Furthermore, most secondary mutations in recombinant viruses compensated for the deleterious effect of the engineered mutations.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Jun Soung Kwak
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Norway
| | - Wonyeong Jung
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea
| | - Min Sun Kim
- Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
3
|
Niner MD, Stepien CA, Gorgoglione B, Leaman DW. Genomic and immunogenic changes of Piscine novirhabdovirus (Viral Hemorrhagic Septicemia Virus) over its evolutionary history in the Laurentian Great Lakes. PLoS One 2021; 16:e0232923. [PMID: 34048438 PMCID: PMC8162641 DOI: 10.1371/journal.pone.0232923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
A unique and highly virulent subgenogroup (-IVb) of Piscine novirhabdovirus, also known as Viral Hemorrhagic Septicemia Virus (VHSV), suddenly appeared in the Laurentian Great Lakes, causing large mortality outbreaks in 2005 and 2006, and affecting >32 freshwater fish species. Periods of apparent dormancy have punctuated smaller and more geographically-restricted outbreaks in 2007, 2008, and 2017. In this study, we conduct the largest whole genome sequencing analysis of VHSV-IVb to date, evaluating its evolutionary changes from 48 isolates in relation to immunogenicity in cell culture. Our investigation compares genomic and genetic variation, selection, and rates of sequence changes in VHSV-IVb, in relation to other VHSV genogroups (VHSV-I, VHSV-II, VHSV-III, and VHSV-IVa) and with other Novirhabdoviruses. Results show that the VHSV-IVb isolates we sequenced contain 253 SNPs (2.3% of the total 11,158 nucleotides) across their entire genomes, with 85 (33.6%) of them being non-synonymous. The most substitutions occurred in the non-coding region (NCDS; 4.3%), followed by the Nv- (3.8%), and M- (2.8%) genes. Proportionally more M-gene substitutions encoded amino acid changes (52.9%), followed by the Nv- (50.0%), G- (48.6%), N- (35.7%) and L- (23.1%) genes. Among VHSV genogroups and subgenogroups, VHSV-IVa from the northeastern Pacific Ocean has shown the fastest substitution rate (2.01x10-3), followed by VHSV-IVb (6.64x10-5) and by the VHSV-I, -II and-III genogroups from Europe (4.09x10-5). A 2016 gizzard shad (Dorosoma cepedianum) from Lake Erie possessed the most divergent VHSV-IVb sequence. The in vitro immunogenicity analysis of that sample displayed reduced virulence (as did the other samples from 2016), in comparison to the original VHSV-IVb isolate (which had been traced back to 2003, as an origin date). The 2016 isolates that we tested induced milder impacts on fish host cell innate antiviral responses, suggesting altered phenotypic effects. In conclusion, our overall findings indicate that VHSV-IVb has undergone continued sequence change and a trend to lower virulence over its evolutionary history (2003 through present-day), which may facilitate its long-term persistence in fish host populations.
Collapse
Affiliation(s)
- Megan D. Niner
- Department of Environmental Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Carol A. Stepien
- School of Oceanography, University of Washington, Seattle, WA, United States of America
- Genetics and Genomics Group, NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, United States of America
- * E-mail: ,
| | - Bartolomeo Gorgoglione
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Douglas W. Leaman
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- Department of Biological Sciences, Wright State University, Dayton, Ohio, United States of America
| |
Collapse
|
4
|
Hwang JY, Lee UH, Heo MJ, Kim MS, Jeong JM, Kim SY, Kwon MG, Jee BY, Kim KH, Park CI, Park JW. Naturally occurring substitution in one amino acid in VHSV phosphoprotein enhances viral virulence in flounder. PLoS Pathog 2021; 17:e1009213. [PMID: 33465148 PMCID: PMC7845975 DOI: 10.1371/journal.ppat.1009213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/29/2021] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes high mortality in cultured flounder. Naturally occurring VHSV strains vary greatly in virulence. Until now, little has been known about genetic alterations that affect the virulence of VHSV in flounder. We recently reported the full-genome sequences of 18 VHSV strains. In this study, we determined the virulence of these 18 VHSV strains in flounder and then the assessed relationships between differences in the amino acid sequences of the 18 VHSV strains and their virulence to flounder. We identified one amino acid substitution in the phosphoprotein (P) (Pro55-to-Leu substitution in the P protein; PP55L) that is specific to highly virulent strains. This PP55L substitution was maintained stably after 30 cell passages. To investigate the effects of the PP55L substitution on VHSV virulence in flounder, we generated a recombinant VHSV carrying PP55L (rVHSV-P) from rVHSV carrying P55 in the P protein (rVHSV-wild). The rVHSV-P produced high level of viral RNA in cells and showed increased growth in cultured cells and virulence in flounder compared to the rVHSV-wild. In addition, rVHSV-P significantly inhibited the induction of the IFN1 gene in both cells and fish at 6 h post-infection. An RNA-seq analysis confirmed that rVHSV-P infection blocked the induction of several IFN-related genes in virus-infected cells at 6 h post-infection compared to rVHSV-wild. Ectopic expression of PP55L protein resulted in a decrease in IFN induction and an increase in viral RNA synthesis in rVHSV-wild-infected cells. Taken together, our results are the first to identify that the P55L substitution in the P protein enhances VHSV virulence in flounder. The data from this study add to the knowledge of VHSV virulence in flounder and could benefit VHSV surveillance efforts and the generation of a VHSV vaccine. Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes huge economic losses to the fish culture industry throughout the world. Virulence among naturally occurring VHSV strains varies widely. However, little is known about the viral factors that determine VHSV virulence. Here, we identify a naturally-occurring, single-amino-acid substitution in the VHSV P protein that enhances VHSV virulence in flounder. This amino acid substitution in the P protein was detected only in highly virulent VHSV strains, and it enhances viral RNA synthesis and inhibits the interferon response of host cells early after virus infection. Recombinant VHSV containing this amino acid substitution caused increased mortality in flounder compared with the wild type. This is the first study to identify a naturally occurring amino acid substitution in VHSV that determines its virulence in flounder. We expect that our result can be applied to other fish species, and this finding will provide new opportunities to generate an effective VHSV vaccine.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Unn Hwa Lee
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Min Jin Heo
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, Korea
| | - Min Sun Kim
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, Korea
| | - Ji Min Jeong
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - So Yeon Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
| | - Mun Gyeong Kwon
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Bo Young Jee
- Aquatic Disease Control Division, National Institute Fisheries Science, Busan, Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, Korea
- * E-mail: (KHK); (CIP); (JWP)
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, Institute of Marine Industry, College of Marine Science, Gyeongsang National University, Gyeongnam, Korea
- * E-mail: (KHK); (CIP); (JWP)
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
- * E-mail: (KHK); (CIP); (JWP)
| |
Collapse
|
5
|
Stepien CA, Niner MD. Evolutionary trajectory of fish Piscine novirhabdovirus (=Viral Hemorrhagic Septicemia Virus) across its Laurentian Great Lakes history: Spatial and temporal diversification. Ecol Evol 2020; 10:9740-9775. [PMID: 33005343 PMCID: PMC7520192 DOI: 10.1002/ece3.6611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 02/05/2023] Open
Abstract
Piscine novirhabdovirus = Viral Hemorrhagic Septicemia Virus (VHSV) first appeared in the Laurentian Great Lakes with large outbreaks from 2005 to 2006, as a new and novel RNA rhabdovirus subgenogroup (IVb) that killed >30 fish species. Interlude periods punctuated smaller more localized outbreaks in 2007, 2010, and 2017, although some fishes tested positive in the intervals. There have not been reports of outbreaks or positives from 2018, 2019, or 2020. Here, we employ a combined population genetics and phylogenetic approach to evaluate spatial and temporal evolutionary trajectory on its G-gene sequence variation, in comparison with whole-genome sequences (11,083 bp) from a subset of 44 individual isolates (including 40 newly sequenced ones). Our results show that IVb (N = 184 individual fish isolates) diversified into 36 G-gene haplotypes from 2003 to 2017, stemming from two originals ("a" and "b"). G-gene haplotypes "a" and "b" differed by just one synonymous single-nucleotide polymorphism (SNP) substitution, remained the most abundant until 2011, then disappeared. Group "a" descendants (14 haplotypes) remained most prevalent in the Upper and Central Great Lakes, with eight (51%) having nonsynonymous substitutions. Group "b" descendants primarily have occurred in the Lower Great Lakes, including 22 haplotypes, of which 15 (68%) contained nonsynonymous changes. Evolutionary patterns of the whole-genome sequences (which had 34 haplotypes among 44 isolates) appear congruent with those from the G-gene. Virus populations significantly diverged among the Upper, Central, and Lower Great Lakes, diversifying over time. Spatial divergence was apparent in the overall patterns of nucleotide substitutions, while amino acid changes increased temporally. VHSV-IVb thus significantly differentiated across its less than two decades in the Great Lakes, accompanied by declining outbreaks and virulence. Continuing diversification likely allowed the virus to persist at low levels in resident fish populations, and may facilitate its potential for further and future spread to new habitats and nonacclimated hosts.
Collapse
Affiliation(s)
- Carol A. Stepien
- Genetics and Genomics Group (G3)NOAA Pacific Marine Environmental Laboratory (PMEL)SeattleWAUSA
| | - Megan D. Niner
- Genetics and Genomics Group (G3), Department of Environmental SciencesUniversity of ToledoToledoOHUSA
| |
Collapse
|
6
|
Cabon J, Almeras F, Baud M, Pallandre L, Morin T, Louboutin L. Susceptibility of pike Esox lucius to VHSV and IHNV and potential transmission to rainbow trout Oncorhynchus mykiss. DISEASES OF AQUATIC ORGANISMS 2020; 139:175-187. [PMID: 32495744 DOI: 10.3354/dao03474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Determining the origin of recurrent outbreaks of fish diseases occurring on fish farms is essential for disease prevention and control measures. In this study, we investigated the potential reservoir role of wild fish species living near salmonid farms which were regularly found to be positive for viral hemorrhagic septicemia virus (VHSV). In addition to VHSV, infectious hematopoietic necrosis virus (IHNV) was also isolated from several pike Esox lucius samples collected from a pond near the salmonid farms of interest. All isolates of VHSV and IHNV analyzed had 100% identical partial glycoprotein gene sequences. VHSV pike strain OO128-25 belonged to the Ia genotype and shared 99.1 to 99.5% nucleotide identity with strains recently isolated from the farms. IHNV pike strain OO121-8, European genotype, appeared to be different from strains from France characterized since the first isolation in 1987. Isolates representative of both viral species were highly virulent in rainbow trout Oncorhynchus mykiss. OO128-25 induced 65% mortality in pike fingerlings, whereas only weak mortality was observed with OO121-8, despite characteristic symptoms in infected fish. High levels of specific antibodies to VHSV and IHNV were detected in adult pike in the absence of clinical signs. Infection of rainbow trout in contact with experimentally VHSV- or IHNV-infected pike fingerlings indicates possible horizontal transmission. These results suggest that pike could act as a reservoir for VHSV and IHNV in the wild, providing additional evidence to explain viral persistence and resurgence in certain areas.
Collapse
Affiliation(s)
- J Cabon
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Viral Fish Diseases Unit, National Reference Laboratory for Regulated Fish Diseases, 29280 Plouzané, France
| | | | | | | | | | | |
Collapse
|
7
|
Hwang JY, Ahn SJ, Kwon MG, Seo JS, Hwang SD, Jee BY. Whole-genome next-generation sequencing and phylogenetic characterization of viral haemorrhagic septicaemia virus in Korea. JOURNAL OF FISH DISEASES 2020; 43:599-607. [PMID: 32166786 DOI: 10.1111/jfd.13150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Whole-genome next-generation sequencing was used to investigate the local evolution of viral haemorrhagic septicaemia virus, a serious pathogen affecting economically important fish such as rainbow trout and turbot in Europe and olive flounder in Asia. Sequence analysis showed that all isolates were genotype IVa, but could be classified further into four subgroups (K1-K4). In addition, genomic regions encompassing the nucleoprotein, phosphoprotein, matrix protein and non-virion protein genes, as well as the seven non-coding regions, were relatively conserved, whereas glycoprotein and RNA-dependent RNA polymerase genes were variable in the coding region. Taken together, the data demonstrate that whole-genome next-generation sequencing may be useful for future surveillance, prevention and control strategies against viral haemorrhagic septicaemia.
Collapse
Affiliation(s)
- Jee Youn Hwang
- Aquatic Disease Control Division, National Institute of Fisheries Science, Gijang-gun, Korea
| | - Sang Jung Ahn
- R&D Planning Team, Korea Institute of Marine Science & Technology Promotion, Seoul, Korea
| | - Mun-Gyeong Kwon
- Aquatic Disease Control Division, National Institute of Fisheries Science, Gijang-gun, Korea
| | - Jung Soo Seo
- Aquatic Disease Control Division, National Institute of Fisheries Science, Gijang-gun, Korea
| | - Seong Don Hwang
- Aquatic Disease Control Division, National Institute of Fisheries Science, Gijang-gun, Korea
| | - Bo Young Jee
- Aquatic Disease Control Division, National Institute of Fisheries Science, Gijang-gun, Korea
| |
Collapse
|
8
|
Jia B, Delphino MKVC, Awosile B, Hewison T, Whittaker P, Morrison D, Kamaitis M, Siah A, Milligan B, Johnson SC, Gardner IA. Review of infectious agent occurrence in wild salmonids in British Columbia, Canada. JOURNAL OF FISH DISEASES 2020; 43:153-175. [PMID: 31742733 DOI: 10.1111/jfd.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Wild Pacific salmonids (WPS) are economically and culturally important to the Pacific North region. Most recently, some populations of WPS have been in decline. Of hypothesized factors contributing to the decline, infectious agents have been postulated to increase the risk of mortality in Pacific salmon. We present a literature review of both published journal and unpublished data to describe the distribution of infectious agents reported in wild Pacific salmonid populations in British Columbia (BC), Canada. We targeted 10 infectious agents, considered to potentially cause severe economic losses in Atlantic salmon or be of conservation concern for wild salmon in BC. The findings indicated a low frequency of infectious hematopoietic necrosis virus, piscine orthoreovirus, viral haemorrhagic septicaemia virus, Aeromonas salmonicida, Renibacterium salmoninarum, Piscirickettsia salmonis and other Rickettsia-like organisms, Yersinia ruckeri, Tenacibaculum maritimum and Moritella viscosa. No positive results were reported for infestations with Paramoeba perurans in peer-reviewed papers and the DFO Fish Pathology Program database. This review synthesizes existing information, as well as gaps therein, that can support the design and implementation of a long-term surveillance programme of infectious agents in wild salmonids in BC.
Collapse
Affiliation(s)
- Beibei Jia
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Marina K V C Delphino
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Babafela Awosile
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Tim Hewison
- Grieg Seafood BC Ltd., Campbell River, BC, Canada
| | | | | | | | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, Campbell River, BC, Canada
| | | | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada (DFO), Nanaimo, BC, Canada
| | - Ian A Gardner
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada
| |
Collapse
|
9
|
Gross L, Richard J, Hershberger P, Garver K. Low susceptibility of sockeye salmon Oncorhynchus nerka to viral hemorrhagic septicemia virus genotype IVa. DISEASES OF AQUATIC ORGANISMS 2019; 135:201-209. [PMID: 31486412 DOI: 10.3354/dao03398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) genotype IVa is an endemic pathogen to the marine waters of British Columbia, with numerous marine fishes being susceptible to infection and disease, including Atlantic salmon Salmo salar reared in open net-pen aquaculture. The susceptibility of Atlantic salmon and sockeye salmon Oncorhynchus nerka to VHSV-IVa infection was evaluated using exposure routes including injection, static immersion, and cohabitation with diseased Pacific herring Clupea pallasii. Exposed fish were monitored for mortality and external pathology, mortalities were tested by virus isolation assay, and live fish were regularly sampled and screened for infection. Among injected sockeye, VHSV was detected in 1 mortality (n = 195) and 2 sub-sampled fish (n = 30), whereas sockeye exposed by immersion and cohabitation did not experience mortality nor was systemic infection indicated by tissue screening. Injection and cohabitation exposure routes confirmed the susceptibility of Atlantic salmon to VHSV. Neither sockeye nor Atlantic salmon surviving the cohabitation served as a reservoir of VHSV, but Pacific herring did. The results suggest that VHSV-IVa poses low risk to sockeye salmon under natural routes of exposure.
Collapse
Affiliation(s)
- Lynden Gross
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC V9T 6N7, Canada
| | | | | | | |
Collapse
|
10
|
The Nucleoprotein and Phosphoprotein Are Major Determinants of the Virulence of Viral Hemorrhagic Septicemia Virus in Rainbow Trout. J Virol 2019; 93:JVI.00382-19. [PMID: 31270224 DOI: 10.1128/jvi.00382-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/23/2019] [Indexed: 01/08/2023] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus, infects several marine and freshwater fish species. There are many strains of VHSV that affect different fish, but some strains of one genetic subgroup have gained high virulence in rainbow trout (Oncorhynchus mykiss). To define the genetic basis of high virulence in trout, we used reverse genetics to create chimeric VHSVs in which viral nucleoprotein (N), P (phosphoprotein), or M (matrix protein) genes, or the N and P genes, were exchanged between a trout-virulent European VHSV strain (DK-3592B) and a trout-avirulent North American VHSV strain (MI03). Testing of the chimeric recombinant VHSV (rVHSV) by intraperitoneal injection in juvenile rainbow trout showed that exchanges of the viral P or M genes had no effect on the trout virulence phenotype of either parental strain. However, reciprocal exchanges of the viral N gene resulted in a partial gain of function in the chimeric trout-avirulent strain (22% mortality) and complete loss of virulence for the chimeric trout-virulent strain (2% mortality). Reciprocal exchanges of both the N and P genes together resulted in complete gain of function in the chimeric avirulent strain (82% mortality), again with complete loss of virulence in the chimeric trout-virulent strain (0% mortality). Thus, the VHSV N gene contains an essential determinant of trout virulence that is strongly enhanced by the viral P gene. We hypothesize that the host-specific virulence mechanism may involve increased efficiency of the viral polymerase complex when the N and P proteins have adapted to more efficient interaction with a host component from rainbow trout.IMPORTANCE Rainbow trout farming is a major food source industry worldwide that has suffered great economic losses due to host jumps of fish rhabdovirus pathogens, followed by evolution of dramatic increases in trout-specific virulence. However, the genetic determinants of host jumps and increased virulence in rainbow trout are unknown for any fish rhabdovirus. Previous attempts to identify the viral genes containing trout virulence determinants of viral hemorrhagic septicemia virus (VHSV) have not been successful. We show here that, somewhat surprisingly, the viral nucleocapsid (N) and phosphoprotein (P) genes together contain the determinants responsible for trout virulence in VHSV. This suggests a novel host-specific virulence mechanism involving the viral polymerase and a host component. This differs from the known virulence mechanisms of mammalian rhabdoviruses based on the viral P or M (matrix) protein.
Collapse
|
11
|
Yusuff S, Kurath G, Kim MS, Tesfaye TM, Li J, McKenney DG, Vakharia VN. The glycoprotein, non-virion protein, and polymerase of viral hemorrhagic septicemia virus are not determinants of host-specific virulence in rainbow trout. Virol J 2019; 16:31. [PMID: 30845963 PMCID: PMC6407216 DOI: 10.1186/s12985-019-1139-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 01/06/2023] Open
Abstract
Background Viral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus belonging to the Novirhabdovirus genus, causes severe disease and mortality in many marine and freshwater fish species worldwide. VHSV isolates are classified into four genotypes and each group is endemic to specific geographic regions in the north Atlantic and Pacific Oceans. Most viruses in the European VHSV genotype Ia are highly virulent for rainbow trout (Oncorhynchus mykiss), whereas, VHSV genotype IVb viruses from the Great Lakes region in the United States, which caused high mortality in wild freshwater fish species, are avirulent for trout. This study describes molecular characterization and construction of an infectious clone of the virulent VHSV-Ia strain DK-3592B from Denmark, and application of the clone in reverse genetics to investigate the role of selected VHSV protein(s) in host-specific virulence in rainbow trout (referred to as trout-virulence). Methods Overlapping cDNA fragments of the DK-3592B genome were cloned after RT-PCR amplification, and their DNA sequenced by the di-deoxy chain termination method. A full-length cDNA copy (pVHSVdk) of the DK-3592B strain genome was constructed by assembling six overlapping cDNA fragments by using natural or artificially created unique restriction sites in the overlapping regions of the clones. Using an existing clone of the trout-avirulent VHSV-IVb strain MI03 (pVHSVmi), eight chimeric VHSV clones were constructed in which the coding region(s) of the glycoprotein (G), non-virion protein (NV), G and NV, or G, NV and L (polymerase) genes together, were exchanged between the two clones. Ten recombinant VHSVs (rVHSVs) were generated, including two parental rVHSVs, by transfecting fish cells with ten individual full-length plasmid constructs along with supporting plasmids using the established protocol. Recovered rVHSVs were characterized for viability and growth in vitro and used to challenge groups of juvenile rainbow trout by intraperitoneal injection. Results Complete sequence of the VHSV DK-3592B genome was determined from the cloned cDNA and deposited in GenBank under the accession no. KC778774. The trout-virulent DK-3592B genome (genotype Ia) is 11,159 nt in length and differs from the trout-avirulent MI03 genome (pVHSVmi) by 13% at the nucleotide level. When the rVHSVs were assessed for the trout-virulence phenotype in vivo, the parental rVHSVdk and rVHSVmi were virulent and avirulent, respectively, as expected. Four chimeric rVHSVdk viruses with the substitutions of the G, NV, G and NV, or G, NV and L genes from the avirulent pVHSVmi constructs were still highly virulent (100% mortality), while the reciprocal four chimeric rVHSVmi viruses with genes from pVHSVdk remained avirulent (0–10% mortality). Conclusions When chimeric rVHSVs, containing all the G, NV, and L gene substitutions, were tested in vivo, they did not exhibit any change in trout-virulence relative to the background clones. These results demonstrate that the G, NV and L genes of VHSV are not, by themselves or in combination, major determinants of host-specific virulence in trout.
Collapse
Affiliation(s)
- Shamila Yusuff
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E. Pratt Street, Baltimore, MD, 21202, USA.,GeneDX 207 Perry Parkway, Gaithersburg, MD, 20877, USA
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA, 98115, USA
| | - Min Sun Kim
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA, 98115, USA.,Department of Integrative Bio-Industrial Engineering, Sejong University, Seoul, Republic of South Korea
| | - Tarin M Tesfaye
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA, 98115, USA
| | - Jie Li
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E. Pratt Street, Baltimore, MD, 21202, USA
| | - Douglas G McKenney
- U.S. Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA, 98115, USA
| | - Vikram N Vakharia
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E. Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
12
|
Guðmundsdóttir S, Vendramin N, Cuenca A, Sigurðardóttir H, Kristmundsson A, Iburg TM, Olesen NJ. Outbreak of viral haemorrhagic septicaemia (VHS) in lumpfish (Cyclopterus lumpus) in Iceland caused by VHS virus genotype IV. JOURNAL OF FISH DISEASES 2019; 42:47-62. [PMID: 30397920 PMCID: PMC7379627 DOI: 10.1111/jfd.12910] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 06/01/2023]
Abstract
A novel viral haemorrhagic septicaemia virus (VHSV) of genotype IV was isolated from wild lumpfish (Cyclopterus lumpus), brought to a land-based farm in Iceland, to serve as broodfish. Two groups of lumpfish juveniles, kept in tanks in the same facility, got infected. The virus isolated was identified as VHSV by ELISA and real-time RT-PCR. Phylogenetic analysis, based on the glycoprotein (G) gene sequences, may indicate a novel subgroup of VHSV genotype IV. In controlled laboratory exposure studies with this new isolate, there was 3% survival in the I.P. injection challenged group while there was 90% survival in the immersion group. VHSV was not re-isolated from fish challenged by immersion. In a cohabitation trial, lumpfish infected I.P. (shedders) were placed in tanks with naïve lumpfish as well as naïve Atlantic salmon (Salmo salar L.). 10% of the lumpfish shedders and 43%-50% of the cohabiting lumpfish survived after 4 weeks. 80%-92% of the Atlantic salmon survived, but no viral RNA was detected by real-time RT-PCR nor VHSV was isolated from Atlantic salmon. This is the first isolation of a notifiable virus in Iceland and the first report of VHSV of genotype IV in European waters.
Collapse
Affiliation(s)
- Sigríður Guðmundsdóttir
- Fish Disease LaboratoryInstitute for Experimental PathologyUniversity of IcelandReykjavíkIceland
| | - Niccoló Vendramin
- European Union Reference Laboratory for Fish DiseasesNational Institute for Aquatic ResourcesTechnical University of DenmarkCopenhagenDenmark
| | - Argelia Cuenca
- European Union Reference Laboratory for Fish DiseasesNational Institute for Aquatic ResourcesTechnical University of DenmarkCopenhagenDenmark
| | - Heiða Sigurðardóttir
- Fish Disease LaboratoryInstitute for Experimental PathologyUniversity of IcelandReykjavíkIceland
| | - Arni Kristmundsson
- Fish Disease LaboratoryInstitute for Experimental PathologyUniversity of IcelandReykjavíkIceland
| | - Tine Moesgaard Iburg
- European Union Reference Laboratory for Fish DiseasesNational Institute for Aquatic ResourcesTechnical University of DenmarkCopenhagenDenmark
| | - Niels Jørgen Olesen
- European Union Reference Laboratory for Fish DiseasesNational Institute for Aquatic ResourcesTechnical University of DenmarkCopenhagenDenmark
| |
Collapse
|
13
|
Vennerström P, Välimäki E, Hautaniemi M, Lyytikäinen T, Kapiainen S, Vidgren G, Virtala AM. Wild fish are negligible transmitters of viral haemorrhagic septicaemia virus (VHSV) genotype Id in the VHS restriction zone in Finland. DISEASES OF AQUATIC ORGANISMS 2018; 131:187-197. [PMID: 30459291 DOI: 10.3354/dao03301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Wild fish were suspected to be the source of reinfection by viral haemorrhagic septicaemia virus (VHSV) in Finnish brackish water rainbow trout farms located in a restriction zone regarding viral haemorrhagic septicaemia (VHS) comprising the entire Province of Åland, Baltic Sea, in the 2000s. Altogether, 1636 wild fish of 17 different species living in the vicinity of infected fish farms were screened for VHSV during the years 2005-2008. Additionally, 2 uninfected wild fish species as well as farmed whitefish were introduced into a VHS-positive fish farm to test whether they became infected by VHSV from the clinically diseased rainbow trout. Wild fish did not test positive for VHSV on any occasion. In contrast, whitefish introduced to a VHS-positive farm were infected with VHSV genotype Id and started to replicate the virus for a short time during the trial. Whitefish are farmed together with, or in the vicinity of, farmed rainbow trout in the study area and, according to this study, are a possible source of the recurring infection in the restriction area. A sprivivirus was isolated from all fish species in the infection trial without causing mortality in the test groups.
Collapse
Affiliation(s)
- Pia Vennerström
- Production Animal and Wildlife Health Research Unit, Finnish Food Safety Authority, 00790 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
14
|
Verrier ER, Genet C, Laloë D, Jaffrezic F, Rau A, Esquerre D, Dechamp N, Ciobotaru C, Hervet C, Krieg F, Jouneau L, Klopp C, Quillet E, Boudinot P. Genetic and transcriptomic analyses provide new insights on the early antiviral response to VHSV in resistant and susceptible rainbow trout. BMC Genomics 2018; 19:482. [PMID: 29921219 PMCID: PMC6009034 DOI: 10.1186/s12864-018-4860-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The viral hemorrhagic septicemia virus (VHSV) is a major threat for salmonid farming and for wild fish populations worldwide. Previous studies have highlighted the importance of innate factors regulated by a major quantitative trait locus (QTL) for the natural resistance to waterborne VHSV infection in rainbow trout. The aim of this study was to analyze the early transcriptomic response to VHSV inoculation in cell lines derived from previously described resistant and susceptible homozygous isogenic lines of rainbow trout to obtain insights into the molecular mechanisms responsible for the resistance to the viral infection. RESULTS We first confirmed the presence of the major QTL in a backcross involving a highly resistant fish isogenic line (B57) and a highly susceptible one (A22), and were able to define the confidence interval of the QTL and to identify its precise position. We extended the definition of the QTL since it controls not only resistance to waterborne infection but also the kinetics of mortality after intra-peritoneal injection. Deep sequencing of the transcriptome of B57 and A22 derived cell lines exposed to inactivated VHSV showed a stronger response to virus inoculation in the resistant background. In line with our previous observations, an early and strong induction of interferon and interferon-stimulated genes was correlated with the resistance to VHSV, highlighting the major role of innate immune factors in natural trout resistance to the virus. Interestingly, major factors of the antiviral innate immunity were much more expressed in naive B57 cells compared to naive A22 cells, which likely contributes to the ability of B57 to mount a fast antiviral response after viral infection. These observations were further extended by the identification of several innate immune-related genes localized close to the QTL area on the rainbow trout genome. CONCLUSIONS Taken together, our results improve our knowledge in virus-host interactions in vertebrates and provide novel insights in the molecular mechanisms explaining the resistance to VHSV in rainbow trout. Our data also provide a collection of potential markers for resistance and susceptibility of rainbow trout to VHSV infection.
Collapse
Affiliation(s)
- Eloi R Verrier
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Present address: Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMRS1110, Université de Strasbourg, F-67000, Strasbourg, France
| | - Carine Genet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Present address: GenPhySE, INRA, Université de Toulouse INPT ENSAT, Université de Toulouse INPT ENVT, 52627, Castanet-Tolosan, France
| | - Denis Laloë
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Florence Jaffrezic
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Diane Esquerre
- GenPhySE, INRA, Université de Toulouse INPT ENSAT, Université de Toulouse INPT ENVT, 52627, Castanet-Tolosan, France
| | - Nicolas Dechamp
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Céline Ciobotaru
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Caroline Hervet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Present address: BioEpAR, INRA, Oniris, 44307, Nantes, France
| | - Francine Krieg
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Luc Jouneau
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Christophe Klopp
- Plateforme Bioinformatique Toulouse, Midi-Pyrénées UBIA, INRA, 52627, Castanet-Tolosan, France
| | - Edwige Quillet
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Pierre Boudinot
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
15
|
Getchell RG, Cornwell ER, Bogdanowicz S, Andrés J, Batts WN, Kurath G, Breyta R, Choi JG, Farrell JM, Bowser PR. Complete sequences of 4 viral hemorrhagic septicemia virus IVb isolates and their virulence in northern pike fry. DISEASES OF AQUATIC ORGANISMS 2017; 126:211-227. [PMID: 29160219 DOI: 10.3354/dao03171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four viral hemorrhagic septicemia virus (VHSV) genotype IVb isolates were sequenced, their genetic variation explored, and comparative virulence assayed with experimental infections of northern pike Esox lucius fry. In addition to the type strain MI03, the complete 11183 bp genome of the first round goby Neogobius melanostomus isolate from the St. Lawrence River, and the 2013 and 2014 isolates from gizzard shad Dorosoma cepedianum die-offs in Irondequoit Bay, Lake Ontario and Dunkirk Harbor, Lake Erie were all deep sequenced on an Illumina platform. Mutations documented in the 11 yr since the MI03 index case from Lake St. Clair muskellunge Esox masquinongy showed 87 polymorphisms among the 4 isolates. Twenty-six mutations were non-synonymous and located at 18 different positions within the matrix protein, glycoprotein, non-virion protein, and RNA polymerase genes. The same 4 isolates were used to infect northern pike fry by a single 1 h bath exposure. Cumulative percent mortality varied from 42.5 to 62.5%. VHSV was detected in 57% (41/72) of the survivors at the end of the 21-d trial, suggesting that the virus was not rapidly cleared. Lesions were observed in many of the moribund and dead northern pike, such as hemorrhaging in the skin and fins, as well as hydrocephalus. Mean viral load measured from the trunk and visceral tissues of MI03-infected pike was significantly higher than the quantities detected in fish infected with the most recent isolates of genotype IVb, but there were no differences in cumulative mortality observed.
Collapse
Affiliation(s)
- Rodman G Getchell
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim MS, Choi SH, Kim KH. Over-passage of epithelioma papulosum cyprini (EPC) cells increased viral hemorrhagic septicemia virus (VHSV) replication. FISH & SHELLFISH IMMUNOLOGY 2016; 58:318-322. [PMID: 27663852 DOI: 10.1016/j.fsi.2016.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/23/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
Vaccines based on inactivated or attenuated viruses can be a way to prevent viral hemorrhagic septicemia virus (VHSV) disease, and the efficiency of viral production is a critical factor that can determine the practical use of developed vaccines in aquaculture farms. To know the effects of epithelioma papulosum cyprini (EPC) cells over-subculture on VHSV replication, the VHSV titer produced from high-passage EPC cells (subcultured more than 200 times in our laboratory) was compared to the titer produced from low-passage EPC cells (subcultured 5-15 times). Furthermore, to know whether immune factors are involved in VHSV titers, differences not only in the expression of Mx1 and ISG15 genes but also in the apoptosis progression by VHSV infection between high- and low-passage EPC cells were analyzed. The VHSV titers from high-passage EPC cells were significantly higher than titers from low-passage EPC cells, suggesting that the changed properties of EPC cells by over-subculture were favorable for VHSV proliferation. The DNA laddering of high-passage EPC cells by VHSV infection took a longer time than that of low-passage EPC cells, suggesting that over-subculture might delay apoptosis in VHSV infected EPC cells, and the delay of apoptosis by over-subculture can be thought as one of the factors that increased VHSV titers in high-passage EPC cells. The increased folds of Mx1 and ISG15 genes in high-passage EPC cells were significantly lower than those in low-passage EPC cells when exposed to either poly (I:C) or VHSV. However, the expression levels of Mx1 and ISG15 genes of high-passage EPC cells that were not stimulated with poly I:C or VHSV were almost equal to or higher than the expression levels of low-passage EPC cells that were exposed to poly (I:C) or VHSV. This result suggests that high-passage EPC cells were already in an excited state in type I interferon responses without any stimulants. The full open reading frame (ORF) sequences of Mx1 gene between high- and low-passage EPC cells were completely same. However, there were some differences in the amino acids sequences of ISG15 gene between high- and low-passage EPC cells, suggesting that ISG15-mediated pathways might be different between high- and low-passage EPC cells, which might influence on the replication of VHSV. The present results showed that the changed properties of EPC cells by over-subculture were favorable for VHSV proliferation.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Seung Hyuk Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
17
|
Friend SE, Lovy J, Hershberger PK. Disease surveillance of Atlantic herring: molecular characterization of hepatic coccidiosis and a morphological report of a novel intestinal coccidian. DISEASES OF AQUATIC ORGANISMS 2016; 120:91-107. [PMID: 27409233 DOI: 10.3354/dao03016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surveillance for pathogens of Atlantic herring, including viral hemorrhagic septicemia virus (VHSV), Ichthyophonus hoferi, and hepatic and intestinal coccidians, was conducted from 2012 to 2016 in the NW Atlantic Ocean, New Jersey, USA. Neither VHSV nor I. hoferi was detected in any sample. Goussia clupearum was found in the livers of 40 to 78% of adult herring in varying parasite loads; however, associated pathological changes were negligible. Phylogenetic analysis based on small subunit 18S rRNA gene sequences placed G. clupearum most closely with other extraintestinal liver coccidia from the genus Calyptospora, though the G. clupearum isolates had a unique nucleotide insertion between 604 and 729 bp that did not occur in any other coccidian species. G. clupearum oocysts from Atlantic and Pacific herring were morphologically similar, though differences occurred in oocyst dimensions. Comparison of G. clupearum genetic sequences from Atlantic and Pacific herring revealed 4 nucleotide substitutions and 2 gaps in a 1749 bp region, indicating some divergence in the geographically separate populations. Pacific G. clupearum oocysts were not directly infective, suggesting that a heteroxenous life cycle is likely. Intestinal coccidiosis was described for the first time from juvenile and adult Atlantic herring. A novel intestinal coccidian species was detected based on morphological characteristics of exogenously sporulated oocysts. A unique feature in these oocysts was the presence of 3 long (15.1 ± 5.1 µm, mean ±SD) spiny projections on both ends of the oocyst. The novel morphology of this coccidian led us to tentatively name this parasite G. echinata n. sp.
Collapse
Affiliation(s)
- Sarah E Friend
- New Jersey Division of Fish and Wildlife, Office of Fish and Wildlife Health and Forensics, 605 Pequest Road, Oxford, New Jersey 07863, USA
| | | | | |
Collapse
|
18
|
Vázquez D, López-Vázquez C, Skall HF, Mikkelsen SS, Olesen NJ, Dopazo CP. A novel multiplex RT-qPCR method based on dual-labelled probes suitable for typing all known genotypes of viral haemorrhagic septicaemia virus. JOURNAL OF FISH DISEASES 2016; 39:467-482. [PMID: 25952496 DOI: 10.1111/jfd.12381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 06/04/2023]
Abstract
Viral haemorrhagic septicaemia (VHS) is a notifiable fish disease, whose causative agent is a rhabdovirus isolated from a wide range of fish species, not only in fresh but also in marine and brackish waters. Phylogenetic studies have identified four major genotypes, with a strong geographical relationship. In this study, we have designed and validated a new procedure--named binary multiplex RT-qPCR (bmRT-qPCR)--for simultaneous detection and typing of all four genotypes of VHSV by real-time RT-PCR based on dual-labelled probes and composed by two multiplex systems designed for European and American/Asiatic isolates, respectively, using a combination of three different fluorophores. The specificity of the procedure was assessed by including a panel of 81 VHSV isolates covering all known genotypes and subtypes of the virus, and tissue material from experimentally infected rainbow trout, resulting in a correct detection and typing of all strains. The analytical sensitivity was evaluated in a comparative assay with titration in cell culture, observing that both methods provided similar limits of detection. The proposed method can be a powerful tool for epidemiological analysis of VHSV by genotyping unknown samples within a few hours.
Collapse
Affiliation(s)
- D Vázquez
- Aquaculture Institute, Santiago de Compostela University, 15782, Santiago de Compostela, Spain
| | - C López-Vázquez
- Aquaculture Institute, Santiago de Compostela University, 15782, Santiago de Compostela, Spain
| | - H F Skall
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - S S Mikkelsen
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - N J Olesen
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - C P Dopazo
- Aquaculture Institute, Santiago de Compostela University, 15782, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Kim MS, Lee JA, Kim KH. Effects of a broad-spectrum caspase inhibitor, Z-VAD(OMe)-FMK, on viral hemorrhagic septicemia virus (VHSV) infection-mediated apoptosis and viral replication. FISH & SHELLFISH IMMUNOLOGY 2016; 51:41-45. [PMID: 26899629 DOI: 10.1016/j.fsi.2016.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/30/2015] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
In the development of inactivated or attenuated viral vaccines for cultured fish, viral titers harvested from the cultured cells would be the most important factor for the determination of vaccine's cost effectiveness. In this study, we hypothesized that the lengthening of cell survival time by the inhibition of apoptosis can lead to an increase of the final titer of viral hemorrhagic septicemia virus (VHSV). To test the hypothesis, we investigated the effects of a broad-spectrum caspase inhibitor, Z-VAD(OMe)-FMK, on VHSV infection-mediated apoptosis in Epithelioma papulosum cyprini (EPC) cells and on the VHSV titers. VHSV infection induced the DNA laddering in EPC cells, and the progression of DNA fragmentation was in proportion to the CPE extension. The progression of DNA fragmentation in EPC cells infected with VHSV was clearly inhibited by exposure to Z-VAD(OMe)-FMK, and the inhibition was intensified according to the increase of the inhibitor concentration. These results confirmed the previous reports that the death of host cells by VHSV infection is through apoptosis. Cells infected with a recombinant VHSV, rVHSV-ΔNV-eGFP, that was generated from our previous study by replacement of the NV gene ORF with the enhanced green fluorescent protein (eGFP) gene ORF, showed earlier and more distinct DNA fragmentations compared to the cells infected with wild-type VHSV, suggesting the inhibitory role of the NV protein in VHSV-mediated apoptosis that was previously reported. The final viral titers in the supernatant isolated from Z-VAD(OMe)-FMK treated cells after showing an extensive CPE were significantly higher than the viral titers from cells infected with virus alone, indicating that the delay of apoptosis by Z-VAD(OMe)-FMK extended the survival time of EPC cells, which lengthen the time for VHSV replication in the cells. In conclusion, Z-VAD(OMe)-FMK-mediated inhibition of apoptosis significantly increased the final titers of both wild-type VHSV and rVHSV-ΔNV-eGFP, indicating that apoptosis inhibition can be a way to get higher titers of VHSV.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Ji Ae Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan 608-737, South Korea.
| |
Collapse
|
20
|
Ahmadivand S, Soltani M, Mardani K, Shokrpoor S, Rahmati-Holasoo H, Mokhtari A, Hasanzadeh R. Isolation and identification of viral hemorrhagic septicemia virus (VHSV) from farmed rainbow trout (Oncorhynchus mykiss) in Iran. Acta Trop 2016; 156:30-6. [PMID: 26777311 DOI: 10.1016/j.actatropica.2016.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a rhabdovirus that causes one of the most important fish diseases in rainbow trout (Oncorhynchus mykiss) production industry. During the present study from October 2014 to July 2015, the virus causing viral hemorrhagic septicemia (VHS) was isolated and identified in rainbow trout farms from five of sixteen farms experiencing mass mortalities in six provinces of Iran with major trout production. Cumulative mortalities at VHSV-positive farms ranged from 30 to 70%. Clinical signs of disease included exophthalmia, petechial hemorrhages in the mandible and around the eyes, a swollen abdomen and darkening of the integument, widespread petechiae of the musculature and pyloric regions, severe congestion of the kidney, and pale enlarged livers. In addition, histopathologic examinations of tissues showed severe lesions in muscle, kidney and liver, which were compatible with those already described for VHS. Furthermore, homogenates tissues of diseased fish induced cytopathic effects (CPE) in CHSE-214 cells, and confirmatory diagnosis of VHS was made by RT-PCR reactions. To our knowledge, this is the first report of isolation and identification of VHSV from farmed trout in Iran, which may have originated from Europe.
Collapse
|
21
|
Najib A, Kim MS, Choi SH, Kang YJ, Kim KH. Changes in microRNAs expression profile of olive flounder (Paralichthys olivaceus) in response to viral hemorrhagic septicemia virus (VHSV) infection. FISH & SHELLFISH IMMUNOLOGY 2016; 51:384-391. [PMID: 26975411 DOI: 10.1016/j.fsi.2016.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
To know the effect of viral hemorrhagic septicemia virus (VHSV) infection on the cellular microRNA expression profile in olive flounder (Paralichthys olivaceus), fish were infected with VHSV, and cellular microRNAs expression was analyzed at 0 (control), 6, 12, 24, 48 and 72 h post-infection (h.p.i.) by the high-throughput sequencing. A total of 372 mature miRNAs were identified, and, among them, 63 miRNAs were differentially expressed during VHSV infection. The differentially expressed microRNAs number was greatly increased from 24 h.p.i. compared to the number at 6 and 12 h.p.i., suggesting that the alteration of microRNAs expression by VHSV infection may be related to the progression of VHSV disease. The target prediction analysis, the GO enrichment analysis, and the KEGG pathway analysis of the predicted target genes showed that various biological pathways could be affected by VHSV infection through the down-regulation or up-regulation of host miRNAs. The present results provide a basic information on the microRNAs related to VHSV infection in olive flounder. Considering broad effects of microRNAs on various biological pathways, data in this study can be used to interpret the mechanism of VHSV pathogenesis, which, vice versa, can be used to develop control measures against VHSV.
Collapse
Affiliation(s)
- Abdellaoui Najib
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, South Korea
| | - Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, South Korea
| | - Seung Hyuk Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, South Korea
| | - Yue Jai Kang
- Department of Aquatic Life and Medical Sciences, Sun Moon University, Asan-si, Chungnam, 336-708, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, South Korea.
| |
Collapse
|
22
|
Wilson-Rothering A, Marcquenski S, Koenigs R, Bruch R, Kamke K, Isermann D, Thurman A, Toohey-Kurth K, Goldberg T. Temporal Variation in Viral Hemorrhagic Septicemia Virus Antibodies in Freshwater Drum (Aplodinotus grunniens) Indicates Cyclic Transmission in Lake Winnebago, Wisconsin. J Clin Microbiol 2015; 53:2889-94. [PMID: 26135873 PMCID: PMC4540894 DOI: 10.1128/jcm.00010-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 06/20/2015] [Indexed: 11/20/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is an emerging pathogen that causes mass mortality in multiple fish species. In 2007, the Great Lakes freshwater strain, type IVb, caused a large die-off of freshwater drum (Aplodinotus grunniens) in Lake Winnebago, Wisconsin, USA. To evaluate the persistence and transmission of VHSV, freshwater drum from Lake Winnebago were tested for antibodies to the virus using recently developed virus neutralization (VN) and enzyme-linked immunosorbent (ELISA) assays. Samples were also tested by real-time reverse transcription-PCR (rRT-PCR) to detect viral RNA. Of 548 serum samples tested, 44 (8.03%) were positive by VN (titers ranging from 1:16 to 1:1,024) and 45 (8.21%) were positive by ELISA, including 7 fish positive by both assays. Antibody prevalence increased with age and was higher in one northwestern area of Lake Winnebago than in other areas. Of 3,864 tissues sampled from 551 fish, 1 spleen and 1 kidney sample from a single adult female fish collected in the spring of 2012 tested positive for VHSV by rRT-PCR, and serum from the same fish tested positive by VN and ELISA. These results suggest that VHSV persists and viral transmission may be active in Lake Winnebago even in years following outbreaks and that wild fish may survive VHSV infection and maintain detectable antibody titers while harboring viral RNA. Influxes of immunologically naive juvenile fish through recruitment may reduce herd immunity, allow VHSV to persist, and drive superannual cycles of transmission that may sporadically manifest as fish kills.
Collapse
Affiliation(s)
- Anna Wilson-Rothering
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan Marcquenski
- Wisconsin Department of Natural Resources Bureau of Fisheries Management, Madison, Wisconsin, USA
| | - Ryan Koenigs
- Wisconsin Department of Natural Resources Bureau of Fisheries Management, Oshkosh, Wisconsin, USA
| | - Ronald Bruch
- Wisconsin Department of Natural Resources Bureau of Fisheries Management, Madison, Wisconsin, USA
| | - Kendall Kamke
- Wisconsin Department of Natural Resources Bureau of Fisheries Management, Oshkosh, Wisconsin, USA
| | - Daniel Isermann
- U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Andrew Thurman
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa, USA
| | - Kathy Toohey-Kurth
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tony Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Stepien CA, Pierce LR, Leaman DW, Niner MD, Shepherd BS. Gene Diversification of an Emerging Pathogen: A Decade of Mutation in a Novel Fish Viral Hemorrhagic Septicemia (VHS) Substrain since Its First Appearance in the Laurentian Great Lakes. PLoS One 2015; 10:e0135146. [PMID: 26313549 PMCID: PMC4552161 DOI: 10.1371/journal.pone.0135146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/18/2015] [Indexed: 12/30/2022] Open
Abstract
Viral Hemorrhagic Septicemia virus (VHSv) is an RNA rhabdovirus, which causes one of the world's most serious fish diseases, infecting >80 freshwater and marine species across the Northern Hemisphere. A new, novel, and especially virulent substrain—VHSv-IVb—first appeared in the Laurentian Great Lakes about a decade ago, resulting in massive fish kills. It rapidly spread and has genetically diversified. This study analyzes temporal and spatial mutational patterns of VHSv-IVb across the Great Lakes for the novel non-virion (Nv) gene that is unique to this group of novirhabdoviruses, in relation to its glycoprotein (G), phosphoprotein (P), and matrix (M) genes. Results show that the Nv-gene has been evolving the fastest (k = 2.0x10-3 substitutions/site/year), with the G-gene at ~1/7 that rate (k = 2.8x10-4). Most (all but one) of the 12 unique Nv- haplotypes identified encode different amino acids, totaling 26 changes. Among the 12 corresponding G-gene haplotypes, seven vary in amino acids with eight total changes. The P- and M- genes are more evolutionarily conserved, evolving at just ~1/15 (k = 1.2x10-4) of the Nv-gene’s rate. The 12 isolates contained four P-gene haplotypes with two amino acid changes, and six M-gene haplotypes with three amino acid differences. Patterns of evolutionary changes coincided among the genes for some of the isolates, but appeared independent in others. New viral variants were discovered following the large 2006 outbreak; such differentiation may have been in response to fish populations developing resistance, meriting further investigation. Two 2012 variants were isolated by us from central Lake Erie fish that lacked classic VHSv symptoms, having genetically distinctive Nv-, G-, and M-gene sequences (with one of them also differing in its P-gene); they differ from each other by a G-gene amino acid change and also differ from all other isolates by a shared Nv-gene amino acid change. Such rapid evolutionary differentiation may allow new viral variants to evade fish host recognition and immune responses, facilitating long-time persistence along with expansion to new geographic areas.
Collapse
Affiliation(s)
- Carol A. Stepien
- Great Lakes Genetics/Genomics Laboratory, Lake Erie Center and Department of Environmental Sciences, The University of Toledo, Toledo, Ohio, 43616, United States of America
- * E-mail:
| | - Lindsey R. Pierce
- Great Lakes Genetics/Genomics Laboratory, Lake Erie Center and Department of Environmental Sciences, The University of Toledo, Toledo, Ohio, 43616, United States of America
| | - Douglas W. Leaman
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio, 43606, United States of America
| | - Megan D. Niner
- Great Lakes Genetics/Genomics Laboratory, Lake Erie Center and Department of Environmental Sciences, The University of Toledo, Toledo, Ohio, 43616, United States of America
| | - Brian S. Shepherd
- ARS/USDA/University of Wisconsin at Milwaukee/School of Freshwater Sciences, Milwaukee, Wisconsin, 53204, United States of America
| |
Collapse
|
24
|
Getchell RG, Erkinharju T, Johnson AO, Davis BW, Hatch EE, Cornwell ER, Bowser PR. Goldfish Carassius auratus susceptibility to viral hemorrhagic septicemia virus genotype IVb depends on exposure route. DISEASES OF AQUATIC ORGANISMS 2015; 115:25-36. [PMID: 26119297 PMCID: PMC10958202 DOI: 10.3354/dao02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We assessed the susceptibility of goldfish Carassius auratus to infection by genotype IVb of the viral hemorrhagic septicemia virus. Goldfish were infected by intraperitoneal injections of 106 plaque-forming units (pfu) fish-1, single bath exposure of 105 pfu ml-1 for 24 h, or consumption of 0.4 g of commercial fish feed soaked in 107 pfu per 8 fish. The mortality rate of intraperitoneal-infected goldfish was 10 to 32%, although the virus was detected by quantitative RT-PCR in 77% (65/84) of the survivors at the end of the 42 d trial, suggesting a carrier state. Severe gross lesions were observed in many of the moribund and dead goldfish such as hemorrhaging in the skin, fin, liver, kidney, brain, intestine, and eye as well as abdominal distension, bilateral exophthalmia, and splenomegaly. There was minimal morbidity or mortality in the immersion, feeding, or control groups.
Collapse
Affiliation(s)
- Rodman G. Getchell
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| | - Toni Erkinharju
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
- Present address: Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, University of Tromsø, Pb 6050 Langnes, 9037 Tromsø, Norway
| | - Anna O. Johnson
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
- Present address: Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Benjamin W. Davis
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| | - Emily E. Hatch
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
- Present address: Department of Education/Childhood Education, Corning Community College, 1 Academic Drive, Corning, NY 14830, USA
| | - Emily R. Cornwell
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| | - Paul R. Bowser
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Model for ranking freshwater fish farms according to their risk of infection and illustration for viral haemorrhagic septicaemia. Prev Vet Med 2014; 115:263-79. [DOI: 10.1016/j.prevetmed.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 11/23/2022]
|
26
|
Rodríguez-Ramilo ST, De La Herrán R, Ruiz-Rejón C, Hermida M, Fernández C, Pereiro P, Figueras A, Bouza C, Toro MA, Martínez P, Fernández J. Identification of quantitative trait loci associated with resistance to viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus ): a comparison between bacterium, parasite and virus diseases. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:265-276. [PMID: 24078233 DOI: 10.1007/s10126-013-9544-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
One of the main objectives of genetic breeding programs in turbot industry is to reduce disease-related mortality. In the present study, a genome scan to detect quantitative trait loci (QTL) affecting resistance and survival to viral haemorrhagic septicaemia (VHS) was carried out. Three full-sib families with approximately 90 individuals each were genotyped and evaluated by linear regression and maximum likelihood approaches. In addition, a comparison between QTL detected for resistance and survival time to other important bacterial and parasite diseases affecting turbot (furunculosis and scuticociliatosis) was also carried out. Finally, the relationship between QTL affecting resistance/survival time to the virus and growth-related QTL was also evaluated. Several genomic regions controlling resistance and survival time to VHS were detected. Also significant associations between the evaluated traits and genotypes at particular markers were identified, explaining up to 14 % of the phenotypic variance. Several genomic regions controlling general and specific resistance to different diseases in turbot were detected. A preliminary gene mining approach identified candidate genes related to general or specific immunity. This information will be valuable to develop marker-assisted selection programs and to discover candidate genes related to disease resistance to improve turbot production.
Collapse
|
27
|
Development and application of quantitative detection method for viral hemorrhagic septicemia virus (VHSV) genogroup IVa. Viruses 2014; 6:2204-13. [PMID: 24859343 PMCID: PMC4036551 DOI: 10.3390/v6052204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 01/18/2023] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a problematic pathogen in olive flounder (Paralichthys olivaceus) aquaculture farms in Korea. Thus, it is necessary to develop a rapid and accurate diagnostic method to detect this virus. We developed a quantitative RT-PCR (qRT-PCR) method based on the nucleocapsid (N) gene sequence of Korean VHSV isolate (Genogroup IVa). The slope and R2 values of the primer set developed in this study were −0.2928 (96% efficiency) and 0.9979, respectively. Its comparison with viral infectivity calculated by traditional quantifying method (TCID50) showed a similar pattern of kinetic changes in vitro and in vivo. The qRT-PCR method reduced detection time compared to that of TCID50, making it a very useful tool for VHSV diagnosis.
Collapse
|
28
|
Sieracki JL, Bossenbroek JM, Faisal M. Modeling the secondary spread of viral hemorrhagic septicemia virus (VHSV) by commercial shipping in the Laurentian Great Lakes. Biol Invasions 2014. [DOI: 10.1007/s10530-013-0556-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Phylogenetic Analysis of Viral Haemorrhagic Septicaemia Virus (VHSV) Isolates from Asia. ACTA ACUST UNITED AC 2013. [DOI: 10.7847/jfp.2013.26.3.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Emmenegger EJ, Moon CH, Hershberger PK, Kurath G. Virulence of viral hemorrhagic septicemia virus (VHSV) genotypes Ia, IVa, IVb, and IVc in five fish species. DISEASES OF AQUATIC ORGANISMS 2013; 107:99-111. [PMID: 24334352 DOI: 10.3354/dao02671] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The susceptibility of yellow perch Perca flavescens, rainbow trout Oncorhynchus mykiss, Chinook salmon O. tshawytscha, koi Cyprinus carpio koi, and Pacific herring Clupea pallasii to 4 strains of viral hemorrhagic septicemia virus (VHSV) was assessed. Fish were challenged via intraperitoneal injection with high (1 × 106 plaque-forming units, PFU) and low (1 × 103 PFU) doses of a European strain (genotype Ia), and North American strains from the West coast (genotype IVa), Great Lakes (genotype IVb), and the East coast (genotype IVc). Pacific herring were exposed to the same VHSV strains, but at a single dose of 5 × 103 PFU ml-1 by immersion in static seawater. Overall, yellow perch were the most susceptible, with cumulative percent mortality (CPM) ranging from 84 to 100%, and 30 to 93% in fish injected with high or low doses of virus, respectively. Rainbow trout and Chinook salmon experienced higher mortalities (47 to 98% CPM) after exposure to strain Ia than to the other virus genotypes. Pacific herring were most susceptible to strain IVa with an average CPM of 80% and moderately susceptible (42 to 52% CPM) to the other genotypes. Koi had very low susceptibility (≤5.0% CPM) to all 4 VHSV strains. Fish tested at 7 d post challenge were positive for all virus strains, with yellow perch having the highest prevalence and concentrations of virus, and koi the lowest. While genotype Ia had higher virulence in salmonid species, there was little difference in virulence or host-specificity between isolates from subtypes IVa, IVb, and IVc.
Collapse
Affiliation(s)
- Eveline J Emmenegger
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th St. Seattle, Washington 98115, USA
| | | | | | | |
Collapse
|
31
|
Kurath G, Jolley JC, Thompson TM, Thompson D, Whitesel TA, Gutenberger S, Winton JR. Ammocoetes of Pacific Lamprey are not susceptible to common fish rhabdoviruses of the U.S. Pacific northwest. JOURNAL OF AQUATIC ANIMAL HEALTH 2013; 25:274-280. [PMID: 24341769 DOI: 10.1080/08997659.2013.839967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pacific Lampreys Entosphenus tridentatus have experienced severe population declines in recent years and efforts to develop captive rearing programs are under consideration. However, there is limited knowledge of their life history, ecology, and potential to harbor or transmit pathogens that may cause infectious disease. As a measure of the possible risks associated with introducing wild lampreys into existing fish culture facilities, larval lampreys (ammocoetes) were tested for susceptibility to infection and mortality caused by experimental exposures to the fish rhabdovirus pathogens: infectious hematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). Two IHNV isolates, representing the U and M genogroups, and one VHSV isolate from the IVa genotype were each delivered to groups of ammocoetes by immersion at moderate and high viral doses, and by intraperitoneal injection. Ammocoetes were then held in triplicate tanks with no substrate or sediment. During 41 d of observation postchallenge there was low or no mortality in all groups, and no virus was detected in the small number of fish that died. Ammocoetes sampled for incidence of infection at 6 and 12 d after immersion challenges also had no detectable virus, and no virus was detected in surviving fish from any group. A small number of ammocoetes sampled 6 d after the injection challenge had detectable virus, but at levels below the original quantity of virus injected. Overall there was no evidence of infection, replication, or persistence of any of the viruses in any of the treatment groups. Our results suggest that Pacific Lampreys are highly unlikely to serve as hosts that maintain or transmit these viruses.
Collapse
Affiliation(s)
- G Kurath
- a U.S. Geological Survey , Western Fisheries Research Center , 6505 Northeast 65th Street , Seattle , Washington , 98115 , USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pierce LR, Willey JC, Palsule VV, Yeo J, Shepherd BS, Crawford EL, Stepien CA. Accurate detection and quantification of the fish viral hemorrhagic Septicemia virus (VHSv) with a two-color fluorometric real-time PCR assay. PLoS One 2013; 8:e71851. [PMID: 23977162 PMCID: PMC3748128 DOI: 10.1371/journal.pone.0071851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/03/2013] [Indexed: 01/08/2023] Open
Abstract
Viral Hemorrhagic Septicemia virus (VHSv) is one of the world's most serious fish pathogens, infecting >80 marine, freshwater, and estuarine fish species from Eurasia and North America. A novel and especially virulent strain - IVb - appeared in the Great Lakes in 2003, has killed many game fish species in a series of outbreaks in subsequent years, and shut down interstate transport of baitfish. Cell culture is the diagnostic method approved by the USDA-APHIS, which takes a month or longer, lacks sensitivity, and does not quantify the amount of virus. We thus present a novel, easy, rapid, and highly sensitive real-time quantitative reverse transcription PCR (qRT-PCR) assay that incorporates synthetic competitive template internal standards for quality control to circumvent false negative results. Results demonstrate high signal-to-analyte response (slope = 1.00±0.02) and a linear dynamic range that spans seven orders of magnitude (R(2) = 0.99), ranging from 6 to 6,000,000 molecules. Infected fishes are found to harbor levels of virus that range to 1,200,000 VHSv molecules/10(6) actb1 molecules with 1,000 being a rough cut-off for clinical signs of disease. This new assay is rapid, inexpensive, and has significantly greater accuracy than other published qRT-PCR tests and traditional cell culture diagnostics.
Collapse
Affiliation(s)
- Lindsey R. Pierce
- Great Lakes Genetics/Genomics Laboratory, Lake Erie Center and Department of Environmental Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - James C. Willey
- Department of Medicine, The University of Toledo, Toledo, Ohio, United States of America
| | - Vrushalee V. Palsule
- Great Lakes Genetics/Genomics Laboratory, Lake Erie Center and Department of Environmental Sciences, The University of Toledo, Toledo, Ohio, United States of America
| | - Jiyoun Yeo
- Department of Medicine, The University of Toledo, Toledo, Ohio, United States of America
| | - Brian S. Shepherd
- ARS/USDA/University of Wisconsin at Milwaukee/School of Freshwater Sciences, Milwaukee, Wisconsin, United States of America
| | - Erin L. Crawford
- Department of Medicine, The University of Toledo, Toledo, Ohio, United States of America
| | - Carol A. Stepien
- Great Lakes Genetics/Genomics Laboratory, Lake Erie Center and Department of Environmental Sciences, The University of Toledo, Toledo, Ohio, United States of America
| |
Collapse
|
33
|
Olson W, Emmenegger E, Glenn J, Winton J, Goetz F. Comparative susceptibility among three stocks of yellow perch, Perca flavescens (Mitchill), to viral haemorrhagic septicaemia virus strain IVb from the Great Lakes. JOURNAL OF FISH DISEASES 2013; 36:711-719. [PMID: 23305522 DOI: 10.1111/jfd.12068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/08/2012] [Accepted: 11/11/2012] [Indexed: 06/01/2023]
Abstract
The Great Lakes strain of viral haemorrhagic septicaemia virus IVb (VHSV-IVb) is capable of infecting a wide number of naive species and has been associated with large fish kills in the Midwestern United States since its discovery in 2005. The yellow perch, Perca flavescens (Mitchill), a freshwater species commonly found throughout inland waters of the United States and prized for its high value in sport and commercial fisheries, is a species documented in several fish kills affiliated with VHS. In the present study, differences in survival after infection with VHSV IVb were observed among juvenile fish from three yellow perch broodstocks that were originally derived from distinct wild populations, suggesting innate differences in susceptibility due to genetic variance. While all three stocks were susceptible upon waterborne exposure to VHS virus infection, fish derived from the Midwest (Lake Winnebago, WI) showed significantly lower cumulative % survival compared with two perch stocks derived from the East Coast (Perquimans River, NC and Choptank River, MD) of the United States. However, despite differences in apparent susceptibility, clinical signs did not vary between stocks and included moderate-to-severe haemorrhages at the pelvic and pectoral fin bases and exophthalmia. After the 28-day challenge was complete, VHS virus was analysed in subsets of whole fish that had either survived or succumbed to the infection using both plaque assay and quantitative PCR methodologies. A direct correlation was identified between the two methods, suggesting the potential for both methods to be used to detect virus in a research setting.
Collapse
Affiliation(s)
- W Olson
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | |
Collapse
|
34
|
Garver KA, Traxler GS, Hawley LM, Richard J, Ross JP, Lovy J. Molecular epidemiology of viral haemorrhagic septicaemia virus (VHSV) in British Columbia, Canada, reveals transmission from wild to farmed fish. DISEASES OF AQUATIC ORGANISMS 2013; 104:93-104. [PMID: 23709462 DOI: 10.3354/dao02588] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Viral haemorrhagic septicaemia virus (VHSV) is a fish pathogen found throughout the Northern Hemisphere and is capable of infecting and causing mortality in numerous marine and freshwater hosts. In the coastal waters of British Columbia, Canada, the virus has been detected for 20 yr with many occurrences of mass mortalities among populations of Pacific herring Clupea pallasii (Valenciennes) and sardine Sardinops sagax as well as detections among cultured Atlantic Salmo salar and Chinook Oncorhynchus tshawytscha salmon. We compared nucleotide sequence of the full glycoprotein (G) gene coding region (1524 nt) of 63 VHSV isolates sampled during its recorded presence from 1993 to 2011 from 6 species and a total of 29 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVa within the major VHSV genetic group IV. Of the 63 virus isolates, there were 42 unique sequences, each of which was ephemeral, being repeatedly detected at most only 1 yr after its initial detection. Multiple sequence types were revealed during single viral outbreak events, and genetic heterogeneity was observed within isolates from individual fish. Moreover, phylogenetic analysis revealed a close genetic linkage between VHSV isolates obtained from pelagic finfish species and farmed salmonids, providing evidence for virus transmission from wild to farmed fish.
Collapse
Affiliation(s)
- Kyle A Garver
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Reichert M, Matras M, Skall HF, Olesen NJ, Kahns S. Trade practices are main factors involved in the transmission of viral haemorrhagic septicaemia. JOURNAL OF FISH DISEASES 2013; 36:103-114. [PMID: 23020691 DOI: 10.1111/jfd.12004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 06/01/2023]
Abstract
Viral haemorrhagic septicaemia (VHS), caused by the novirhabdovirus viral haemorrhagic septicaemia virus (VHSV), causes significant economic problems to European rainbow trout, Oncorhynchus mykiss (Walbaum), production. The virus isolates can be divided into four distinct genotypes with additional subgroups. The main source of outbreaks in European rainbow trout farming is sublineage Ia isolates. Recently, this group of isolates has been further subdivided in to two subclades of which the Ia-2 consists of isolates occurring mainly in Continental Europe outside of Denmark. In this study, we sequenced the full-length G-gene sequences of 24 VHSV isolates that caused VHS outbreaks in Polish trout farms between 2005 and 2009. All these isolates were identified as genotype Ia-2; they divided however into two genetically distinct subgroups, that we name Pol I and Pol II. The Pol I isolates mainly caused outbreaks in the southern part of Poland, while Pol II isolates predominantly were sampled in the north of Poland, although it seems that they have been transmitted to other parts of the country. Molecular epidemiology was used for characterization of transmission pathways. This study shows that a main cause of virus transmission appears to be movement of fish. At least in Polish circumstances trading practices appear to have significant impact on spreading of VHSV infection.
Collapse
Affiliation(s)
- M Reichert
- Department of Pathology, National Veterinary Research Institute, Pulawy, Poland.
| | | | | | | | | |
Collapse
|
36
|
Pham PH, Lumsden JS, Tafalla C, Dixon B, Bols NC. Differential effects of viral hemorrhagic septicaemia virus (VHSV) genotypes IVa and IVb on gill epithelial and spleen macrophage cell lines from rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2013; 34:632-640. [PMID: 23257204 DOI: 10.1016/j.fsi.2012.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 06/01/2023]
Abstract
The two most prominent genotypes of viral hemorrhagic septicemia virus (VHSV) are -I in the Northeastern Atlantic region and -IV in North America, but much more is known about the cellular pathogenesis of genotype -I than -IV. VHSV genotype -IV is divided into -IVa from the Northeast Pacific Ocean and -IVb from the Great Lakes and both of which are less virulent to rainbow trout than genotype -I. In this work, infections of VHSV-IVa and -IVb have been studied in two rainbow trout cell lines, RTgill-W1 from the gill epithelium, and RTS11 from spleen macrophages. RTgill-W1 produced infectious progeny of both VHSV-IVa and -IVb. However, VHSV-IVa was more infectious than -IVb toward RTgill-W1: -IVa caused cytopathic effect (CPE) at a lower viral titre, elicited CPE earlier, and yielded higher titres. By contrast, no CPE and no increase in viral titre were observed in RTS11 cultures infected with either genotype. Yet in RTS11 all six VHSV genes were expressed and antiviral genes, Mx2 and Mx3, were up regulated by VHSV-IVb and -IVa. However, replication appeared to terminate at the translational stage as viral N protein, presumably the most abundant of the VSHV proteins, was not detected in either infected RTS11 cultures. In RTgill-W1, Mx2 and Mx3 were up regulated to similar levels by both viral genotypes, while VHSV-IVa induced higher levels of IFN1, IFN2 and LGP2A than VHSV-IVb.
Collapse
Affiliation(s)
- P H Pham
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Jonstrup SP, Kahns S, Skall HF, Boutrup TS, Olesen NJ. Development and validation of a novel Taqman-based real-time RT-PCR assay suitable for demonstrating freedom from viral haemorrhagic septicaemia virus. JOURNAL OF FISH DISEASES 2013; 36:9-23. [PMID: 23016520 DOI: 10.1111/j.1365-2761.2012.01416.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/07/2012] [Accepted: 03/08/2012] [Indexed: 06/01/2023]
Abstract
Viral haemorrhagic septicaemia (VHS) is a serious disease in several fish species. VHS is caused by the rhabdovirus viral haemorrhagic septicaemia virus (VHSV). To prevent spreading of the pathogen, it is important to use a fast, robust, sensitive and specific diagnostic tool to identify the infected fish. Traditional diagnosis based on isolation in cell culture followed by identification using, for example, ELISA is sensitive and specific but slow. By switching to RT-PCR for surveillance and diagnosis of VHS the time needed before a correct diagnosis can be given will be considerably shortened and the need for maintaining expensive cell culture facilities reduced. Here we present the validation, according to OIE guidelines, of a sensitive and specific Taqman-based real-time RT-PCR. The assay detects all isolates in a panel of 79 VHSV isolates covering all known genotypes and subtypes, with amplification efficiencies of approximately 100%. The analytical and diagnostic specificity of the real-time RT-PCR is close to 1, and the analytical and diagnostic sensitivity is comparable with traditional cell-based methods. In conclusion, the presented real-time RT-PCR assay has the necessary qualities to be used as a VHSV surveillance tool on par with cell culture assays.
Collapse
Affiliation(s)
- S P Jonstrup
- Section for Fish Diseases, Division of Poultry, Fish and Fur Animals, National Veterinary Institute, Technical University of Denmark, Århus N, Denmark
| | | | | | | | | |
Collapse
|
38
|
Phelps NBD, Patnayak DP, Jiang Y, Goyal SM. The use of a one-step real-time reverse transcription polymerase chain reaction (rRT-PCR) for the surveillance of viral hemorrhagic septicemia virus (VHSV) in Minnesota. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:238-243. [PMID: 23066788 DOI: 10.1080/08997659.2012.711268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a highly contagious and pathogenic virus of fish. The virus infects more than 70 fish species worldwide, in both fresh and salt water. A new viral strain (VHSV-IVb) has proven both virulent and persistent, spreading throughout the Great Lakes of North America and to inland water bodies in the region. To better understand the geographic distribution of the virus, we used a modified real-time reverse transcription polymerase chain reaction (rRT-PCR) assay for high-throughput testing of fish for VHSV. The assay was shown to be twice as sensitive as the gold standard, virus isolation, and did not cross react with other viruses found in fish. In addition, the diagnostic turnaround time was reduced from 28 to 30 d for virus isolation to 2-4 d for rRT-PCR. To demonstrate the usefulness of the rRT-PCR assay, 115 high-priority water bodies in Minnesota were tested by both methods from April 2010 to June 2011. All survey sites tested negative for VHSV by both methods. The survey results have informed fisheries managers on the absence of VHSV in Minnesota and have better prepared them for the eventual arrival of the disease. In addition, the results demonstrate the value of this rRT-PCR as a surveillance tool to rapidly identify an outbreak so that it can be controlled in a timely manner.
Collapse
Affiliation(s)
- Nicholas B D Phelps
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, USA
| | | | | | | |
Collapse
|
39
|
Cuhel RL, Aguilar C. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders. ANNUAL REVIEW OF MARINE SCIENCE 2012; 5:289-320. [PMID: 22809179 DOI: 10.1146/annurev-marine-120710-100952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lake Michigan, a 58,000-km(2) freshwater inland sea, is large enough to have persistent basin-scale circulation yet small enough to enable development of approximately balanced budgets for water, energy, and elements including carbon and silicon. Introduction of nonindigenous species-whether through invasion, intentional stocking, or accidental transplantation-has transformed the lake's ecosystem function and habitat structure. Of the 79 nonindigenous species known to have established reproductive populations in the lake, only a few have brought considerable ecological pressure to bear. Four of these were chosen for this review to exemplify top-down (sea lamprey, Petromyzon marinus), middle-out (alewife, Alosa pseudoharengus), and bottom-up (the dreissenid zebra and quagga mussels, Dreissena polymorpha and Dreissena rostriformis bugensis, respectively) transformations of Lake Michigan ecology, habitability, and ultimately physical environment. Lampreys attacked and extirpated indigenous lake trout, the top predator. Alewives outcompeted native planktivorous fish and curtailed invertebrate populations. Dreissenid mussels-especially quagga mussels, which have had a much greater impact than the preceding zebra mussels-moved ecosystem metabolism basin-wide from water column to bottom dominance and engineered structures throughout the lake. Each of these non indigenous species exerted devastating effects on commercial and sport fisheries through ecosystem structure modification.
Collapse
Affiliation(s)
- Russell L Cuhel
- School of Freshwater Sciences, University of Wisconsin, Milwaukee, WI, USA.
| | | |
Collapse
|
40
|
Kilburn R, Gregory A, Murray A. Using a Markov-Chain Monte-Carlo modelling approach to identify the relative risk to farmed Scottish Rainbow trout (Oncorhynchus mykiss) in a multi-sector industry of Viral Haemorrhagic Septicaemia Viruses from introduction and emergent sources. Ecol Modell 2012. [DOI: 10.1016/j.ecolmodel.2012.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Schönherz AA, Hansen MHH, Jørgensen HBH, Berg P, Lorenzen N, Einer-Jensen K. Oral transmission as a route of infection for viral haemorrhagic septicaemia virus in rainbow trout, Oncorhynchus mykiss (Walbaum). JOURNAL OF FISH DISEASES 2012; 35:395-406. [PMID: 22524457 DOI: 10.1111/j.1365-2761.2012.01358.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surveys among wild marine fish have revealed occurrence of viral haemorrhagic septicaemia virus (VHSV) infections in a high number of diverse fish species. In marine aquaculture of rainbow trout, preying on invading wild fish might thus be a risk factor for introduction and adaptation of VHSV and subsequent disease outbreaks. Our objective was to determine whether an oral transmission route for VHSV in rainbow trout exists. Juvenile trout were infected through oral, waterborne and cohabitation transmission routes, using a recombinant virus strain harbouring Renilla luciferase as reporter gene. Viral replication in stomach and kidney tissue was detected through bioluminescence activity of luciferase and qRT-PCR. Replication was detected in both tissues, irrespective of transmission route. Replication patterns, however, differed among transmission routes. In trout infected through oral transmission, replication was detected in the stomach prior to kidney tissue. In trout infected through waterborne or cohabitation transmission, replication was detected in kidney prior to stomach or in both tissues simultaneously. We demonstrate the existence of an oral transmission route for VHSV in rainbow trout. This implies that preying on invading infected wild fish is a risk factor for introduction of VHSV into marine cultures of rainbow trout.
Collapse
Affiliation(s)
- A A Schönherz
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University, Tjele, Denmark.
| | | | | | | | | | | |
Collapse
|
42
|
Kahns S, Skall HF, Kaas RS, Korsholm H, Bang Jensen B, Jonstrup SP, Dodge MJ, Einer-Jensen K, Stone D, Olesen NJ. European freshwater VHSV genotype Ia isolates divide into two distinct subpopulations. DISEASES OF AQUATIC ORGANISMS 2012; 99:23-35. [PMID: 22585300 DOI: 10.3354/dao02444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Viral haemorrhagic septicaemia (VHS), caused by the novirhabdovirus VHSV, often leads to significant economic losses to European rainbow trout production. The virus isolates are divided into 4 distinct genotypes with additional subgroups including sublineage Ia, isolates of which are the main source of outbreaks in European rainbow trout farming. A significant portion of Danish rainbow trout farms have been considered endemically infected with VHSV since the first disease outbreak was observed in the 1950s. However, following a series of sanitary programs starting in 1965, VHSV has not been detected in Denmark since January 2009. Full-length G-genes of all Danish VHSV isolates that were submitted for diagnostic analyses in the period 2004-2009 were sequenced and analysed. All 58 Danish isolates from rainbow trout grouped with sublineage Ia isolates. Furthermore, VHSV isolates from infected Danish freshwater catchments appear to have evolved into a distinct clade within sublineage Ia, herein designated clade Ia-1, whereas trout isolates originating from other continental European countries cluster in another distinct clade, designated clade Ia-2. In addition, phylogenetic analyses indicate that VHSV Ia-1 strains have caused a few outbreaks in Germany and the UK. It is likely that viruses have been transmitted from infected site(s) out of the Danish environment, although a direct transmission pathway has not been identified. Furthermore, VHSV Ia-2 isolates seem to have been transmitted to Denmark at least once. Interestingly, one viral isolate possibly persisted in a Danish watershed for nearly 4 yr without detection whereas other subclades of VHSV isolates appear to have been eliminated, probably because of implemented eradication procedures.
Collapse
Affiliation(s)
- S Kahns
- National Veterinary Institute, Technical University of Denmark, 8200 Aarhus N, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Faisal M, Shavalier M, Kim RK, Millard EV, Gunn MR, Winters AD, Schulz CA, Eissa A, Thomas MV, Wolgamood M, Whelan GE, Winton J. Spread of the emerging viral hemorrhagic septicemia virus strain, genotype IVb, in Michigan, USA. Viruses 2012; 4:734-60. [PMID: 22754647 PMCID: PMC3386630 DOI: 10.3390/v4050734] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/16/2022] Open
Abstract
In 2003, viral hemorrhagic septicemia virus (VHSV) emerged in the Laurentian Great Lakes causing serious losses in a number of ecologically and recreationally important fish species. Within six years, despite concerted managerial preventive measures, the virus spread into the five Great Lakes and to a number of inland waterbodies. In response to this emerging threat, cooperative efforts between the Michigan Department of Natural Resources (MI DNR), the Michigan State University Aquatic Animal Health Laboratory (MSU-AAHL), and the United States Department of Agriculture-Animal and Plant Health Inspection Services (USDA-APHIS) were focused on performing a series of general and VHSV-targeted surveillances to determine the extent of virus trafficking in the State of Michigan. Herein we describe six years (2005-2010) of testing, covering hundreds of sites throughout Michigan's Upper and Lower Peninsulas. A total of 96,228 fish representing 73 species were checked for lesions suggestive of VHSV and their internal organs tested for the presence of VHSV using susceptible cell lines. Of the 1,823 cases tested, 30 cases from 19 fish species tested positive for VHSV by tissue culture and were confirmed by reverse transcriptase polymerase chain reaction (RT-PCR). Gene sequence analyses of all VHSV isolates retrieved in Michigan demonstrated that they belong to the emerging sublineage "b" of the North American VHSV genotype IV. These findings underscore the complexity of VHSV ecology in the Great Lakes basin and the critical need for rigorous legislation and regulatory guidelines in order to reduce the virus spread within and outside of the Laurentian Great Lakes watershed.
Collapse
Affiliation(s)
- Mohamed Faisal
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.S.); (R.K.K.); (E.V.M.); (M.R.G.)
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA; (A.D.W.); (C.A.S.)
- Author to whom correspondence should be addressed; ; Tel.: +1-517-884-2019; Fax: +1-517-432-2310
| | - Megan Shavalier
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.S.); (R.K.K.); (E.V.M.); (M.R.G.)
| | - Robert K. Kim
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.S.); (R.K.K.); (E.V.M.); (M.R.G.)
| | - Elena V. Millard
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.S.); (R.K.K.); (E.V.M.); (M.R.G.)
| | - Michelle R. Gunn
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (M.S.); (R.K.K.); (E.V.M.); (M.R.G.)
| | - Andrew D. Winters
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA; (A.D.W.); (C.A.S.)
| | - Carolyn A. Schulz
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA; (A.D.W.); (C.A.S.)
| | - Alaa Eissa
- Department of Fish Diseases and Management, Cairo University, Cairo, Egypt;
| | - Michael V. Thomas
- Michigan Department of Natural Resources, State of Michigan Government, Lansing, MI 48909, USA; (M.V.T.); (M.W.); (G.E.W.)
| | - Martha Wolgamood
- Michigan Department of Natural Resources, State of Michigan Government, Lansing, MI 48909, USA; (M.V.T.); (M.W.); (G.E.W.)
| | - Gary E. Whelan
- Michigan Department of Natural Resources, State of Michigan Government, Lansing, MI 48909, USA; (M.V.T.); (M.W.); (G.E.W.)
| | - James Winton
- United States Geological Survey-Western Fisheries Research Center, Seattle, WA 98115, USA;
| |
Collapse
|
44
|
Beaulaurier J, Bickford N, Gregg JL, Grady CA, Gannam AL, Winton JR, Hershberger PK. Susceptibility of Pacific herring to viral hemorrhagic septicemia is influenced by diet. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:43-48. [PMID: 22779213 DOI: 10.1080/08997659.2012.668511] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Groups of specific-pathogen-free Pacific herring Clupea pallasii were highly susceptible to infection by viral hemorrhagic septicemia virus (VHSV); however, the level of mortality was influenced by diet during the 40-71 d before, during, and after the first exposure to the virus. Cumulative mortality was highest among the herring maintained on an experimental soy-based pellet, intermediate among those maintained on a commercially available fish-meal-based pellet, and lowest among those maintained on a second commercially available fish-meal-based pellet containing beta-glucans. Additionally, the herring maintained on the experimental soy-based feed demonstrated less growth than those on the commercially available feeds. The results indicate the importance of standardizing diet during empirical determinations of disease susceptibility and provide insights into the risk factors affecting VHS susceptibility in wild populations.
Collapse
Affiliation(s)
- J Beaulaurier
- University of Great Falls, 1301 20th Street, Great Falls, Montana 59405, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Hansen JD, Woodson JC, Hershberger PK, Grady C, Gregg JL, Purcell MK. Induction of anti-viral genes during acute infection with Viral hemorrhagic septicemia virus (VHSV) genogroup IVa in Pacific herring (Clupea pallasii). FISH & SHELLFISH IMMUNOLOGY 2012; 32:259-267. [PMID: 22155011 DOI: 10.1016/j.fsi.2011.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
Infection with the aquatic rhabdovirus Viral hemorrhagic septicemia virus (VHSV) genogroup IVa results in high mortality in Pacific herring (Clupea pallasii) and is hypothesized to be a potential limiting factor for herring recovery. To investigate anti-viral immunity in the Pacific herring, four immune response genes were identified: the myxovirus resistance (Clpa-Mx), a major histocompatibility complex IB (named Clpa-UAA.001), the inducible immunoproteosome subunit 9 (Clpa-PSMB9) and the neutrophil chemotactic factor (Clpa-LECT2). Reverse transcriptase quantitative PCR (RT-qPCR) assays were developed based on these gene sequences to investigate the host immune response to acute VHSV infection following both injection and immersion challenge. Virus levels were measured by both plaque assay and RT-qPCR and peaked at day 6 during the 10-day exposure period for both groups of fish. The interferon stimulated genes (Clpa-Mx, -UAA.001, and -PSMB9) were significantly up-regulated in response to VHSV infection at both 6 and 10 days post-infection in both spleen and fin. Results from this study indicate that Pacific herring mount a robust, early antiviral response in both fin and spleen tissues. The immunological tools developed in this study will be useful for future studies to investigate antiviral immunity in Pacific herring.
Collapse
Affiliation(s)
- John D Hansen
- US Geological Survey-Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kornis MS, Mercado-Silva N, Vander Zanden MJ. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. JOURNAL OF FISH BIOLOGY 2012; 80:235-85. [PMID: 22268429 DOI: 10.1111/j.1095-8649.2011.03157.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The round goby Neogobius melanostomus is one of the most wide-ranging invasive fish on earth, with substantial introduced populations within the Laurentian Great Lakes watershed, the Baltic Sea and several major European rivers. Rapid expansion and deleterious ecosystem effects have motivated extensive research on this species; here this research is synthesized. Maps of the global distribution are provided and the invasion history of N. melanostomus, which spread more rapidly at first in North America, but has undergone substantial expansion over the past decade in the Baltic Sea, is summarized. Meta-analyses comparing their size at age, diet, competitors and predators in North American and European ecosystems are provided. Size at age is region specific, with saline habitats typically supporting larger and faster growing individuals than fresh water. Neogobius melanostomus prey differs substantially between regions, demonstrating a capacity to adapt to locally abundant food sources. Neogobius melanostomus comprise at least 50% of the diet of eight taxa in at least one site or life stage; in total, 16 predator taxa are documented from the Laurentian Great Lakes v. five from Eurasia. Invasive N. melanostomus are the only common forage fish to heavily exploit mussels in the Laurentian Great Lakes and the Baltic Sea, facilitating the transfer of energy from mussels to higher trophic levels in both systems. Neogobius melanostomus morphology, life history, reproduction, habitat preferences, environmental tolerances, parasites, environmental effects, sampling strategies and management are also discussed. Neogobius melanostomus inhabit a wide range of temperate freshwater and brackish-water ecosystems and will probably continue to spread via ballast water, accidental bait release and natural dispersal worldwide. Climate change will probably enhance N. melanostomus expansion by elevating water temperatures closer to its energetic optimum of 26° C. Future research needs are presented; most pressing are evaluating the economic effects of N. melanostomus invasion, determining long-term population level effects of egg predation on game-fish recruitment and comparing several variables (density, ecological effects morphology and life history) among invaded ecosystems. This review provides a central reference as researchers continue studying N. melanostomus, often as examples for advancing basic ecology and invasion biology.
Collapse
Affiliation(s)
- M S Kornis
- Center for Limnology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
47
|
Evolution and biogeography of an emerging quasispecies: diversity patterns of the fish Viral Hemorrhagic Septicemia virus (VHSv). Mol Phylogenet Evol 2012; 63:327-41. [PMID: 22266219 DOI: 10.1016/j.ympev.2011.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 02/05/2023]
Abstract
Viral Hemorrhagic Septicemia virus (VHSv) is an RNA rhabdovirus that causes one of the most important finfish diseases, affecting over 70 marine and freshwater species. It was discovered in European cultured fish in 1938 and since has been described across the Northern Hemisphere. Four strains and several substrains have been hypothesized, whose phylogenetic relationships and evolutionary radiation are evaluated here in light of a quasispecies model, including an in-depth analysis of the novel and especially virulent new substrain (IVb) that first appeared in the North American Laurentian Great Lakes in 2003. We analyze the evolutionary patterns, genetic diversity, and biogeography of VHSv using all available RNA sequences from the glycoprotein (G), nucleoprotein (N), and non-virion (Nv) genes, with Maximum Likelihood and bayesian approaches. Results indicate that the G gene evolves at an estimated rate of μ=2.58×10(-4) nucleotide substitutions per site per year, the N gene at μ=4.26×10(-4), and Nv fastest at μ=1.25×10(-3). Phylogenetic trees from the three genes largely are congruent, distinguishing strains I-IV as reciprocally monophyletic with high bootstrap and posterior probability support. VHSv appears to have originated from a marine ancestor in the North Atlantic Ocean, diverging into two primary clades: strain IV in North America (the Northwestern Atlantic Ocean), and strains I-III in the Northeastern Atlantic region (Europe). Strain II may comprise the basal group of the latter clade and diverged in Baltic Sea estuarine waters; strains I and III appear to be sister groups (according to the G and Nv genes), with the former mostly in European freshwaters and the latter in North Sea marine/estuarine waters. Strain IV is differentiated into three monophyletic substrains, with IVa infecting Northeastern Pacific salmonids and many marine fishes (with 44 unique G gene haplotypes), IVb endemic to the freshwater Great Lakes (11 haplotypes), and a newly-designated IVc in marine/estuarine North Atlantic waters (five haplotypes). Two separate substrains independently appeared in the Northwestern Pacific region (Asia) in 1996, with Ib originating from the west and IVa from the east. Our results depict an evolutionary history of relatively rapid population diversifications in star-like patterns, following a quasispecies model. This study provides a baseline for future tracking of VHSv spread and interpreting its evolutionary diversification pathways.
Collapse
|
48
|
Cornwell ER, Eckerlin GE, Getchell RG, Groocock GH, Thompson TM, Batts WN, Casey RN, Kurath G, Winton JR, Bowser PR, Bain MB, Casey JW. Detection of viral hemorrhagic septicemia virus by quantitative reverse transcription polymerase chain reaction from two fish species at two sites in Lake Superior. JOURNAL OF AQUATIC ANIMAL HEALTH 2011; 23:207-217. [PMID: 22372249 DOI: 10.1080/08997659.2011.644411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) was first detected in the Laurentian Great Lakes in 2005 during a mortality event in the Bay of Quinte, Lake Ontario. Subsequent analysis of archived samples determined that the first known isolation of VHSV in the Laurentian Great Lakes was from a muskellunge Esox masquinongy collected in Lake St. Clair in 2003. By the end of 2008, mortality events and viral isolations had occurred in all of the Laurentian Great Lakes except Lake Superior. In 2009, a focused disease surveillance program was designed to determine whether VHSV was also present in Lake Superior. In this survey, 874 fish from 7 sites along the U.S. shoreline of Lake Superior were collected during June 2009. Collections were focused on nearshore species known to be susceptible to VHSV. All fish were dissected individually by using aseptic techniques and were tested for the presence of VHSV genetic material by use of a quantitative reverse transcription (qRT) polymerase chain reaction (PCR) targeting the viral nucleoprotein gene. Seventeen fish from two host species at two different sites tested positive at low levels for VHSV. All attempts to isolate virus in cell culture were unsuccessful. However, the presence of viral RNA was confirmed independently in five fish by using a nested PCR that targeted the glycoprotein (G) gene. Partial G gene sequences obtained from three fish were identical to the corresponding sequence from the original 2003 VHSV isolate (MI03) from muskellunge. These detections represent the earliest evidence for the presence of VHSV in Lake Superior and illustrate the utility of the highly sensitive qRT-PCR assay for disease surveillance in aquatic animals.
Collapse
Affiliation(s)
- Emily R Cornwell
- Aquatic Animal Health Program, Department of Microbiology and Immunology, College of Veterinary Medicine, Upper Tower Road, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Studer J, Janies DA. Global spread and evolution of viral haemorrhagic septicaemia virus. JOURNAL OF FISH DISEASES 2011; 34:741-747. [PMID: 21916899 DOI: 10.1111/j.1365-2761.2011.01290.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Viral haemorrhagic septicaemia virus (VHSV) is a rhabdovirus that infects over 48 species of teleosts and is lethal in many. VHSV threatens marine and aquatic fisheries. VHSV was first discovered outside Europe in 1988 in fish from the Pacific coast of North America. In 1994, VHSV was discovered in Newfoundland. In 2003, VHSV was isolated from fish in Lake St. Clair (Michigan and Ontario). In this study, we used 46 nucleotide sequences for the glycoprotein gene from 12 studies and 150 nucleotide sequences for the nucleoprotein gene from nine studies. We combined phylogenetics and a geographic information system to visualize the transmission paths of VHSV lineages. We also reconstructed the spread of VHSV lineages through optimization of geographic data for viral isolates on phylogenetic trees. We demonstrate that VHSV was transmitted from the North Atlantic Ocean and/or Baltic Sea to the Atlantic coast of North America and Japan in independent events. From the Atlantic coast, the virus was transmitted independently to the Laurentian Great Lakes and the Pacific coast of Canada and the contiguous United States. From the Pacific Northwest, the virus was transmitted to Asia and Alaska in independent events. These results clarify the debate ongoing in the literature on the geographic spread of VHSV.
Collapse
Affiliation(s)
- J Studer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
50
|
Thompson TM, Batts WN, Faisal M, Bowser P, Casey JW, Phillips K, Garver KA, Winton J, Kurath G. Emergence of Viral hemorrhagic septicemia virus in the North American Great Lakes region is associated with low viral genetic diversity. DISEASES OF AQUATIC ORGANISMS 2011; 96:29-43. [PMID: 21991663 DOI: 10.3354/dao02362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Viral hemorrhagic septicemia virus (VHSV) is a fish rhabdovirus that causes disease in a broad range of marine and freshwater hosts. The known geographic range includes the Northern Atlantic and Pacific Oceans, and recently it has invaded the Great Lakes region of North America. The goal of this work was to characterize genetic diversity of Great Lakes VHSV isolates at the early stage of this viral emergence by comparing a partial glycoprotein (G) gene sequence (669 nt) of 108 isolates collected from 2003 to 2009 from 31 species and at 37 sites. Phylogenetic analysis showed that all isolates fell into sub-lineage IVb within the major VHSV genetic group IV. Among these 108 isolates, genetic diversity was low, with a maximum of 1.05% within the 669 nt region. There were 11 unique sequences, designated vcG001 to vcG011. Two dominant sequence types, vcG001 and vcG002, accounted for 90% (97 of 108) of the isolates. The vcG001 isolates were most widespread. We saw no apparent association of sequence type with host or year of isolation, but we did note a spatial pattern, in which vcG002 isolates were more prevalent in the easternmost sub-regions, including inland New York state and the St. Lawrence Seaway. Different sequence types were found among isolates from single disease outbreaks, and mixtures of types were evident within 2 isolates from individual fish. Overall, the genetic diversity of VHSV in the Great Lakes region was found to be extremely low, consistent with an introduction of a new virus into a geographic region with previously naive host populations.
Collapse
Affiliation(s)
- Tarin M Thompson
- Western Fisheries Research Center, U.S. Geological Survey, 6505 NE 65th Street, Seattle, Washington 98115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|