1
|
Goldshmit Y, Schokoroy Trangle S, Afergan F, Iram T, Pinkas-Kramarski R. Nucleolin inhibitor GroA triggers reduction in epidermal growth factor receptor activation: Pharmacological implication for glial scarring after spinal cord injury. J Neurochem 2016; 138:845-58. [PMID: 27399849 DOI: 10.1111/jnc.13730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/21/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
Glial scarring, formed by reactive astrocytes, is one of the major impediments for regeneration after spinal cord injury (SCI). Reactive astrocytes become hypertrophic, proliferate and secrete chondroitin sulphate proteoglycans into the extracellular matrix (ECM). Many studies have demonstrated that epidermal growth factor receptors (EGFR) can mediate astrocyte reactivity after neurotrauma. Previously we showed that there is crosstalk between nucleolin and EGFR that leads to increased EGFR activation followed by increased cell proliferation. Treatment with the nucleolin inhibitor GroA (AS1411) prevented these effects in vitro and in vivo. In this study, we hypothesized that similar interactions may mediate astrogliosis after SCI. Our results demonstrate that nucleolin and EGFR interaction may play a pivotal role in mediating astrocyte proliferation and reactivity after SCI. Moreover, we demonstrate that treatment with GroA reduces EGFR activation, astrocyte proliferation and chondroitin sulphate proteoglycans secretion, therefore promoting axonal regeneration and sprouting into the lesion site. Our results identify, for the first time, a role for the interaction between nucleolin and EGFR in astrocytes after SCI, indicating that nucleolin inhibitor GroA may be used as a novel treatment after neurotrauma. A major barrier for axonal regeneration after spinal cord injury is glial scar created by reactive and proliferating astrocytes. EGFR mediate astrocyte reactivity. We showed that inhibition of nucleolin by GroA, reduces EGFR activation, which results in attenuation of astrocyte reactivity and proliferation in vivo and in vitro. EGFR, epidermal growth factor receptor.
Collapse
Affiliation(s)
- Yona Goldshmit
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel.
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
| | | | - Fabian Afergan
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel
| | - Tal Iram
- Department of Neurobiology, Tel-Aviv University, Ramat-Aviv, Israel
| | | |
Collapse
|
2
|
Molecular chaperone heat shock protein 70 participates in the labile phase of the development of behavioural sensitization induced by a single morphine exposure in mice. Int J Neuropsychopharmacol 2013; 16:647-59. [PMID: 22647551 DOI: 10.1017/s1461145712000557] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
De-novo protein synthesis is required in the development of behavioural sensitization. A prior screening test from our laboratory has implicated heat shock protein 70 (Hsp70) as one of the proteins required in this behavioural plasticity. Thus, this study was designed to extend our understanding of the role of Hsp70 in the development of behavioural sensitization induced by a single morphine exposure in mice. First, by employing transcription inhibitor actinomycin D (AD) and protein synthesis inhibitor cycloheximide (CHX), we identified a protein synthesis-dependent labile phase (within 4 h after the first morphine injection) in the development of behavioural sensitization to a single morphine exposure. Second, Hsp70 protein expression in the nucleus accumbens correlated positively with locomotor responses of sensitized mice and, more importantly, the expression of Hsp70 increased within 1 h after the first morphine injection. Third, AD and CHX both prevented expression of Hsp70 and disrupted the development of the single morphine induced behavioural sensitization, which further implied Hsp70 was highly associated with behavioural sensitization. Finally, the selective Hsp70 inhibitor pifithrin-μ (PES) i.c.v. injected in mice prevented the development of behavioural sensitization and, critically, this inhibitory effect occurred only when PES was given within 1 h after the first morphine injection, which was within the labile phase of the development period. Taken together, we draw the conclusion that Hsp70 is crucially involved in the labile phase of the development of behavioural sensitization induced by a single morphine exposure, probably functioning as a molecular chaperone.
Collapse
|
3
|
Transcription and protein synthesis inhibitors reduce the induction of behavioural sensitization to a single morphine exposure and regulate Hsp70 expression in the mouse nucleus accumbens. Int J Neuropsychopharmacol 2011; 14:107-21. [PMID: 20519062 DOI: 10.1017/s146114571000057x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
New protein synthesis has been implicated as necessary for long-lasting changes in neuronal function. Behavioural sensitization to a single exposure to addictive drugs is a form of neuroplasticity, but little is known about the importance of new protein synthesis in the underlying mechanism. This study was designed to investigate the effects of the transcription inhibitor actinomycin D (AD) and the protein synthesis inhibitor cycloheximide (CHX) on induction of behavioural sensitization to a single morphine exposure in mice. In combination with behavioural experiments, changes in gene and protein expression in the mouse nucleus accumbens (NAc) were analysed by RT-PCR array and Western blot respectively. Behavioural sensitization was evident in mice pretreated only once with morphine at the doses of 20 and 40 mg/kg, but not 5 and 10 mg/kg. Mice pretreated with morphine (20 mg/kg) and challenged with a lower dose (5 mg/kg) after a period of 4-21 d washout showed sensitized locomotion. At the doses that did not affect locomotion in mice, AD or CHX significantly suppressed hyperactivity induced by acute treatment, but not challenge with morphine, and blocked induction of behavioural sensitization to a single morphine exposure in a dose-related manner. The results from RT-PCR array and Western blot indicated that the changes of Hsp70 expression in the NAc of mice were associated with behavioural sensitization induced by a single morphine exposure. Together, these findings suggest that induction of behavioural sensitization to a single morphine exposure requires new protein synthesis, potentially involving Hsp70 expression in the NAc of mice.
Collapse
|
4
|
Kweon SM, Lee ZW, Yi SJ, Kim YM, Han JA, Paik SG, Ha SS. Protective role of tissue transglutaminase in the cell death induced by TNF-alpha in SH-SY5Y neuroblastoma cells. BMB Rep 2004; 37:185-91. [PMID: 15469694 DOI: 10.5483/bmbrep.2004.37.2.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue transglutaminase (tTGase) regulates various biological processes, including extracellular matrix organization, cellular differentiation, and apoptosis. Here we report the protective role of tTGase in the cell death that is induced by the tumor necrosis factor alpha (TNF-alpha) and ceramide, a product of the TNF-alpha signaling pathway, in human neuroblastoma SH-SY5Y cells. Treatment with retinoic acid (RA) induced the differentiation of the neuroblastoma cells with the formation of extended neurites. Immunostaining and Western blot analysis showed the tTGase expression by RA treatment. TNF-alpha or C(2) ceramide, a cell permeable ceramide analog, induced cell death in normal cells, but cell death was largely inhibited by the RA treatment. The inhibition of tTGase by the tTGase inhibitors, monodansylcadaverine and cystamine, eliminated the protective role of RA-treatment in the cell death that is caused by TNF-alpha or C(2)-ceramide. In addition, the co-treatment of TNF-alpha and cycloheximide decreased the protein level of tTGase and cell viability in the RA-treated cells, supporting the role of tTGase in the protection of cell death. DNA fragmentation was also induced by the co-treatment of TNF-alpha and cycloheximide. These results suggest that tTGase expressed by RA treatment plays an important role in the protection of cell death caused by TNF-alpha and ceramide.
Collapse
Affiliation(s)
- Soo-Mi Kweon
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chunchon, Kangwon 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Lee HK, Choi SS, Han EJ, Han KJ, Suh HW. Role of glutamate receptors and an on-going protein synthesis in the regulation of phosphorylation of Ca2+/calmodulin-dependent protein kinase II in the CA3 hippocampal region in mice administered with kainic acid intracerebroventricularly. Neurosci Lett 2003; 348:93-6. [PMID: 12902026 DOI: 10.1016/s0304-3940(03)00752-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an immunohistochemical study, kainic acid (KA, 0.1 microg) administered intracerebroventricularly (i.c.v.) dramatically increased the expression of Ca2+/calmodulin-dependent protein kinase II (CaMK II) and the phosphorylation of CaMK II (p-CaMK II) in the CA3 hippocampal region of mice. Pre-treatment with cycloheximide (a protein synthesis inhibitor; 200 mg/kg) intraperitoneally prevented the expression of CaMK II and phosphorylation of CaMK II induced by KA. In addition, pre-treatment with MK-801 ((5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine; an NMDA receptor blocker, 1 microg, i.c.v.) or CNQX (6-cyano-7-nitroquinoxaline-2,3-dione; a non-NMDA receptor blocker, 0.5 microg, i.c.v.) attenuated the p-CaMK II, but not CaMK II, expression induced by KA. Our results suggest that KA administered supraspinally induces CaMK II and the phosphorylation of CaMK II expression in the CA3 hippocampal region, for which an on-going protein synthesis is needed. Furthermore, both NMDA and non-NMDA receptors appear to be involved in supraspinally administered KA-induced phosphorylation of CaMK II.
Collapse
Affiliation(s)
- Han-Kyu Lee
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Kangwon-Do, 200-702, South Korea
| | | | | | | | | |
Collapse
|
6
|
Abstract
Protein kinase CK2 is a ubiquitous and pleiotropic seryl/threonyl protein kinase which is highly conserved in evolution indicating a vital cellular role for this kinase. The holoenzyme is generally composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, but the free alpha/alpha' subunits are catalytically active by themselves and can be present in cells under some circumstances. Special attention has been devoted to phosphorylation status and structure of these enzymic molecules, however, their regulation and roles remain intriguing. Until recently, CK2 was believed to represent a kinase especially required for cell cycle progression in non-neural cells. At present, with respect to recent findings, four essential features suggest potentially important roles for this enzyme in specific neural functions: (1) CK2 is much more abundant in brain than in any other tissue; (2) there appear to be a myriad of substrates for CK2 in both synaptic and nuclear compartments that have clear implications in development, neuritogenesis, synaptic transmission, synaptic plasticity, information storage and survival; (3) CK2 seems to be associated with mechanisms underlying long-term potentiation in hippocampus; and (4) neurotrophins stimulate activity of CK2 in hippocampus. In addition, some data are suggestive that CK2 might play a role in processes underlying progressive disorders due to Alzheimer's disease, ischemia, chronic alcohol exposure or immunodeficiency virus HIV. The present review focuses mainly on the latest data concerning the regulatory mechanisms and the possible neurophysiological functions of this enzyme.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France.
| |
Collapse
|
7
|
Chen HK, Pai CY, Huang JY, Yeh NH. Human Nopp140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol Cell Biol 1999; 19:8536-46. [PMID: 10567578 PMCID: PMC84972 DOI: 10.1128/mcb.19.12.8536] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nopp140 is thought to shuttle between nucleolus and cytoplasm. However, the predominant nucleolar localization of Nopp140 homologues from different species suggests that Nopp140 is also involved in events occurring within the nucleolus. In this study, we demonstrated that the largest subunit of RNA polymerase I, RPA194, was coimmunoprecipitated with the human Nopp140 (hNopp140). Such an interaction is mediated through amino acids 204 to 382 of hNopp140. By double immunofluorescence, hNopp140 was colocalized with RNA polymerase I at the rDNA (rRNA genes) transcription active foci in the nucleolus. These results suggest that Nopp140 can interact with RNA polymerase I in vivo. Transfected cells expressing the amino-terminal half of hNopp140, hNopp140N382 (amino acids 1 to 382), displayed altered nucleoli with crescent-shaped structures. This phenotype is reminiscent of the segregated nucleoli induced by actinomycin D treatment, which is known to inhibit rRNA synthesis. Consistently, the hNopp140N382 protein mislocalized the endogenous RNA polymerase I and shut off cellular rRNA gene transcription as revealed by an in situ run-on assay. These dominant negative effects of the mutant hNopp140N382 suggest that Nopp140 plays an essential role in rDNA transcription. Interestingly, ectopic expression of hNopp140 to a very high level caused the formation of a transcriptionally inactive spherical structure occupying the entire nucleolar area which trapped the RNA polymerase I, fibrillarin, and hNopp140 but excluded the nucleolin. The mislocalizations of these nucleolar proteins after hNopp140 overexpression imply that Nopp140 may also play roles in maintenance of nucleolar integrity.
Collapse
Affiliation(s)
- H K Chen
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan 11221, Republic of China
| | | | | | | |
Collapse
|
8
|
Srivastava M, Pollard HB. Molecular dissection of nucleolin's role in growth and cell proliferation: new insights. FASEB J 1999. [DOI: 10.1096/fasebj.13.14.1911] [Citation(s) in RCA: 381] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Meera Srivastava
- Department of Anatomy and Cell BiologyUniformed Services University of Health Sciences Bethesda Maryland 20814 USA
| | - Harvey B. Pollard
- Department of Anatomy and Cell BiologyUniformed Services University of Health Sciences Bethesda Maryland 20814 USA
| |
Collapse
|
9
|
Hannan RD, Hempel WM, Cavanaugh A, Arino T, Dimitrov SI, Moss T, Rothblum L. Affinity purification of mammalian RNA polymerase I. Identification of an associated kinase. J Biol Chem 1998; 273:1257-67. [PMID: 9422795 DOI: 10.1074/jbc.273.2.1257] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overlapping cDNA clones encoding the two largest subunits of rat RNA polymerase I, designated A194 and A127, were isolated from a Reuber hepatoma cDNA library. Analyses of the deduced amino acid sequences revealed that A194 and A127 are the homologues of yeast A190 and A135 and have homology to the beta' and beta subunits of Escherichia coli RNA polymerase I. Antibodies raised against the recombinant A194 and A127 proteins recognized single proteins of approximately 190 and 120 kDa on Western blots of total cellular proteins of mammalian origin. N1S1 cell lines expressing recombinant His-tagged A194 and FLAG-tagged A127 proteins were isolated. These proteins were incorporated into functional RNA polymerase I complexes, and active enzyme, containing FLAG-tagged A127, could be immunopurified to approximately 80% homogeneity in a single chromatographic step over an anti-FLAG affinity column. Immunoprecipitation of A194 from 32P metabolically labeled cells with anti-A194 antiserum demonstrated that this subunit is a phosphoprotein. Incubation of the FLAG affinity-purified RNA polymerase I complex with [gamma-32P]ATP resulted in autophosphorylation of the A194 subunit of RPI, indicating the presence of associated kinase(s). One of these kinases was demonstrated to be CK2, a serine/threonine protein kinase implicated in the regulation of cell growth and proliferation.
Collapse
Affiliation(s)
- R D Hannan
- Henry Hood Research Program, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2618, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
CK2 (formerly called casein kinase 2) is a ubiquitous messenger-independent serine/threonine protein kinase implicated in cell growth and proliferation. To investigate the regulation and functions of this enzyme, experiments were carried out to search for CK2-interacting proteins. The methods employed included an overlay technique, co-purification, co-immunoprecipitation, and the use of glutathione S-transferase (GST) CK2 fusion proteins. By the CK2 overlay technique, one protein of 110 kDa was found to bind to CK2 with very high affinity. The binding was inhibited by CK2 effectors such as heparin, polyarginine, and histone H1, but was not affected by the CK2 substrate, casein. Protein p110 was also detected by co-immunoprecipitation using anti-CK2 antiserum, suggesting an in vivo association of this protein with CK2. Co-purification of p110 with CK2 from Sf-9 cells that overexpressed CK2 was also observed through sequential chromatographic steps. Using GST fusion proteins of CK2, the CK2-p110 interaction was investigated further and was found to occur primarily through CK2 alpha or alpha' subunits, but not the beta subunit. Protein p110 was purified from 3T3 L1 mouse fibroblast cell lines using a GST-CK2 affinity resin. Amino acid sequence analysis of peptides obtained from the protein indicated that it is the nuclear protein, nucleolin. Furthermore, p110 was recognized by anti-nucleolin antiserum. At present, the physiological significance of the strong interaction between CK2 and nucleolin, an excellent substrate for the enzyme, is not clear. However, this association may be important for regulating rDNA transcription.
Collapse
Affiliation(s)
- D Li
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
11
|
Geley S, Fiegl M, Hartmann BL, Kofler R. Genes mediating glucocorticoid effects and mechanisms of their regulation. Rev Physiol Biochem Pharmacol 1996; 128:1-97. [PMID: 8791720 DOI: 10.1007/3-540-61343-9_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Geley
- Institute for General and Experimental Pathology, University of Innsbruck Medical School, Austria
| | | | | | | |
Collapse
|
12
|
Ohyama Y, Hosoya T, Kameya T, Suzuki N, Nakamura S, Kazahari K, Shibayama K, Yokota Y, Matsuura N. Congenital euthyroid goitre with impaired thyroglobulin transport. Clin Endocrinol (Oxf) 1994; 41:129-35. [PMID: 8050126 DOI: 10.1111/j.1365-2265.1994.tb03794.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A case of congenital goitre with defective thyroglobulin (Tg) synthesis was studied from the clinical, biochemical and morphological perspectives. The patient, 5.5-year-old boy, who was clinically euthyroid, showed a positive perchlorate discharge test (37.2%). However, the iodination system seemed to be normal since radioiodine uptake into the thyroid was very high, and inspection of the H2O2-generating system using thyroid slices and an assay for peroxidase activity in microsomes showed no abnormalities. On the other hand, virtually no Tg was detected in the serum, and the amount of Tg in thyroid tissue, estimated with gel electrophoresis, was below 10% of the normal value, the quality of Tg being unchanged. Morphological observations demonstrated the presence of Tg in the markedly distended rough endoplasmic reticulum of the cytoplasm of follicular cells and a lack of Tg in the colloid of the follicular lumen. These results suggest that the thyroid is defective in Tg synthesis, probably associated with impaired transport of Tg from the cells to the lumen.
Collapse
Affiliation(s)
- Y Ohyama
- Department of Pediatrics, Kitasato University School of Medicine, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Suzuki T, Suzuki N, Hosoya T. Limited proteolysis of rat liver nucleolin by endogenous proteases: effects of polyamines and histones. Biochem J 1993; 289 ( Pt 1):109-15. [PMID: 8424749 PMCID: PMC1132137 DOI: 10.1042/bj2890109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleolin is a major nucleolar phosphoprotein and is presumably involved in rDNA transcription and ribosome biosynthesis. This protein is known to be very labile and to be cleaved by endogenous proteases into many small peptides. We found that, when rat liver nucleolar suspension (Nu-1) or nucleolin-rich extract (Nu-2) was incubated under conventional conditions, polyamines and histones interacted with the nucleolin to lead to its preferential degradation to 60 kDa phosphopeptide (p60). The peptide p60 was identified as a peptide containing the N-terminal half of the nucleolin molecule, as judged from peptide-map analysis. Whereas spermine binding to the purified nucleolin was decreased by KCl concentrations above 50 mM, histones (H1, H2B and H3) were able to bind to the nucleolin in the presence of up to 300 mM KCl. A distinct difference between H1 and other histones was found in that H1 could produce p60 from nucleolin in both Nu-1 and Nu-2, whereas H2B and H3 stimulated the degradation of nucleolin to p60 only when Nu-2 was used for the source of nucleolin. A possible relationship between p60 formation and rRNA synthesis is discussed, but its exact role remains to be studied.
Collapse
Affiliation(s)
- T Suzuki
- Faculty of Pharmaceutical Sciences, Chiba University, Japan
| | | | | |
Collapse
|