1
|
Wang YT, Lin NH, Chang CT, Huang JC, Lin TC. Fog and rain water chemistry in a tea plantation of northern Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96474-96485. [PMID: 37567991 DOI: 10.1007/s11356-023-29263-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/06/2023] [Indexed: 08/13/2023]
Abstract
Tea plantations are expanding globally and many are in mountainous areas with frequent fog but few studies have examined fog chemistry in these areas. We examined chemical composition of fog and rain water at a tea plantation in northern Taiwan. Fog water was collected using a Kroneis passive cylindrical fog-water collector and rain water was collected using a 20-cm-diameter funnel. The most abundant ions were Cl- and Na+ in both fog and rain waters due to the proximity of the site to the coast. The order of abundance of other ions was NO3- > Mg2+ > SO42- > Ca2+ > NH4+ > K+ > H+ in fog water and SO42- > K+ > NO3- > NH4+ > Ca2+ > Mg2+ > H+ in rain water. The concentration enrichment ratio (fog to rain) ranged between 2.2 (K+) and 22 (Mg2+) lying between sites near major emission sources and sites in remote areas, possibly because the immediate surrounding landscape is covered with secondary forests although it is near large cities. Factor analysis highlights the influences of sea-salt aerosols on the variation of fog and rain water chemistry. Sea-salt corrections using Na+ as the sea salt tracer led to negative concentrations of Cl- and Mg2+ suggesting that assumptions involved in sea-salt corrections were not satisfied. Agriculture influence is identified as a unique factor for explaining variance of K+, NH4+, and dissolved organic nitrogen (DON) concentrations in fog water but not rain water. Ion concentrations in fog and rain water were generally higher in the weekly samples associated with air trajectories passing through the continental East Asia than those associated with oceanic trajectories pointing to the role of regional pollution sources in affecting local fog and rain water chemistry. Our study highlights greater effects of tea agriculture on fog than rain water chemistry.
Collapse
Affiliation(s)
- Yi-Tzu Wang
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Taoyuan, 32001, Taiwan
- Center for Environmental Monitoring Technology, National Central University, Taoyuan, 32001, Taiwan
| | - Chung-Te Chang
- Taiwan International Graduate Program (TIGP)-Ph.D. Program on Biodiversity, Tunghai University, Taichung, 407224, Taiwan
- Department of Life Science, Tunghai University, Taichung, 407224, Taiwan
| | - Jr-Chuan Huang
- Department of Geography, National Taiwan University, Taipei, 10617, Taiwan
| | - Teng-Chiu Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
2
|
Isil S, Collett J, Lynch J, Weiss-Penzias P, Rogers CM. Cloud and fog deposition: Monitoring in high elevation and coastal ecosystems. The past, present, and future. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 274:1-13. [PMID: 37941818 PMCID: PMC10631518 DOI: 10.1016/j.atmosenv.2022.118997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Collection methods critical load values and total nitrogen budgets for high-elevation and fog-impacted sites requires reliable cloud and fog water deposition estimates. The cost and labor intensity of cloud/fog water sample collection have made it difficult to conduct long-term studies that would provide the data needed to develop accurate estimates. Current understanding of fog formation, transport, and the role of fog and cloud deposition in hydrogeological and biogeochemical cycles is incomplete due, in part, to lack of a concerted interdisciplinary approach to the problem. Historically, these obstacles have limited interest in and collection of cloud and fog water samples. In addition to measurements of cloud/fog chemical composition, documenting fog/cloud deposition fluxes of pollutant and nutrient species requires knowledge of cloud/fog physical properties, frequency and duration of fog/cloud interception with landscapes, properties of vegetation on those landscapes, and properties of the wind that drive droplet/vegetation interactions. Because drop deposition efficiency is dependent on drop size, it is also important to consider variations in fog/cloud drop composition with drop size as species enriched in larger/ smaller drops will experience enhanced/reduced deposition rates. This paper presents summary results from a small U.S. cloud water monitoring network that operated from the mid-nineties through 2011, as well as a brief qualitative review of other cloud and fog water studies conducted in the United States (including Puerto Rico), Europe, South America/Pacific, and Asia. Current collection methods are also reviewed. Recent scientific efforts by the National Atmospheric Deposition Program's (NADP) Total Deposition Science Committee and NADP's Critical Loads of Atmospheric Deposition Science Committee have identified occult (cloud/fog) deposition as a "need" in developing critical loads for ecosystems that experience.
Collapse
Affiliation(s)
- Selma Isil
- Wood Environment & Infrastructure Solutions, Inc, 404 SW 140th Terrace, Newberry, FL 32669, USA
| | - Jeffery Collett
- Atmospheric Science Department, 1371 Campus Delivery, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jason Lynch
- US Environmental Protection Agency, Office of Air and Radiation, Washington, D.C, 20004, USA
| | - Peter Weiss-Penzias
- Microbiology and Environmental Toxicology, University of California, Santa Cruz 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Christopher M Rogers
- Wood Environment & Infrastructure Solutions, Inc, 6256 Greenland Road, Jacksonville, FL, 32258, USA
| |
Collapse
|
3
|
Photochemistry of the Cloud Aqueous Phase: A Review. Molecules 2020; 25:molecules25020423. [PMID: 31968643 PMCID: PMC7024559 DOI: 10.3390/molecules25020423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 11/19/2022] Open
Abstract
This review paper describes briefly the cloud aqueous phase composition and deeply its reactivity in the dark and mainly under solar radiation. The role of the main oxidants (hydrogen peroxide, nitrate radical, and hydroxyl radical) is presented with a focus on the hydroxyl radical, which drives the oxidation capacity during the day. Its sources in the aqueous phase, mainly through photochemical mechanisms with H2O2, iron complexes, or nitrate/nitrite ions, are presented in detail. The formation rate of hydroxyl radical and its steady state concentration evaluated by different authors are listed and compared. Finally, a paragraph is also dedicated to the sinks and the reactivity of the HO• radical with the main compounds found in the cloud aqueous phase. This review presents an assessment of the reactivity in the cloud aqueous phase and shows the significant potential impact that this medium can have on the chemistry of the atmosphere and more generally on the climate.
Collapse
|
4
|
Dawson TE, Goldsmith GR. The value of wet leaves. THE NEW PHYTOLOGIST 2018; 219:1156-1169. [PMID: 29959896 DOI: 10.1111/nph.15307] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/03/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 1156 I. Introduction 1156 II. How often are leaves wet? 1157 III. The costs of leaf wetting 1157 IV. The real and potential benefits of leaf wetting 1161 V. Wet leaves: costs, benefits and tradeoffs in a changing world 1165 Acknowledgements 1166 References 1166 SUMMARY: An often-overlooked feature of all plants is that their leaf surfaces are wet for significant periods over their lifetimes. Leaf wetting has a number of direct and indirect effects on plant function from the scale of the leaf to that of the ecosystem. The costs of leaf wetting for plant function, such as the growth of pathogens and the leaching of nutrients, have long been recognized. However, an emerging body of research has also begun to demonstrate some very clear benefits. For instance, leaf wetting can improve plant-water relations and lead to increased photosynthesis. Leaf wetting may also lead to synergistic effects on plant function, such as when leaf water potential improvements lead to enhanced growth that does not occur when plant leaves are dry. We identify important reasons why leaf wetting can be critical for plant sciences to not only acknowledge, but also directly address, in future research. To do so, we provide a framework for the consideration of the relative balance of the various costs and benefits resulting from leaf wetting, as well as how this balance may be expected to change given projected scenarios of global climate change in the future.
Collapse
Affiliation(s)
- Todd E Dawson
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, 94720, USA
| | - Gregory R Goldsmith
- Ecosystem Fluxes Group, Laboratory for Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA
| |
Collapse
|
5
|
Polkowska Ż, Błaś M, Lech D, Namieśnik J. Study of Cloud Water Samples Collected over Northern Poland. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:328-37. [PMID: 25602567 DOI: 10.2134/jeq2013.05.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The paper gives the results of the first studies on the chemistry of cloud water collected during 3 mo (Aug.-Oct. 2010) in the free atmosphere over the area to the south of the Tri-City (Gdansk-Sopot-Gdynia) conurbation on the Gulf of Gdansk, Poland. Taken from cumulus, stratus, and stratocumulus clouds by means of an aircraft-mounted collector, the water samples were analyzed for the following contaminants: anions (chlorides, fluorides, nitrates, sulfates, and phosphates), cations (lithium, sodium, potassium, ammonium, calcium, and magnesium), and trace metals. In addition, pH values were measured, and the type and composition of suspended particulate matter was determined. We discuss the relationship between the concentration of inorganic ions and the type of cloud from which water was sampled. The chemistry is also likely related to the circulation pattern and inflow of clean air masses from the Baltic Sea. Moreover, a relationship was found between the composition of the samples examined and the location of pollutant emission sources.
Collapse
|
6
|
|
7
|
Raja S, Ravikrishna R, Kommalapati RR, Valsaraj KT. Monitoring of fogwater chemistry in the gulf coast urban industrial corridor: Baton Rouge (louisiana). ENVIRONMENTAL MONITORING AND ASSESSMENT 2005; 110:99-120. [PMID: 16308781 DOI: 10.1007/s10661-005-6281-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 11/12/2004] [Indexed: 05/05/2023]
Abstract
Seventeen fog events were sampled in Baton Rouge, Louisiana during 2002-2004 as part of characterizing wet deposition by fogwater in the heavily industrialized corridor along the Louisiana Gulf Coast in the United States. These samples were analyzed for chemical characteristics such as pH, conductivity, total organic and inorganic carbon, total metals and the principal ion concentrations. The dominant ionic species in all samples were NH4+, NO3-, Cl- and SO4(2-). The pH of the fogwater sampled had a mean value of 6.7 with two cases of acidic pH of 4.7. Rainwater and fogwater pH were similar in this region. The acidity of fogwater was a result of NO3- but partly offset by high NH4+. The measured gaseous SO2 accounted for a small percentage of the observed sulfate concentration, indicating additional gas-to-particle conversion of SO2 to sulfate in fogwater. The gaseous NOx accounted for most of the dissolved nitrate and nitrite concentration in fogwater. The high chloride concentration was attributable to the degradation of chlorinated organics in the atmosphere. The metal composition was traced directly to soil-derived aerosol precursors in the air. The major metals observed in fogwater were Na, K, Ca, Fe, Al, Mg and Zn. Of these Na, K, Ca and Mg were predominant with mean concentrations > 100 microM. Al, Fe and Zn were present in the samples, at mean concentrations < 100 microM. Small concentrations of Mn (7.8 microM), Cu (2 microM), Pb (0.07 microM) and As (0.32 microM) were also observed in the fogwaters, and these were shown to result from particulates (PM2.5) in the atmosphere. The contribution to both ions and metals from the marine sources in the Louisiana Gulf Coast was minimal. The concentrations of all principal ionic species and metals in fogwater were 1-2 orders of magnitude larger than in rainwater. Several linear alkane organic compounds were observed in the fogwater, representing the contributions from petroleum products at concentrations far exceeding their aqueous solubility. A pesticide (atrazine) was also observed in fogwater, representing the contribution from the agricultural activities nearby.
Collapse
Affiliation(s)
- S Raja
- Gordon A and Mary Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | | | | | | |
Collapse
|
8
|
Deguillaume L, Leriche M, Desboeufs K, Mailhot G, George C, Chaumerliac N. Transition metals in atmospheric liquid phases: sources, reactivity, and sensitive parameters. Chem Rev 2005; 105:3388-431. [PMID: 16159157 DOI: 10.1021/cr040649c] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Laurent Deguillaume
- Laboratoire de Météorologie Physique, Centre National de la Recherche Scientifique, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière Cedex, France.
| | | | | | | | | | | |
Collapse
|
9
|
Fahey KM, Pandis SN. Size‐resolved aqueous‐phase atmospheric chemistry in a three‐dimensional chemical transport model. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003jd003564] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- K. M. Fahey
- Department of Chemical EngineeringCarnegie Mellon University Pittsburgh Pennsylvania USA
| | - S. N. Pandis
- Department of Chemical EngineeringCarnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
10
|
Herckes P, Wendling R, Sauret N, Mirabel P, Wortham H. Cloudwater studies at a high elevation site in the Vosges Mountains (France). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2002; 117:169-177. [PMID: 11843533 DOI: 10.1016/s0269-7491(01)00139-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cloud and rainwater samples have been collected at a high elevation site in the Vosges Mountains. An automated collection system has been used to collect bulk cloudwater and small cloudwater droplets. Bulk cloudwater concentrations were up to 10 times more concentrated than rainwater concentrations. Small clouddroplets showed generally higher concentrations than bulk cloudwater. Nevertheless, the enrichment factors depend on the compounds under study and appear to be related to the composition of the cloud condensation nuclei forming small or large clouddroplets. Principal component analysis and factor analysis were applied to the collected datasets and confirmed the influence of the cloud condensation nuclei on the composition difference between small and large cloudwater droplets.
Collapse
Affiliation(s)
- Pierre Herckes
- Centre de Géochimie de la Surface, Equipe de Physico-chimie de l'Atmosphere (UMR 7517) 28, Strasbourg, France
| | | | | | | | | |
Collapse
|
11
|
Rattigan OV, Reilly J, Judd CD, Moore KF, Das M, Sherman DE, Dutkiewicz VA, Collett JL, Husain L. Sulfur dioxide oxidation in clouds at Whiteface Mountain as a function of drop size. ACTA ACUST UNITED AC 2001. [DOI: 10.1029/2000jd900807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Ghauri BM, Ishaq Mirza M, Richter R, Dutkiewicz VA, Rusheed A, Khan AR, Husain L. Composition of aerosols and cloud water at a remote mountain site (2.8 kms) in Pakistan. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1465-9972(00)00038-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
|
14
|
Gurciullo CS, Pandis SN. Effect of composition variations in cloud droplet populations on aqueous-phase chemistry. ACTA ACUST UNITED AC 1997. [DOI: 10.1029/96jd03651] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Audiffren N, Chaumerliac N, Renard M. Effects of a polydisperse cloud on tropospheric chemistry. ACTA ACUST UNITED AC 1996. [DOI: 10.1029/96jd01548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Millet M, Sanusi A, Wortham H. Chemical composition of fogwater in an urban area: Strasbourg (France). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 1996; 94:345-354. [PMID: 15093495 DOI: 10.1016/s0269-7491(96)00064-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/1995] [Accepted: 05/10/1996] [Indexed: 05/24/2023]
Abstract
To investigate the acidity and to identify the predominant compounds, this work presents the chemical analysis of 18 fogwater samples collected during the year 1991 in Strasbourg, in the east of France. For each fog event, two droplet size categories (2-6 microm and 5-8 microm) have been separately collected and 16 ionic components have been analysed. These two fraction sizes were chosen because they correspond approximately to the size range that can penetrate the human lung and they may have possible health effects. The dominant species were NH4+, NO3-, SO4(2-) and Cl-, with a maximum level of 12,640, 17,270, 21,620 and 13,540 microeq litre(-1), respectively. For most of the fog events the highest concentrations of all analysed species were observed in the 2-6 microm droplets. pH values ranged between 2.79 and 5.70 and the fogwater acidity was governed by three strong acids, H2SO4, HNO3 and HCl and was partially neutralised by NH3 and probably by the presence of CaCO3 in the 'loess', which is the major constituent of soils in the upper Rhine valley. In other respects the acetate/formate ratio (methanoate/ethanoate), generally lower than 1, indicates an important pollution due to automobile exhaust, although the Pb concentrations are moderate due to the general use of unleaded gasoline in France since 1989.
Collapse
Affiliation(s)
- M Millet
- Centre de Géochimie de la surface, CNRS UPR 6251, Université Louis Pasteur, 28, rue Goethe, 67083, Strasbourg, France
| | | | | |
Collapse
|
17
|
Dixon RW, Mosimann L, Oberholzer B, Staehelin J, Waldvogel A, Collett JL. The effect of riming on the ion concentrations of winter precipitation: 1. A quantitative analysis of field measurements. ACTA ACUST UNITED AC 1995. [DOI: 10.1029/94jd03321] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Maupetit F, Delmas RJ. Carboxylic acids in high-elevation Alpine glacier snow. ACTA ACUST UNITED AC 1994. [DOI: 10.1029/94jd03315] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|