1
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Kleefeld F, Horvath R, Pinal-Fernandez I, Mammen AL, Casal-Dominguez M, Hathazi D, Melchert S, Hahn K, Sickmann A, Muselmann-Genschow C, Hentschel A, Preuße C, Roos A, Schoser B, Stenzel W. Multi-level profiling unravels mitochondrial dysfunction in myotonic dystrophy type 2. Acta Neuropathol 2024; 147:19. [PMID: 38240888 PMCID: PMC10799095 DOI: 10.1007/s00401-023-02673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal-dominant multisystemic disease with a core manifestation of proximal muscle weakness, muscle atrophy, myotonia, and myalgia. The disease-causing CCTG tetranucleotide expansion within the CNBP gene on chromosome 3 leads to an RNA-dominated spliceopathy, which is currently untreatable. Research exploring the pathophysiological mechanisms in myotonic dystrophy type 1 has resulted in new insights into disease mechanisms and identified mitochondrial dysfunction as a promising therapeutic target. It remains unclear whether similar mechanisms underlie DM2 and, if so, whether these might also serve as potential therapeutic targets. In this cross-sectional study, we studied DM2 skeletal muscle biopsy specimens on proteomic, molecular, and morphological, including ultrastructural levels in two separate patient cohorts consisting of 8 (explorative cohort) and 40 (confirmatory cohort) patients. Seven muscle biopsy specimens from four female and three male DM2 patients underwent proteomic analysis and respiratory chain enzymology. We performed bulk RNA sequencing, immunoblotting of respiratory chain complexes, mitochondrial DNA copy number determination, and long-range PCR (LR-PCR) to study mitochondrial DNA deletions on six biopsies. Proteomic and transcriptomic analyses revealed a downregulation of essential mitochondrial proteins and their respective RNA transcripts, namely of subunits of respiratory chain complexes I, III, and IV (e.g., mt-CO1, mt-ND1, mt-CYB, NDUFB6) and associated translation factors (TACO1). Light microscopy showed mitochondrial abnormalities (e.g., an age-inappropriate amount of COX-deficient fibers, subsarcolemmal accumulation) in most biopsy specimens. Electron microscopy revealed widespread ultrastructural mitochondrial abnormalities, including dysmorphic mitochondria with paracrystalline inclusions. Immunofluorescence studies with co-localization of autophagy (p62, LC-3) and mitochondrial marker proteins (TOM20, COX-IV), as well as immunohistochemistry for mitophagy marker BNIP3 indicated impaired mitophagic flux. Immunoblotting and LR-PCR did not reveal significant differences between patients and controls. In contrast, mtDNA copy number measurement showed a reduction of mtDNA copy numbers in the patient group compared to controls. This first multi-level study of DM2 unravels thus far undescribed functional and structural mitochondrial abnormalities. However, the molecular link between the tetranucleotide expansion and mitochondrial dysfunction needs to be further elucidated.
Collapse
Affiliation(s)
- Felix Kleefeld
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Iago Pinal-Fernandez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew L Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Maria Casal-Dominguez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Denisa Hathazi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sarah Melchert
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Katrin Hahn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut Für Analytische Wissenschaften-ISAS E.V., 44139, Dortmund, Germany
| | - Claudia Muselmann-Genschow
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
| | - Andreas Hentschel
- Leibniz-Institut Für Analytische Wissenschaften-ISAS E.V., 44139, Dortmund, Germany
| | - Corinna Preuße
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Roos
- Pediatric Neurology, Faculty of Medicine, University Children's Hospital, University of Duisburg-Essen, Essen, Germany
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Bermejo-Guerrero L, de Fuenmayor-Fernández de la Hoz CP, Serrano-Lorenzo P, Blázquez-Encinar A, Gutiérrez-Gutiérrez G, Martínez-Vicente L, Galán-Dávila L, García-García J, Arenas J, Muelas N, Hernández-Laín A, Domínguez-González C, Martín MA. Clinical, Histological, and Genetic Features of 25 Patients with Autosomal Dominant Progressive External Ophthalmoplegia (ad-PEO)/PEO-Plus Due to TWNK Mutations. J Clin Med 2021; 11:jcm11010022. [PMID: 35011763 PMCID: PMC8745442 DOI: 10.3390/jcm11010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Autosomal dominant mutations in the TWNK gene, which encodes a mitochondrial DNA helicase, cause adult-onset progressive external ophthalmoplegia (PEO) and PEO-plus presentations. In this retrospective observational study, we describe clinical and complementary data from 25 PEO patients with mutations in TWNK recruited from the Hospital 12 de Octubre Mitochondrial Disorders Laboratory Database. The mean ages of onset and diagnosis were 43 and 63 years, respectively. Family history was positive in 22 patients. Ptosis and PEO (92% and 80%) were the most common findings. Weakness was present in 48%, affecting proximal limbs, neck, and bulbar muscles. Exercise intolerance was present in 28%. Less frequent manifestations were cardiac (24%) and respiratory (4%) involvement, neuropathy (8%), ataxia (4%), and parkinsonism (4%). Only 28% had mild hyperCKemia. All 19 available muscle biopsies showed signs of mitochondrial dysfunction. Ten different TWNK mutations were identified, with c.1361T>G (p.Val454Gly) and c.1070G>C (p.Arg357Pro) being the most common. Before definitive genetic confirmation, 56% of patients were misdiagnosed (36% with myasthenia, 20% with oculopharyngeal muscle dystrophy). Accurate differential diagnosis and early confirmation with appropriately chosen complementary studies allow genetic counseling and the avoidance of unnecessary treatments. Thus, mitochondrial myopathies must be considered in PEO/PEO-plus presentations, and particularly, TWNK is an important cause when positive family history is present.
Collapse
Affiliation(s)
- Laura Bermejo-Guerrero
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.B.-G.); (C.P.d.F.-F.d.l.H.)
| | | | - Pablo Serrano-Lorenzo
- Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (P.S.-L.); (A.B.-E.); (J.A.); (A.H.-L.); (M.A.M.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Mitochondrial Disorders Laboratory, Clinical Biochemistry Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Alberto Blázquez-Encinar
- Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (P.S.-L.); (A.B.-E.); (J.A.); (A.H.-L.); (M.A.M.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Mitochondrial Disorders Laboratory, Clinical Biochemistry Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | | | - Laura Martínez-Vicente
- Department of Neurology, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (L.M.-V.); (L.G.-D.)
| | - Lucía Galán-Dávila
- Department of Neurology, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (L.M.-V.); (L.G.-D.)
| | - Jorge García-García
- Department of Neurology, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain;
| | - Joaquín Arenas
- Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (P.S.-L.); (A.B.-E.); (J.A.); (A.H.-L.); (M.A.M.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Mitochondrial Disorders Laboratory, Clinical Biochemistry Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Nuria Muelas
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Neuromuscular Unit, Department of Neurology, Hospital Universitari I Politècnic La Fe, 46026 Valencia, Spain
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Aurelio Hernández-Laín
- Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (P.S.-L.); (A.B.-E.); (J.A.); (A.H.-L.); (M.A.M.)
- Department of Neuropathology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Cristina Domínguez-González
- Neuromuscular Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.B.-G.); (C.P.d.F.-F.d.l.H.)
- Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (P.S.-L.); (A.B.-E.); (J.A.); (A.H.-L.); (M.A.M.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Correspondence:
| | - Miguel A. Martín
- Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain; (P.S.-L.); (A.B.-E.); (J.A.); (A.H.-L.); (M.A.M.)
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Mitochondrial Disorders Laboratory, Clinical Biochemistry Department, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
4
|
Mitochondrial localization of PABPN1 in oculopharyngeal muscular dystrophy. J Transl Med 2019; 99:1728-1740. [PMID: 30894671 DOI: 10.1038/s41374-019-0243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/09/2019] [Accepted: 02/16/2019] [Indexed: 11/09/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by ptosis, dysphagia, and weakness of proximal limbs. OPMD is caused by the expansion of polyalanine in poly(A)-binding protein, nuclear 1 (PABPN1). Although mitochondrial abnormality has been proposed as the possible etiology, the molecular pathogenesis is still poorly understood. The aim of the study was to specify the mechanism by which expanded PABPN1 causes mitochondrial dysfunction in OPMD. We evaluated whether transgenic mouse model of OPMD, by expressing expanded PABPN1, indeed causes mitochondrial abnormality associated with muscle degeneration. We also investigated the mechanism by which expanded PABPN1 would cause mitochondrial dysfunction in the mouse and cell models of OPMD. Mitochondrial localization of PABPN1 was observed in the muscle fibers of patients with OPMD. Moreover, abnormal accumulation of PABPN1 on the inner membrane of mitochondria and reduced expression of OXPHOS complexes were detected in the muscle fibers of the transgenic mice expressing expanded human PABPN1 with a 13-alanine stretch. In cells expressing PABPN1 with a 10-alanine or 18-alanine stretch, both types of PABPN1 accumulated in the mitochondria and interacted with TIM23 mitochondrial protein import complex, but PABPN1 with 18-alanine stretch decreased the cell viability and aggresome formation. We proposed that the abnormal accumulation of expanded PABPN1 in mitochondria may be associated with mitochondrial abnormality in OPMD.
Collapse
|
5
|
Hamedani AG, Gold DR. Eyelid Dysfunction in Neurodegenerative, Neurogenetic, and Neurometabolic Disease. CONTEMPORARY CLINICAL NEUROSCIENCE 2019:389-414. [DOI: 10.1007/978-3-030-31407-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Vest KE, Phillips BL, Banerjee A, Apponi LH, Dammer EB, Xu W, Zheng D, Yu J, Tian B, Pavlath GK, Corbett AH. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology. Hum Mol Genet 2017; 26:3235-3252. [PMID: 28575395 PMCID: PMC5886286 DOI: 10.1093/hmg/ddx206] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/14/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Brittany L. Phillips
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Luciano H. Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiting Xu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Julia Yu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Grace K. Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
7
|
Hamedani AG, Gold DR. Eyelid Dysfunction in Neurodegenerative, Neurogenetic, and Neurometabolic Disease. Front Neurol 2017; 8:329. [PMID: 28769865 PMCID: PMC5513921 DOI: 10.3389/fneur.2017.00329] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
Eye movement abnormalities are among the earliest clinical manifestations of inherited and acquired neurodegenerative diseases and play an integral role in their diagnosis. Eyelid movement is neuroanatomically linked to eye movement, and thus eyelid dysfunction can also be a distinguishing feature of neurodegenerative disease and complements eye movement abnormalities in helping us to understand their pathophysiology. In this review, we summarize the various eyelid abnormalities that can occur in neurodegenerative, neurogenetic, and neurometabolic diseases. We discuss eyelid disorders, such as ptosis, eyelid retraction, abnormal spontaneous and reflexive blinking, blepharospasm, and eyelid apraxia in the context of the neuroanatomic pathways that are affected. We also review the literature regarding the prevalence of eyelid abnormalities in different neurologic diseases as well as treatment strategies (Table 1).
Collapse
Affiliation(s)
- Ali G Hamedani
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel R Gold
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Ophthalmology, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, United States.,Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
8
|
|
9
|
Périé S, Mamchaoui K, Mouly V, Blot S, Bouazza B, Thornell LE, St Guily JL, Butler-Browne G. Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: Therapeutic perspectives of autologous myoblast transplantation. Neuromuscul Disord 2006; 16:770-81. [PMID: 17005403 DOI: 10.1016/j.nmd.2006.07.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 05/19/2006] [Accepted: 07/05/2006] [Indexed: 11/29/2022]
Abstract
Cultures of myoblasts isolated from cricopharyngeal muscles from patients with oculopharyngeal muscular dystrophy (OPMD) have been performed to study the effect of the expanded (GCG)8-13 repeat, located on the poly(A) binding protein nuclear-1 (PABPN1), on satellite cell phenotype. Cell cultures exhibited a reduced myogenicity, as well as a rapid decrease in proliferative lifespan, as compared to controls. The incorporation of BrdU decreased during the proliferative lifespan, due to a progressive accumulation of non-dividing cells. A lower fusion index was also observed, but myoblasts were able to form large myotubes when OPMD cultures were purified, although a rapid loss of myogenicity during successive passages was also observed. Myoblasts isolated from unaffected muscles did not show the defects observed in cricopharyngeal muscle cultures. The PABPN1 was predominantly located in nuclei of myoblasts and in both the nuclei and cytoplasm of myotubes in OPMD cultures. In vivo analysis of OPMD muscles showed that the number of satellite cells was slightly higher than that observed in age matched controls. Mutation of the PABPN1 in OPMD provokes premature senescence in dividing myoblasts, that may be due to intranuclear toxic aggregates. These results suggest that myoblast autografts, isolated from unaffected muscles, and injected into the dystrophic pharyngeal muscles, may be a useful therapeutic strategy to restore muscular function. Its tolerance and feasibility has been preclinically demonstrated in the dog.
Collapse
Affiliation(s)
- Sophie Périé
- Inserm U787 Groupe Myologie and Institut de Myologie, Faculté de Médecine Pitié Salpêtrière, Université Paris VI Pierre et Marie Curie, 105, Boulevard de l'Hôpital, 75013 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gambelli S, Malandrini A, Ginanneschi F, Berti G, Cardaioli E, De Stefano R, Franci M, Salvadori C, Mari F, Bruttini M, Rossi A, Federico A, Renieri A. Mitochondrial Abnormalities in Genetically Assessed Oculopharyngeal Muscular Dystrophy. Eur Neurol 2004; 51:144-7. [PMID: 14988608 DOI: 10.1159/000077070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 12/05/2003] [Indexed: 11/19/2022]
Abstract
We report a family with a clinical diagnosis of oculopharyngeal muscular dystrophy in which muscle biopsy showed mitochondrial changes such as cytochrome-c-oxidase-negative fibers and aggregates of mitochondria containing paracrystalline inclusions. Molecular analysis demonstrated a GCG expansion in the poly(A)-binding protein 2 (PABP2) gene and failed to demonstrate multiple deletions of mtDNA. We hypothesize that mitochondrial abnormalities may be a secondary phenomenon. This observation may suggest that the PABP2 gene could interfere in the posttranscriptional regulation of genes involved in mitochondrial function.
Collapse
MESH Headings
- Adult
- Aged
- Biopsy/methods
- DNA, Mitochondrial/analysis
- Family Health
- Female
- Humans
- Inclusion Bodies/pathology
- Inclusion Bodies/ultrastructure
- Male
- Microscopy, Electron/methods
- Middle Aged
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/pathology
- Mitochondria, Muscle/ultrastructure
- Molecular Biology/methods
- Muscle, Skeletal/pathology
- Muscle, Skeletal/ultrastructure
- Muscular Dystrophy, Oculopharyngeal/genetics
- Muscular Dystrophy, Oculopharyngeal/metabolism
- Muscular Dystrophy, Oculopharyngeal/pathology
- Neurologic Examination
- Pedigree
- Poly(A)-Binding Protein II/genetics
- Trinucleotide Repeat Expansion/genetics
Collapse
Affiliation(s)
- S Gambelli
- Department of Neurological and Behavioral Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schröder R, Goudeau B, Simon MC, Fischer D, Eggermann T, Clemen CS, Li Z, Reimann J, Xue Z, Rudnik-Schöneborn S, Zerres K, van der Ven PFM, Fürst DO, Kunz WS, Vicart P. On noxious desmin: functional effects of a novel heterozygous desmin insertion mutation on the extrasarcomeric desmin cytoskeleton and mitochondria. Hum Mol Genet 2003; 12:657-69. [PMID: 12620971 DOI: 10.1093/hmg/ddg060] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent studies in desmin (-/-) mice have shown that the targeted ablation of desmin leads to pathological changes of the extrasarcomeric intermediate filament cytoskeleton, as well as structural and functional abnormalities of mitochondria in striated muscle. Here, we report on a novel heterozygous single adenine insertion mutation (c.5141_5143insA) in a 40-year-old patient with a distal myopathy. The insertion mutation leads to a frameshift and a truncated desmin (K239fs242). Using transfection studies in SW13 and BHK21 cells, we show that the K239fsX242 desmin mutant is incapable of forming a desmin intermediate filament network. Furthermore, it induces the collapse of a pre-existing desmin cytoskeleton, alters the subcellular distribution of mitochondria and leads to abnormal cytoplasmic protein aggregates reminiscent of desmin-immunoreactive granulofilamentous material seen in the ultrastructural analysis of the patient's muscle. Analysis of mitochondrial function in isolated saponin-permeablized skeletal muscle fibres from our patient showed decreased maximal rates of respiration with the NAD-dependent substrate combination glutamate and malate, as well as a higher amytal sensitivity of respiration, indicating an in vivo inhibition of complex I activity. Our findings suggest that the heterozygous K239fsX242 desmin insertion mutation has a dominant negative effect on the polymerization process of desmin intermediate filaments and affects not only the subcellular distribution, but also biochemical properties of mitochondria in diseased human skeletal muscle. As a consequence, the intermediate filament pathology-induced mitochondrial dysfunction may contribute to the degeneration/regeneration process leading to progressive muscle dysfunction in human desminopathies.
Collapse
Affiliation(s)
- Rolf Schröder
- Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kang DH, Koo SH, Ahn DS, Park SH, Yoon ES. Correction of blepharoptosis in oculopharyngeal muscular dystrophy. Ann Plast Surg 2002; 49:419-23. [PMID: 12370650 DOI: 10.1097/00000637-200210000-00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oculopharyngeal muscular dystrophy is a hereditary, autosomal dominant, slowly progressive disorder with onset that occurs during middle age. Major symptoms are ptosis and dysphagia resulting primarily from selectively involved levator palpebrae and the pharyngeal muscles. Progressive, usually symmetrical blepharoptosis, with or without dysphagia, appears during middle age. Muscular weakness in the limbs can be noted in some patients. The guidelines for surgery in myopathic ptosis are conservative in view of the increased risk of postoperative corneal complications. However, orbicularis function remains intact in oculopharyngeal muscular dystrophy; therefore, corrective surgery is performed in most patients. This report describes four cases of ptosis correction in patients with oculopharyngeal muscular dystrophy in one family. The frontalis action was very poor to qualify for frontalis transfer; therefore, the authors performed moderate to large levator resection in all patients. The follow-up results 5 years postoperatively are promising to date and all the patients are satisfied with the results.
Collapse
Affiliation(s)
- Dong Hee Kang
- Department of Plastic & Reconstructive Surgery, Korea University Anam Medical Center, Seoul, Korea
| | | | | | | | | |
Collapse
|
13
|
Schröder R, Kunz WS, Rouan F, Pfendner E, Tolksdorf K, Kappes-Horn K, Altenschmidt-Mehring M, Knoblich R, van der Ven PFM, Reimann J, Fürst DO, Blümcke I, Vielhaber S, Zillikens D, Eming S, Klockgether T, Uitto J, Wiche G, Rolfs A. Disorganization of the desmin cytoskeleton and mitochondrial dysfunction in plectin-related epidermolysis bullosa simplex with muscular dystrophy. J Neuropathol Exp Neurol 2002; 61:520-30. [PMID: 12071635 DOI: 10.1093/jnen/61.6.520] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations of the human plectin gene (Plec1) cause autosomal recessive epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). Here, we report on molecular mechanisms leading to severe dystrophic muscle alterations in EBS-MD. Analysis of a 25-yr-old EBS-MD patient carrying a novel homozygous 16-bp insertion mutation (13803ins16/13803ins16) close to the intermediate filament (IF) binding site of plectin showed severe disorganization of the myogenic IF cytoskeleton. Intermyofibrillar and subsarcolemmal accumulations of assembled but highly unordered desmin filaments may be attributed to impaired desmin binding capability of the mutant plectin. This IF pathology was also associated with severe mitochondrial dysfunction, suggesting that the muscle pathology of EBS-MD caused by IF disorganization leads not only to defects in mechanical force transduction but also to metabolic dysfunction. Beyond EBS-MD, our data may contribute to the understanding of other myopathies characterized by sarcoplasmic IF accumulations such as desminopathies or alpha-B-crystallinopathies.
Collapse
Affiliation(s)
- Rolf Schröder
- Department of Neurology, University of Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Clay AS, Behnia M, Brown KK. Mitochondrial disease: a pulmonary and critical-care medicine perspective. Chest 2001; 120:634-48. [PMID: 11502670 DOI: 10.1378/chest.120.2.634] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The clinical spectrum of mitochondrial diseases has expanded dramatically in the last decade. Abnormalities of mitochondrial function are now thought to participate in a number of common adult diseases, ranging from exercise intolerance to aging. This review outlines the common presentations of mitochondrial disease in ICUs and in the outpatient setting and discusses current diagnostic and therapeutic options as they pertain to the pulmonary and critical-care physician.
Collapse
Affiliation(s)
- A S Clay
- Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
15
|
Verrips A, van Engelen BG, ter Laak H, Gabreëls-Festen A, Janssen A, Zwarts M, Wevers RA, Gabreëls FJ. Cerebrotendinous xanthomatosis. Controversies about nerve and muscle: observations in ten patients. Neuromuscul Disord 2000; 10:407-14. [PMID: 10899446 DOI: 10.1016/s0960-8966(00)00112-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neuromuscular characteristics were documented in ten patients with biochemically and genetically confirmed cerebrotendinous xanthomatosis. An array of genotypes was found in these patients. Only one patient complained of muscle weakness, while clinical signs of peripheral neuropathy were present in six patients. Electromyogram showed predominantly axonal neuropathy in seven patients. Neurogenic changes were seen in muscle biopsies of nine patients. Sural nerve biopsies of three patients showed features of axonal neuropathy. In addition, in one patient, extensive onion bulb formation was seen, which is indicative of a primarily demyelinating process. Five patients had normal mitochondrial respiratory chain enzyme activity. It is concluded that myopathy is not a feature of cerebrotendinous xanthomatosis and that the most prominent neuromuscular abnormality is sensorimotor axonal polyneuropathy.
Collapse
Affiliation(s)
- A Verrips
- Departments of Paediatric Neurology, University Hospital Nijmegen, PO Box 9101, 6500 HB, The, Nijmegen, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|