1
|
Dong Y, He Q, Chen X, Yang F, He L, Zheng Y. Extrachromosomal DNA (ecDNA) in cancer: mechanisms, functions, and clinical implications. Front Oncol 2023; 13:1194405. [PMID: 37448518 PMCID: PMC10338009 DOI: 10.3389/fonc.2023.1194405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Extrachromosomal DNA (ecDNA) is circular DNA that plays an important role in the development and heterogeneity of cancer. The rapid evolution of methods to detect ecDNA, including microscopic and sequencing approaches, has greatly enhanced our knowledge of the role of ecDNA in cancer development and evolution. Here, we review the molecular characteristics, functions, mechanisms of formation, and detection methods of ecDNA, with a focus on the potential clinical implications of ecDNA in cancer. Specifically, we consider the role of ecDNA in acquired drug resistance, as a diagnostic and prognostic biomarker, and as a therapeutic target in the context of cancer. As the pathological and clinical significance of ecDNA continues to be explored, it is anticipated that ecDNA will have broad applications in the diagnosis, prognosis, and treatment of patients with cancer.
Collapse
Affiliation(s)
- Yucheng Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi He
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyu Chen
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li He
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Yongchang Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Ilić M, Zaalberg IC, Raaijmakers JA, Medema RH. Life of double minutes: generation, maintenance, and elimination. Chromosoma 2022; 131:107-125. [PMID: 35487993 PMCID: PMC9470669 DOI: 10.1007/s00412-022-00773-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/20/2022]
Abstract
Advances in genome sequencing have revealed a type of extrachromosomal DNA, historically named double minutes (also referred to as ecDNA), to be common in a wide range of cancer types, but not in healthy tissues. These cancer-associated circular DNA molecules contain one or a few genes that are amplified when double minutes accumulate. Double minutes harbor oncogenes or drug resistance genes that contribute to tumor aggressiveness through copy number amplification in combination with favorable epigenetic properties. Unequal distribution of double minutes over daughter cells contributes to intratumoral heterogeneity, thereby increasing tumor adaptability. In this review, we discuss various models delineating the mechanism of generation of double minutes. Furthermore, we highlight how double minutes are maintained, how they evolve, and discuss possible mechanisms driving their elimination.
Collapse
Affiliation(s)
- Mila Ilić
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Irene C Zaalberg
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg, 100, 3584, CG Utrecht, The Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Wu P, Liu Y, Zhou R, Liu L, Zeng H, Xiong F, Zhang S, Gong Z, Zhang W, Guo C, Wang F, Zhou M, Zu X, Zeng Z, Li Y, Li G, Huang H, Xiong W. Extrachromosomal Circular DNA: A New Target in Cancer. Front Oncol 2022; 12:814504. [PMID: 35494014 PMCID: PMC9046939 DOI: 10.3389/fonc.2022.814504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic instability and amplification are intrinsically important traits determining the development and heterogeneity of tumors. The role of extrachromosomal circular DNA (eccDNA) in tumors has recently been highlighted. EccDNAs are unique genetic materials located off the chromosomal DNA. They have been detected in a variety of tumors. This review analyzes the mechanisms involved in the formation of eccDNAs and their genetic characteristics. In addition, the high-copy number and transcriptional levels of oncogenes located in eccDNA molecules contribute to the acceleration of tumor evolution and drug resistance and drive the development of genetic heterogeneity. Understanding the specific genomic forms of eccDNAs and characterizing their potential functions will provide new strategies for tumor therapy. Further research may yield new targets and molecular markers for the early diagnosis and treatment of human cancer.
Collapse
Affiliation(s)
- Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuhang Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruijia Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lingyun Liu
- Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hongli Zeng
- Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - He Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: He Huang, ; Wei Xiong,
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: He Huang, ; Wei Xiong,
| |
Collapse
|
4
|
Xing J, Ning Q, Tang D, Mo Z, Lei X, Tang S. Progress on the role of extrachromosomal DNA in tumor pathogenesis and evolution. Clin Genet 2020; 99:503-512. [PMID: 33314031 DOI: 10.1111/cge.13896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022]
Abstract
The amplification of oncogenes on extrachromosomal DNA (ecDNA) provides a new mechanism for cancer cells to adapt to the changes in the tumor microenvironment and accelerate tumor evolution. These extrachromosomal elements contain oncogenes, and their chromatin structures are more open than linear chromosomes and therefore have stronger oncogene transcriptional activity. ecDNA always contains enhancer elements, and genes on ecDNA can be reintegrated into the linear genome to regulate the selective expression of genes. ecDNA lacks centromeres, and the inheritance from the parent cell to the daughter cell is uneven. This non-Mendelian genetic mechanism results in the increase of tumor heterogeneity with daughter cells that can gain a competitive advantage through a large number of copies of oncogenes. ecDNA promotes tumor invasiveness and provides a mechanism for drug resistance associated with poorer survival outcomes. Recent studies have demonstrated that the overall proportion of ecDNA in tumors is approximately 40%. In this review, we summarize the current knowledge of ecDNA in the field of tumorigenesis and development.
Collapse
Affiliation(s)
- Jichen Xing
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Diya Tang
- Department of Medical Oncology, Xiangya Hospital Central South University, Changsha, China
| | - Zhongcheng Mo
- Institute of Basic Medical Sciences, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xiaoyong Lei
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China
| | - Shengsong Tang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, and Institute of Pharmacy & Pharmacology, University of South China, Hengyang, China.,Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
5
|
Toledo F. Mechanisms Generating Cancer Genome Complexity: Back to the Future. Cancers (Basel) 2020; 12:E3783. [PMID: 33334014 PMCID: PMC7765419 DOI: 10.3390/cancers12123783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Understanding the mechanisms underlying cancer genome evolution has been a major goal for decades. A recent study combining live cell imaging and single-cell genome sequencing suggested that interwoven chromosome breakage-fusion-bridge cycles, micronucleation events and chromothripsis episodes drive cancer genome evolution. Here, I discuss the "interphase breakage model," suggested from prior fluorescent in situ hybridization data that led to a similar conclusion. In this model, the rapid genome evolution observed at early stages of gene amplification was proposed to result from the interweaving of an amplification mechanism (breakage-fusion-bridge cycles) and of a deletion mechanism (micronucleation and stitching of DNA fragments retained in the nucleus).
Collapse
Affiliation(s)
- Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, PSL Research University, Sorbonne University, CNRS UMR3244 Dynamics of Genetic Information, 26 rue d'Ulm, CEDEX 05, 75248 Paris, France
| |
Collapse
|
6
|
Gao QZ, Qin Y, Wang WJ, Fei BJ, Han WF, Jin JQ, Gao X. Overexpression of AMPD2 indicates poor prognosis in colorectal cancer patients via the Notch3 signaling pathway. World J Clin Cases 2020; 8:3197-3208. [PMID: 32874974 PMCID: PMC7441253 DOI: 10.12998/wjcc.v8.i15.3197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AMPD2 is a critical enzyme catalyzing smooth muscle energy supply and metabolism; however, its cellular biological function and clinical implication in colorectal cancer (CRC) are largely unknown.
AIM To clarify the role of AMPD2 in CRC and study the pathway and prognostic value of its role.
METHODS AMPD2 expression was analyzed by integrated bioinformatics analysis based on TCGA data sets and immunohistochemistry in tissue microarrays, and the correlation between AMPD2 expression and clinicopathological parameters, Notch3 expression, and prognostic features was assessed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were then performed to investigate the regulatory pathway involved. The effects of AMPD2 expression on CRC cells and Notch3 protein expression were investigated by downregulation and overexpression of AMPD2.
RESULTS AMPD2 mRNA was significantly overexpressed in tumor tissue when compared with normal tissue in a cohort of the TCGA-COAD data set. Biological function enrichment analysis indicated that the Notch pathway strongly correlated with AMPD2 expression, and that the expression of Notch3 and JAG2 mRNA was positively associated with AMPD2 in CRC tissues. In vitro, AMPD2 overexpression markedly reduced Notch3 protein expression in CRC cells, while knockdown of AMPD2 showed the opposite findings. In addition, protein expression was significantly up-regulated in our CRC cohort as indicated by tissue microarray analysis. High expression of AMPD2 protein correlated with advanced depth of tumor and poor differentiation. Furthermore, high AMPD2 expression in CRC tissues was an indicator of poor outcome for CRC patients.
CONCLUSION AMPD2 is commonly overexpressed in CRC, and acts as a metabolism oncogene to induce CRC progression through the Notch signaling pathway. Thus, AMPD2 may be a novel prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Qi-Zhong Gao
- Department of Gastrocolorectal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214100, Jiangsu Province, China
| | - Yan Qin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Wei-Jia Wang
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Bo-Jian Fei
- Department of Gastrocolorectal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214100, Jiangsu Province, China
| | - Wei-Feng Han
- Department of Gastrocolorectal Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214100, Jiangsu Province, China
| | - Jian-Qiang Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Xiang Gao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| |
Collapse
|
7
|
Tanaka H, Watanabe T. Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers. Trends Cancer 2020; 6:462-477. [PMID: 32383436 PMCID: PMC7285850 DOI: 10.1016/j.trecan.2020.02.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/17/2022]
Abstract
Focal copy-number increases (genomic amplification) pinpoint oncogenic driver genes and therapeutic targets in cancer genomes. With the advent of genomic technologies, recurrent genomic amplification has been mapped throughout the genome. Recurrent amplification could be solely due to positive selection for the tumor-promoting effects of amplified gene products. Alternatively, recurrence could result from the susceptibility of the loci to amplification. Distinguishing between these possibilities requires a full understanding of the amplification mechanisms. Two mechanisms, the formation of double minute (DM) chromosomes and breakage-fusion-bridge (BFB) cycles, have been repeatedly linked to genomic amplification, and the impact of both mechanisms has been confirmed in cancer genomics data. We review the details of these mechanisms and discuss the mechanisms underlying recurrence.
Collapse
Affiliation(s)
- Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Biomedical Sciences, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA.
| | - Takaaki Watanabe
- Department of Surgery, Cedars-Sinai Medical Center, West Hollywood, CA 90046, USA; Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
8
|
Hull RM, King M, Pizza G, Krueger F, Vergara X, Houseley J. Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biol 2019; 17:e3000471. [PMID: 31794573 PMCID: PMC6890164 DOI: 10.1371/journal.pbio.3000471] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) facilitates adaptive evolution by allowing rapid and extensive gene copy number variation and is implicated in the pathology of cancer and ageing. Here, we demonstrate that yeast aged under environmental copper accumulate high levels of eccDNA containing the copper-resistance gene CUP1. Transcription of the tandemly repeated CUP1 gene causes CUP1 eccDNA accumulation, which occurs in the absence of phenotypic selection. We have developed a sensitive and quantitative eccDNA sequencing pipeline that reveals CUP1 eccDNA accumulation on copper exposure to be exquisitely site specific, with no other detectable changes across the eccDNA complement. eccDNA forms de novo from the CUP1 locus through processing of DNA double-strand breaks (DSBs) by Sae2, Mre11 and Mus81, and genome-wide analyses show that other protein coding eccDNA species in aged yeast share a similar biogenesis pathway. Although abundant, we find that CUP1 eccDNA does not replicate efficiently, and high-copy numbers in aged cells arise through frequent formation events combined with asymmetric DNA segregation. The transcriptional stimulation of CUP1 eccDNA formation shows that age-linked genetic change varies with transcription pattern, resulting in gene copy number profiles tailored by environment. Transcription can cause the de novo formation of protein-coding extrachromosomal DNA that accumulates in ageing yeast cells; these extrachromosomal circular DNA molecules form frequently by a DNA double strand break repair mechanism.
Collapse
Affiliation(s)
- Ryan M. Hull
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Grazia Pizza
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom
| | - Xabier Vergara
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Kaas CS, Kristensen C, Betenbaugh MJ, Andersen MR. Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics 2015; 16:160. [PMID: 25887056 PMCID: PMC4359788 DOI: 10.1186/s12864-015-1391-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background The DHFR negative CHO DXB11 cell line (also known as DUX-B11 and DUKX) was historically the first CHO cell line to be used for large scale production of heterologous proteins and is still used for production of a number of complex proteins. Results Here we present the genomic sequence of the CHO DXB11 genome sequenced to a depth of 33x. Overall a significant genomic drift was seen favoring GC → AT point mutations in line with the chemical mutagenesis strategy used for generation of the cell line. The sequencing depth for each gene in the genome revealed distinct peaks at sequencing depths of 0x, 16x, 33x and 49x coverage corresponding to a copy number in the genome of 0, 1, 2 and 3 copies. This indicate that 17% of the genes are haploid revealing a large number of genes which can be knocked out with relative ease. This tendency of haploidy was furthermore shown to be present in eight additional analyzed CHO genomes (15-20% haploidy) but not in the genome of the Chinese hamster. The dhfr gene is confirmed to be haploid in CHO DXB11; transcriptionally active and the remaining allele contains a G410C point mutation causing a Thr137Arg missense mutation. We find ~2.5 million single nucleotide polymorphisms (SNP’s), 44 gene deletions in the CHO DXB11 genome and 9357 SNP's, which interfere with the coding regions of 3458 genes. Copy number variations for nine CHO genomes were mapped to the chromosomes of the Chinese hamster showing unique signatures for each chromosome. The data indicate that chromosome one and four appear to be more stable over the course of the CHO evolution compared to the other chromosomes thus might presenting the most attractive landing platforms for knock-ins of heterologous genes. Conclusions Our studies reveal an unexpected degree of haploidy in CHO DXB11 and CHO cells in general and highlight the chromosomal changes that have occurred among the CHO cell lines sequenced to date. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1391-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Schrøder Kaas
- Mammalian Cell Technology, Global Research Unit, Novo Nordisk A/S, A9.2.36, Novo Nordisk Park, 2760, Måløv, Denmark. .,Network Engineering of Eukaryotic Cell Factories, Technical University of Denmark, Kgs Lyngby, Denmark. .,Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Claus Kristensen
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Michael J Betenbaugh
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Mikael Rørdam Andersen
- Network Engineering of Eukaryotic Cell Factories, Technical University of Denmark, Kgs Lyngby, Denmark.
| |
Collapse
|
10
|
Meng X, Qi X, Guo H, Cai M, Li C, Zhu J, Chen F, Guo H, Li J, Zhao Y, Liu P, Jia X, Yu J, Zhang C, Sun W, Yu Y, Jin Y, Bai J, Wang M, Rosales J, Lee KY, Fu S. Novel role for non-homologous end joining in the formation of double minutes in methotrexate-resistant colon cancer cells. J Med Genet 2014; 52:135-44. [PMID: 25537274 PMCID: PMC4316941 DOI: 10.1136/jmedgenet-2014-102703] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Gene amplification is a frequent manifestation of genomic instability that plays a role in tumour progression and development of drug resistance. It is manifested cytogenetically as extrachromosomal double minutes (DMs) or intrachromosomal homogeneously staining regions (HSRs). To better understand the molecular mechanism by which HSRs and DMs are formed and how they relate to the development of methotrexate (MTX) resistance, we used two model systems of MTX-resistant HT-29 colon cancer cell lines harbouring amplified DHFR primarily in (i) HSRs and (ii) DMs. Results In DM-containing cells, we found increased expression of non-homologous end joining (NHEJ) proteins. Depletion or inhibition of DNA-PKcs, a key NHEJ protein, caused decreased DHFR amplification, disappearance of DMs, increased formation of micronuclei or nuclear buds, which correlated with the elimination of DHFR, and increased sensitivity to MTX. These findings indicate for the first time that NHEJ plays a specific role in DM formation, and that increased MTX sensitivity of DM-containing cells depleted of DNA-PKcs results from DHFR elimination. Conversely, in HSR-containing cells, we found no significant change in the expression of NHEJ proteins. Depletion of DNA-PKcs had no effect on DHFR amplification and resulted in only a modest increase in sensitivity to MTX. Interestingly, both DM-containing and HSR-containing cells exhibited decreased proliferation upon DNA-PKcs depletion. Conclusions We demonstrate a novel specific role for NHEJ in the formation of DMs, but not HSRs, in MTX-resistant cells, and that NHEJ may be targeted for the treatment of MTX-resistant colon cancer.
Collapse
Affiliation(s)
- Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xiuying Qi
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huanhuan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mengdi Cai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunxiang Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jing Zhu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Huan Guo
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jie Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yuzhen Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Jingcui Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| | - Jing Bai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jesusa Rosales
- Departments of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ki-Young Lee
- Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin, China
| |
Collapse
|
11
|
Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLoS Genet 2013; 9:e1003567. [PMID: 23785303 PMCID: PMC3681731 DOI: 10.1371/journal.pgen.1003567] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in this and other fungal pathogens.
Collapse
|
12
|
Mukherjee K, Storici F. A mechanism of gene amplification driven by small DNA fragments. PLoS Genet 2012; 8:e1003119. [PMID: 23271978 PMCID: PMC3521702 DOI: 10.1371/journal.pgen.1003119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation in nature.
Collapse
Affiliation(s)
- Kuntal Mukherjee
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Murnane JP. Telomere dysfunction and chromosome instability. Mutat Res 2011; 730:28-36. [PMID: 21575645 DOI: 10.1016/j.mrfmmm.2011.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023]
Abstract
The ends of chromosomes are composed of a short repeat sequence and associated proteins that together form a cap, called a telomere, that keeps the ends from appearing as double-strand breaks (DSBs) and prevents chromosome fusion. The loss of telomeric repeat sequences or deficiencies in telomeric proteins can result in chromosome fusion and lead to chromosome instability. The similarity between chromosome rearrangements resulting from telomere loss and those found in cancer cells implicates telomere loss as an important mechanism for the chromosome instability contributing to human cancer. Telomere loss in cancer cells can occur through gradual shortening due to insufficient telomerase, the protein that maintains telomeres. However, cancer cells often have a high rate of spontaneous telomere loss despite the expression of telomerase, which has been proposed to result from a combination of oncogene-mediated replication stress and a deficiency in DSB repair in telomeric regions. Chromosome fusion in mammalian cells primarily involves nonhomologous end joining (NHEJ), which is the major form of DSB repair. Chromosome fusion initiates chromosome instability involving breakage-fusion-bridge (B/F/B) cycles, in which dicentric chromosomes form bridges and break as the cell attempts to divide, repeating the process in subsequent cell cycles. Fusion between sister chromatids results in large inverted repeats on the end of the chromosome, which amplify further following additional B/F/B cycles. B/F/B cycles continue until the chromosome acquires a new telomere, most often by translocation of the end of another chromosome. The instability is not confined to a chromosome that loses its telomere, because the instability is transferred to the chromosome donating a translocation. Moreover, the amplified regions are unstable and form extrachromosomal DNA that can reintegrate at new locations. Knowledge concerning the factors promoting telomere loss and its consequences is therefore important for understanding chromosome instability in human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, CA 94143-1331, USA.
| |
Collapse
|
14
|
Different DNA-PKcs functions in the repair of radiation-induced and spontaneous DSBs within interstitial telomeric sequences. Chromosoma 2011; 120:309-19. [PMID: 21359527 DOI: 10.1007/s00412-011-0313-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Interstitial telomeric sequences (ITSs) in hamster cells are hot spots for spontaneous and induced chromosome aberrations (CAs). Most data on ITS instability to date have been obtained in DNA repair-proficient cells. The classical non-homologous end joining repair pathway (C-NHEJ), which is the principal double strand break (DSB) repair mechanism in mammalian cells, is thought to restore the morphologically correct chromosome structure. The production of CAs thus involves DNA-PKcs-independent repair pathways. In our current study, we investigated the participation of DNA-PKcs from the C-NHEJ pathway in the repair of spontaneous or radiation-induced DSBs in ITSs using wild-type and DNA-PKcs mutant Chinese hamster ovary cells. Our data demonstrate that DNA-PKcs stabilizes spontaneous DSBs within ITSs from the chromosome 9 long arm, leading to the formation of terminal deletions. In addition, we show that DNA-PKcs-dependent C-NHEJ is employed following radiation-induced DSBs in other ITSs and restores morphologically correct chromosomes, whereas DNA-PKcs independent mechanisms co-exist in DNA-PKcs proficient cells leading to an excess of CAs within ITSs.
Collapse
|
15
|
Gibaud A, Vogt N, Hadj-Hamou NS, Meyniel JP, Hupé P, Debatisse M, Malfoy B. Extrachromosomal amplification mechanisms in a glioma with amplified sequences from multiple chromosome loci. Hum Mol Genet 2010; 19:1276-85. [PMID: 20056677 DOI: 10.1093/hmg/ddq004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accumulation of extrachromosomal DNA molecules (double minute) is often responsible for gene amplification in cancers, but the mechanisms leading to their formation are still largely unknown. By using quantitative PCR, chromosome walking, in situ hybridization on metaphase chromosomes and whole genome analysis, we studied a glioma containing four extrachromosomally amplified loci (7p11, 1q32.1, 5p15 and 9p2). Complex extrachromosomal DNA molecules were formed by the fusion of several syntenic or non-syntenic DNA fragments from 7p11, 5p15 to 9p2. Fragments ranged from a few base pairs to megabase pairs. Scars of the amplification process remained at the original locus in the form of deletions or chromosome rearrangements. Chromosome fragmentation, due to replication stress, could explain this complex situation. In contrast, at 1q32.1, the initial extrachromosomal DNA molecule resulted from the circularization of a single fragment associated with an intrachromosomal deletion including, but larger than, the amplified sequence. The nature of the sequences involved in these rearrangements suggests that a V(D)J-like illegitimate recombination contributes to its formation.
Collapse
Affiliation(s)
- Anne Gibaud
- Centre de Recherche, Institut Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Tanaka H, Yao MC. Palindromic gene amplification--an evolutionarily conserved role for DNA inverted repeats in the genome. Nat Rev Cancer 2009; 9:216-24. [PMID: 19212324 DOI: 10.1038/nrc2591] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The clinical importance of gene amplification in the diagnosis and treatment of cancer has been widely recognized, as it is often evident in advanced stages of diseases. However, our knowledge of the underlying mechanisms is still limited. Gene amplification is an essential process in several organisms including the ciliate Tetrahymena thermophila, in which the initiating mechanism has been well characterized. Lessons from such simple eukaryotes may provide useful information regarding how gene amplification occurs in tumour cells.
Collapse
Affiliation(s)
- Hisashi Tanaka
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, 9,500 Euclid Avenue, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
17
|
Kimmel RR, Agnani S, Yang Y, Jordan R, Schwartz JL. DNA copy-number instability in low-dose gamma-irradiated TK6 lymphoblastoid clones. Radiat Res 2008; 169:259-69. [PMID: 18302486 DOI: 10.1667/rr1096.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/24/2007] [Indexed: 11/03/2022]
Abstract
Genomic instability that might occur early during low-dose, fractionated radiation exposures may be traceable in radiogenic compared to spontaneous cancers. Using a human 18K cDNA microarray-based comparative genome hybridization protocol, we measured changes in DNA copy number at over 14,000 loci in nine low-dose (137)Cs gamma-irradiated (acute exposure to 10 cGy/day x 21 days) and nine unirradiated TK6 clones and estimated locus-specific copy-number differences between them. Radiation induced copy-number hypervariability at thousands of loci across all chromosomes, with a sevenfold increase in low-level, randomly positioned DNA gains. Recurrent gains at 40 loci occurred among irradiated clones and were distributed nonrandomly across the genome, with the highest densities in 3q, 13q and 20q at sites that were hypodiploid without irradiation. Another nonrandomly distributed set of 94 loci exhibited relative recurrent gains from a hypodiploid state to a diploid state, suggesting hemizygous-to-homozygous transitions. Frequently recurring losses at 57 loci were concentrated on the single X-chromosome but were sparsely distributed at 0-2 loci per autosome. These results suggest induced mitotic homologous recombination as a possible mechanism of low-dose radiation-induced genomic instability. Genomic instability induced in TK6 cells resembled that seen in radiogenic tumors and suggests a way that radiation could induce genomic instability in preneoplastic cells.
Collapse
Affiliation(s)
- Robert R Kimmel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
18
|
Shimizu N, Hanada N, Utani K, Sekiguchi N. Interconversion of intra- and extra-chromosomal sites of gene amplification by modulation of gene expression and DNA methylation. J Cell Biochem 2008; 102:515-29. [PMID: 17390337 DOI: 10.1002/jcb.21313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously showed that plasmids containing a mammalian replication initiation region and a matrix attachment region were efficiently amplified to few thousand copies per cell, and that they formed extrachromosomal double minutes (DMs) or chromosomal homogeneously staining regions (HSRs). In these structures, the plasmid sequence was arranged as a tandem repeats, and we suggested a mechanism of plasmid amplification. Since amplification was very efficient, easy, and convenient, it might be adapted to a novel method for protein production. In the current study, we found that gene expression from the tandem plasmid repeat was suppressed. We identified several strategies to overcome this suppression, including: (1) use of higher concentrations of antibiotic during cell selection; (2) treatment of cells with agents that influence DNA methylation (5-azacytidine) or histone acetylation (butyrate); (3) co-amplification of an insulator sequence; and (4) co-amplification of sequences that encode a transcriptional activator. Expression from the plasmid repeat was always higher at DMs compared to HSRs. We found that continuous activation of a plasmid-encoded inducible promoter prevented the generation of long HSRs, and favored amplification at DMs. Consistent with this finding, there was a synergistic effect of transcriptional activation and inhibition of DNA methylation on the fragmentation of long HSRs and the generation of DMs and short HSRs. Our results indicate that both transcriptional activation and DNA methylation regulate the interconversion between extra- and intra-chromosomal gene amplification. These results have important implications for both protein production technology, and the generation of chromosomal abnormalities found in human cancer cells.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan.
| | | | | | | |
Collapse
|
19
|
VanHulle K, Lemoine FJ, Narayanan V, Downing B, Hull K, McCullough C, Bellinger M, Lobachev K, Petes TD, Malkova A. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements. Mol Cell Biol 2007; 27:2601-14. [PMID: 17242181 PMCID: PMC1899885 DOI: 10.1128/mcb.01740-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inverted DNA repeats are known to cause genomic instabilities. Here we demonstrate that double-strand DNA breaks (DSBs) introduced a large distance from inverted repeats in the yeast (Saccharomyces cerevisiae) chromosome lead to a burst of genomic instability. Inverted repeats located as far as 21 kb from each other caused chromosome rearrangements in response to a single DSB. We demonstrate that the DSB initiates a pairing interaction between inverted repeats, resulting in the formation of large dicentric inverted dimers. Furthermore, we observed that propagation of cells containing inverted dimers led to gross chromosomal rearrangements, including translocations, truncations, and amplifications. Finally, our data suggest that break-induced replication is responsible for the formation of translocations resulting from anaphase breakage of inverted dimers. We propose a model explaining the formation of inverted dicentric dimers by intermolecular single-strand annealing (SSA) between inverted DNA repeats. According to this model, anaphase breakage of inverted dicentric dimers leads to gross chromosomal rearrangements (GCR). This "SSA-GCR" pathway is likely to be important in the repair of isochromatid breaks resulting from collapsed replication forks, certain types of radiation, or telomere aberrations that mimic isochromatid breaks.
Collapse
Affiliation(s)
- Kelly VanHulle
- Biology Department, Indiana University/Purdue University Indiana, 723 West Michigan Street, Indianapolis, IN 46202-5132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jin C, Jin Y, Gisselsson D, Wennerberg J, Wah TS, Strömbäck B, Kwong YL, Mertens F. Molecular cytogenetic characterization of the 11q13 amplicon in head and neck squamous cell carcinoma. Cytogenet Genome Res 2006; 115:99-106. [PMID: 17065789 DOI: 10.1159/000095228] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 03/23/2006] [Indexed: 01/10/2023] Open
Abstract
Amplification of 11q13 DNA sequences and overexpression of CCND1 are common findings in head and neck squamous cell carcinoma (HNSCC), identified in about 30% of the cases. However, little is known about initiation of the amplification and the organization of the amplicon. In order to study the structure of the amplicon in more detail and to learn more about the mechanisms involved in its initiation, prometaphase, metaphase, and anaphase fluorescence in situ hybridization (FISH) with 40 BAC clones spanning a 16-Mb region in chromosome bands 11q12.2 to 11q13.5 was performed in nine HNSCC cell lines with homogeneously staining regions. FISH analysis showed that the size of the amplicon varied among the nine cell lines, the smallest being 2.12 Mb and the largest 8.97 Mb. The smallest overlapping region of amplification was approximately 1.61 Mb, covering the region from BAC 729E14 to BAC 102B19. This region contained several genes previously shown to be amplified and overexpressed in HNSCC, including CCDN1, CTTN, SHANK2, and ORAOV1. The cell lines were also used to study the internal structure of the amplicon. Various patterns of amplified DNA sequences within the amplicon were found among the nine cell lines. Even within the same cell line, different amplicon structures could be found in different cell populations, indicating that the mechanisms involved in the development of the amplicons in HNSCC were more complex than previously assumed. The frequent finding of inverted repeats within the amplicons, however, suggests that breakage-fusion-bridge cycles are important in the initiation, but the fact that such repeats constituted only small parts of the amplicons indicate that they are further rearranged during tumor progression.
Collapse
MESH Headings
- Anaphase
- Carcinoma, Squamous Cell/genetics
- Cell Line, Tumor/ultrastructure
- Chromosome Banding
- Chromosome Breakage
- Chromosomes, Artificial, Bacterial
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 11/ultrastructure
- DNA Repair
- DNA, Neoplasm/genetics
- Disease Progression
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Male
- Metaphase
- Repetitive Sequences, Nucleic Acid
Collapse
Affiliation(s)
- C Jin
- Department of Clinical Genetics, University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Genomic instability has been proposed to play an important role in cancer by accelerating the accumulation of genetic changes responsible for cancer cell evolution. One mechanism for chromosome instability is through the loss of telomeres, which are DNA-protein complexes that protect the ends of chromosomes and prevent chromosome fusion. Telomere loss can occur as a result of exogenous DNA damage, or spontaneously in cancer cells that commonly have a high rate of telomere loss. Mouse embryonic stem cells and human tumor cell lines that contain a selectable marker gene located immediately adjacent to a telomere have been used to investigate the consequences of telomere loss. In both cell types, telomere loss is followed by either the addition of a new telomere on to the end of the broken chromosome, or sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles that result in DNA amplification and large terminal deletions. The regions amplified by B/F/B cycles can then be transferred to other chromosomes, either through the formation of double-minute chromosomes that reintegrate at other sites, or through end-to-end fusions between chromosomes. B/F/B cycles eventually end when a chromosome acquires a new telomere by one of several mechanisms, the most common of which is translocation, which can involve either nonreciprocal transfer or duplication of all or part of an arm of another chromosome. Telomere acquisition involving nonreciprocal translocations results in the loss of a telomere on the donor chromosome, which subsequently becomes unstable. In contrast, translocations involving duplications do not destabilize the donor chromosome, although they result in allelic imbalances. Thus, the loss of a single telomere can generate a wide variety of chromosome alterations commonly associated with human cancer, not only on the chromosome that originally lost its telomere, but other chromosomes as well. Factors promoting spontaneous telomere loss and the resulting B/F/B cycles are therefore likely to be important in generating the karyotypic changes associated with human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, 1855 Folsom Street, MCB 200, San Francisco, CA 94103, USA.
| |
Collapse
|
22
|
Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS. The Pattern of Gene Amplification Is Determined by the Chromosomal Location of Hairpin-Capped Breaks. Cell 2006; 125:1283-96. [PMID: 16814715 DOI: 10.1016/j.cell.2006.04.042] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/11/2006] [Accepted: 04/26/2006] [Indexed: 11/18/2022]
Abstract
DNA palindromes often colocalize in cancer cells with chromosomal regions that are predisposed to gene amplification. The molecular mechanisms by which palindromes can cause gene amplification are largely unknown. Using yeast as a model system, we found that hairpin-capped double-strand breaks (DSBs) occurring at the location of human Alu-quasipalindromes lead to the formation of intrachromosomal amplicons with large inverted repeats (equivalent to homogeneously staining regions in mammalian chromosomes) or extrachromosomal palindromic molecules (equivalent to double minutes [DM] in mammalian cells). We demonstrate that the specific outcomes of gene amplification depend on the applied selection, the nature of the break, and the chromosomal location of the amplified gene relative to the site of the hairpin-capped DSB. The rules for the palindrome-dependent pathway of gene amplification defined in yeast may operate during the formation of amplicons in human tumors.
Collapse
Affiliation(s)
- Vidhya Narayanan
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
23
|
Myllykangas S, Knuutila S. Manifestation, mechanisms and mysteries of gene amplifications. Cancer Lett 2005; 232:79-89. [PMID: 16288831 DOI: 10.1016/j.canlet.2005.07.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 07/30/2005] [Indexed: 12/31/2022]
Abstract
Gene amplifications are essential features of advanced cancers and have prognostic as well as therapeutic significance in clinical cancer treatment. Models explaining the amplification process, such as breakage-fusion-bridge cycle and excision and unequal segregation of extrachromosomal DNA fragments, predict that independent DNA double-stranded breaks must occur to induce amplification formation. Many cellular, tissue and environmental factors induce DNA damage and amplifications. Also labile DNA sequence features like fragile sites facilitate amplifications. Although, databases and data mining tools of various genomic attributes are already available, extra-large scale systems biology endeavors to decipher dynamics, interactions and dependencies between different factors contributing to amplification process fail, because current databases of DNA copy number aberrations and fragile sites comprise conventional cytogenetics results obtained at far too coarse chromosome band resolution. Array comparative genomic hybridization (aCGH) enables genome-wide gene copy number measurements and amplification detection at molecular genetic resolution. Similarly, cloning and sequencing of fragile sites produce mapping information of vastly improved resolution. In conclusion, databases of aCGH and sequenced fragile sites are needed to resolve the mechanisms of gene amplifications in systems biology configuration.
Collapse
Affiliation(s)
- Samuel Myllykangas
- Department of Pathology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | |
Collapse
|
24
|
Specchia G, Albano F, Anelli L, Zagaria A, Liso A, Pannunzio A, Archidiacono N, Liso V, Rocchi M. Molecular cytogenetic study of instability at 1q21∼q32 in adult acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2005; 156:54-8. [PMID: 15588856 DOI: 10.1016/j.cancergencyto.2004.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 04/06/2004] [Accepted: 04/09/2004] [Indexed: 11/29/2022]
Abstract
In the present paper, we report a molecular cytogenetic study of 1q abnormalities associated with t(8;14)(q24;q32) in an adult common B acute lymphoblastic leukemia case with FAB-L2 morphology. The use of appropriate molecular cytogenetic probes allowed us to detect 13 different subclones showing heterogeneous chromosome 1 abnormalities. A complex pattern of rearrangements consisting of translocations, duplications, and inversions was observed. Breakage-fusion-bridge cycle and jumping translocation are hypothesized to have been involved in generating the large number of aberrations we detected.
Collapse
|
25
|
Debatisse M, Malfoy B. Gene amplification mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:343-361. [PMID: 18727507 DOI: 10.1007/1-4020-3764-3_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Michelle Debatisse
- UMR 7147, Institut Curie, CNRS, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
26
|
Vogt N, Lefèvre SH, Apiou F, Dutrillaux AM, Cör A, Leuraud P, Poupon MF, Dutrillaux B, Debatisse M, Malfoy B. Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. Proc Natl Acad Sci U S A 2004; 101:11368-73. [PMID: 15269346 PMCID: PMC509208 DOI: 10.1073/pnas.0402979101] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amplification of the epidermal growth factor receptor gene on double minutes is recurrently observed in cells of advanced gliomas, but the structure of these extrachromosomal circular DNA molecules and the mechanisms responsible for their formation are still poorly understood. By using quantitative PCR and chromosome walking, we investigated the genetic content and the organization of the repeats in the double minutes of seven gliomas. It was established that all of the amplicons of a given tumor derive from a single founding extrachromosomal DNA molecule. In each of these gliomas, the founding molecule was generated by a simple event that circularizes a chromosome fragment overlapping the epidermal growth factor receptor gene. In all cases, the fusion of the two ends of this initial amplicon resulted from microhomology-based nonhomologous end-joining. Furthermore, the corresponding chromosomal loci were not rearranged, which strongly suggests that a postreplicative event was responsible for the formation of each of these initial amplicons.
Collapse
Affiliation(s)
- Nicolas Vogt
- Instabilité du Génome et Cancer, FRE 2584, Centre National de la Recherche Scientifique, Institut Curie, 26 Rue d'Ulm, 75248 Paris, 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mertens F, Panagopoulos I, Jonson T, Gisselsson D, Isaksson M, Domanski HA, Mandahl N. Retained heterodisomy for chromosome 12 in atypical lipomatous tumors: implications for ring chromosome formation. Cytogenet Genome Res 2004; 106:33-8. [PMID: 15218238 DOI: 10.1159/000078557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 02/04/2004] [Indexed: 11/19/2022] Open
Abstract
Atypical lipomatous tumor (ALT) is an intermediate malignant mesenchymal tumor that is characterized by supernumerary ring chromosomes and/or giant rod-shaped marker chromosomes (RGMC). Fluorescence in situ hybridization (FISH) and molecular genetic analyses have disclosed that the RGMCs always contain amplified sequences from the long arm of chromosome 12. Typically, RGMCs are the sole clonal changes and so far no deletions or other morphologic aberrations of the two normal-appearing chromosomes 12 that invariably are present have been detected. The mechanisms behind the formation of the RGMCs are unknown, but it could be hypothesized that RGMC formation is preceded by trisomy 12 or, alternatively, that ring formation of one chromosome 12 is followed by duplication of the remaining homolog. The latter scenario would always result in isodisomy for the two normal-appearing chromosomes 12, whereas the former would yield isodisomy in one-third of the cases. In order to investigate these possible mechanisms behind ring formation, we studied polymorphic loci on chromosome 12 in 14 cases of ALT showing one or more supernumerary ring chromosomes and few or no other clonal aberrations at cytogenetic analysis. The molecular genetic analyses showed that the tumor cells always retained both parental copies of chromosome 12, thus refuting the trisomy 12 and duplication hypotheses.
Collapse
Affiliation(s)
- F Mertens
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
28
|
Murnane JP, Sabatier L. Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 2004; 26:1164-74. [PMID: 15499579 DOI: 10.1002/bies.20125] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Telomeres play a vital role in protecting the ends of chromosomes and preventing chromosome fusion. The failure of cancer cells to properly maintain telomeres can be an important source of the chromosome instability involved in cancer cell progression. Telomere loss results in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large deletions. These B/F/B cycles end primarily when the unstable chromosome acquires a new telomere by translocation of the ends of other chromosomes. Many of these translocations are nonreciprocal, resulting in the loss of the telomere from the donor chromosome, providing a mechanism for transfer of instability from one chromosome to another until a chromosome acquires a telomere by a mechanism other than nonreciprocal translocation. B/F/B cycles can also result in other forms of chromosome rearrangements, including double-minute chromosomes and large duplications. Thus, the loss of a single telomere can result in instability in multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Radiation Oncology Research Laboratory, University of California, San Francisco, CA 94103, USA.
| | | |
Collapse
|
29
|
Neglia M, Bertoni L, Zoli W, Giulotto E. Amplification of the pericentromeric region of chromosome 1 in a newly established colon carcinoma cell line. CANCER GENETICS AND CYTOGENETICS 2003; 142:99-106. [PMID: 12699884 DOI: 10.1016/s0165-4608(02)00802-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The LRWZ cell line was established from an ascitic effusion of a colon adenocarcinoma. We studied the karyotype of LRWZ cells using G-banding and chromosome painting. The cell line is near triploid and is characterized by several chromosome rearrangements and pronounced intermetaphase variation. Chromosome painting probes revealed numerous labeled regions on different chromosomes, indicating that several translocations occurred during the evolution of the cell population. The 10 recurrent marker chromosomes identified (M1-M10) were derived from complex rearrangements involving up to three different chromosomes. M2 is a particularly interesting marker that originated from the amplification of the pericentromeric region of chromosome 1 and has a peculiar organization comprising five copies of the region included between 1p21 and 1q21 and is surprisingly stable: it is present in all the metaphases analyzed, has telomeric DNA at both termini, and contains one active and four inactivated centromeres. To provide insights into the molecular mechanisms that generated M2, we performed fluorescence in situ hybridization experiments using a panel of probes mapping near the centromere of chromosome 1 and three probes for different satellite sequences; the formation of chromosome M2 required the intervention of several rearrangements including unequal exchange, chromatid breakage followed by fusion of the sister chromatids, and loss of centromeric heterochromatin.
Collapse
Affiliation(s)
- Margherita Neglia
- Dipartimento di Genetica e Microbiologia Adriano Buzzati-Traverso, Università degli Studi di Pavia, Pavia, Italy
| | | | | | | |
Collapse
|
30
|
Debatisse M. How cells of repair-deficient mice handle chromosome breaks and proliferate as malignant survivors. Trends Mol Med 2002; 8:503-5. [PMID: 12421678 DOI: 10.1016/s1471-4914(02)02423-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Lo AWI, Sabatier L, Fouladi B, Pottier G, Ricoul M, Murnane JP. DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line. Neoplasia 2002; 4:531-8. [PMID: 12407447 PMCID: PMC1503667 DOI: 10.1038/sj.neo.7900267] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Accepted: 07/24/2002] [Indexed: 11/09/2022]
Abstract
The development of genomic instability is an important step in generating the multiple genetic changes required for cancer. One consequence of genomic instability is the overexpression of oncogenes due to gene amplification. One mechanism for gene amplification is the breakage/fusion/bridge (B/F/B) cycle that involves the repeated fusion and breakage of chromosomes following the loss of a telomere. B/F/B cycles have been associated with low-copy gene amplification in human cancer cells, and have been proposed to be an initiating event in high-copy gene amplification. We have found that spontaneous telomere loss on a marker chromosome 16 in a human tumor cell line results in sister chromatid fusion and prolonged periods of chromosome instability. The high rate of anaphase bridges involving chromosome 16 demonstrates that this instability results from B/F/B cycles. The amplification of subtelomeric DNA on the marker chromosome provides conclusive evidence that B/F/B cycles initiated by spontaneous telomere loss are a mechanism for gene amplification in human cancer cells.
Collapse
Affiliation(s)
- Anthony W I Lo
- Radiation Oncology Research Laboratory, University of California, 1855 Folsom Street, MCB 200, San Francisco, CA 94103, USA
| | | | | | | | | | | |
Collapse
|
32
|
Coquelle A, Rozier L, Dutrillaux B, Debatisse M. Induction of multiple double-strand breaks within an hsr by meganucleaseI-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene 2002; 21:7671-9. [PMID: 12400009 DOI: 10.1038/sj.onc.1205880] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2002] [Revised: 07/16/2002] [Accepted: 07/16/2002] [Indexed: 11/08/2022]
Abstract
Gene amplification is frequently associated with tumor progression, hence, understanding the underlying mechanisms is important. The study of in vitro model systems indicated that different initial mechanisms accumulate amplified copies within the chromosomes (hsr) or on extra-chromosomal elements (dmin). It has long been suggested that formation of dmin could also occur following hsr breakdown. In order to check this hypothesis, we developed an approach based on the properties of the I-SceI meganuclease, which induces targeted DNA double-strand breaks. A clone containing an I-SceI site, integrated by chance close to an endogenous dhfr gene locus, was used to select for methotrexate resistant mutants. We recovered clones in which the I-SceI site was passively co-amplified with the dhfr gene within the same hsr. We show that I-SceI-induced hsr breakdown leads to the formation of dmin and creates different types of chromosomal rearrangements, including inversions. This demonstrates, for the first time, a direct relationship between double-strand breaks and inversions. Finally, we show that activation of fragile sites by aphidicolin or hypoxia in hsr-containing cells also generates dmin and a variety of chromosomal rearrangements. This may constitute a valuable model to study the consequences of breaks induced in hsr of cancer cells in vivo.
Collapse
Affiliation(s)
- Arnaud Coquelle
- Unité de Cytogénétique Moléculaire et Oncologie (UMR 147 CNRS), Institut Curie, 26 rue d'Ulm, 75248 Paris Cédex 05, France
| | | | | | | |
Collapse
|
33
|
Lo AWI, Sprung CN, Fouladi B, Pedram M, Sabatier L, Ricoul M, Reynolds GE, Murnane JP. Chromosome instability as a result of double-strand breaks near telomeres in mouse embryonic stem cells. Mol Cell Biol 2002; 22:4836-50. [PMID: 12052890 PMCID: PMC133890 DOI: 10.1128/mcb.22.13.4836-4850.2002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Telomeres are essential for protecting the ends of chromosomes and preventing chromosome fusion. Telomere loss has been proposed to play an important role in the chromosomal rearrangements associated with tumorigenesis. To determine the relationship between telomere loss and chromosome instability in mammalian cells, we investigated the events resulting from the introduction of a double-strand break near a telomere with I-SceI endonuclease in mouse embryonic stem cells. The inactivation of a selectable marker gene adjacent to a telomere as a result of the I-SceI-induced double-strand break involved either the addition of a telomere at the site of the break or the formation of inverted repeats and large tandem duplications on the end of the chromosome. Nucleotide sequence analysis demonstrated large deletions and little or no complementarity at the recombination sites involved in the formation of the inverted repeats. The formation of inverted repeats was followed by a period of chromosome instability, characterized by amplification of the subtelomeric region, translocation of chromosomal fragments onto the end of the chromosome, and the formation of dicentric chromosomes. Despite this heterogeneity, the rearranged chromosomes eventually acquired telomeres and were stable in most of the cells in the population at the time of analysis. Our observations are consistent with a model in which broken chromosomes that do not regain a telomere undergo sister chromatid fusion involving nonhomologous end joining. Sister chromatid fusion is followed by chromosome instability resulting from breakage-fusion-bridge cycles involving the sister chromatids and rearrangements with other chromosomes. This process results in highly rearranged chromosomes that eventually become stable through the addition of a telomere onto the broken end. We have observed similar events after spontaneous telomere loss in a human tumor cell line, suggesting that chromosome instability resulting from telomere loss plays a role in chromosomal rearrangements associated with tumor cell progression.
Collapse
Affiliation(s)
- Anthony W. I. Lo
- Radiation Oncology Research Laboratory, University of California, San Francisco, California 94103, Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
| | - Carl N. Sprung
- Radiation Oncology Research Laboratory, University of California, San Francisco, California 94103, Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
| | - Bijan Fouladi
- Radiation Oncology Research Laboratory, University of California, San Francisco, California 94103, Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
| | - Mehrdad Pedram
- Radiation Oncology Research Laboratory, University of California, San Francisco, California 94103, Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
| | - Laure Sabatier
- Radiation Oncology Research Laboratory, University of California, San Francisco, California 94103, Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
| | - Michelle Ricoul
- Radiation Oncology Research Laboratory, University of California, San Francisco, California 94103, Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
| | - Gloria E. Reynolds
- Radiation Oncology Research Laboratory, University of California, San Francisco, California 94103, Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
| | - John P. Murnane
- Radiation Oncology Research Laboratory, University of California, San Francisco, California 94103, Laboratoire de Radiobiologie et Oncologie, Commissariat à l'Energie Atomique, Fontenay-aux-Roses, France
- Corresponding author. Mailing address: Department of Radiation Oncology, University of California, 1855 Folsom St., MCB 200, San Francisco, CA 94103. Phone: (415) 476-9083. Fax: (415) 476-9069. E-mail:
| |
Collapse
|
34
|
Anglana M, Debatisse M. Dual control of replication timing. Stochastic onset but programmed completion of mammalian chromosome duplication. J Biol Chem 2001; 276:36639-46. [PMID: 11454865 DOI: 10.1074/jbc.m104501200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, DNA replication proceeds according to a precise temporal order during the S phase, but how this program is controlled remains poorly understood. We analyzed the replication-dependent bromodeoxyuridine banding of chromosomes in Chinese hamster cells treated with the spindle poison nocodazole. In these cells, nocodazole induces a transient mitotic arrest, followed by DNA re-replication without intervening cell division. Nuclear fragmentation is often observed in tetraploid derivatives, and previous studies suggest that replication timing of chromosomes could be affected when they are segregated into different micronuclei. Here we show that the onset of replication is frequently asynchronous on individual chromosomes during the re-replication process. Moreover, fluorescence in situ hybridization analysis revealed that replication synchrony is equally altered in fragmented and non-fragmented nuclei, indicating that asynchronous onset of replication is not dependent on physical separation of the chromosomes into isolated compartments. We also show that the ordered program of replication is always preserved along individual chromosomes. Our results demonstrate that the onset of replication of individual chromosomes in the same nuclear compartment can be uncoupled from the time of S-phase entry and from the programmed replication of chromosome sub-domains, revealing that multi-level controls contribute to establish replication timing in mammalian cells.
Collapse
Affiliation(s)
- M Anglana
- UMR147, Batiment Trouillet-Rossignol, Institut Curie/CNRS, 26 Rue d'Ulm, 75248 Paris, France
| | | |
Collapse
|
35
|
Kanda T, Wahl GM. The dynamics of acentric chromosomes in cancer cells revealed by GFP-based chromosome labeling strategies. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 35:107-14. [PMID: 11389539 DOI: 10.1002/1097-4644(2000)79:35+<107::aid-jcb1133>3.0.co;2-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autonomous replicons, such as viral episomes and oncogene containing double minute chromosomes (DMs), lack centromeres and consequently should be lost rapidly when the nuclear membrane breaks down at mitosis. Surprisingly, they are not. This raises the important question of the mechanisms that enable their efficient transmission to daughter cells. We review recent developments in GFP-based chromosome labeling strategies that enable real time analyses using high resolution light microscopy to provide insights into this issue. The results reveal that episomes and DMs both adhere to host chromosomes, a process referred to as "chromosome tethering". Such association enables acentric molecules to use the chromosomal centromere in trans, thereby achieving efficient transmission to daughter cells. This unique mechanism of mitotic segregation also raises the possibility of developing a new class of anti-cancer drugs that work by selectively eliminating growth enhancing genes from cancer cells. J. Cell. Biochem. Suppl. 35:107-114, 2000.
Collapse
Affiliation(s)
- T Kanda
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Toledo F, Coquelle A, Svetlova E, Debatisse M. Enhanced flexibility and aphidicolin-induced DNA breaks near mammalian replication origins: implications for replicon mapping and chromosome fragility. Nucleic Acids Res 2000; 28:4805-13. [PMID: 11095694 PMCID: PMC115181 DOI: 10.1093/nar/28.23.4805] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Common fragile sites are chromosomal loci prone to breakage and rearrangement that can be induced by aphidicolin, an inhibitor of DNA polymerases. Within these loci, sites of preferential DNA breaks were proposed to correlate with peaks of enhanced DNA flexibility, the function of which remains elusive. Here we show that mammalian DNA replication origins are enriched in peaks of enhanced flexibility. This finding suggests that the search for these features may help in the mapping of replication origins, and we present evidence supporting this hypothesis. The association of peaks of flexibility with replication origins also suggests that some origins may associate with minor levels of fragility. As shown here, an increased sensitivity to aphidicolin was found near two mammalian DNA replication origins.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
37
|
Singer MJ, Mesner LD, Friedman CL, Trask BJ, Hamlin JL. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc Natl Acad Sci U S A 2000; 97:7921-6. [PMID: 10859355 PMCID: PMC16646 DOI: 10.1073/pnas.130194897] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA sequence amplification is one of the most frequent manifestations of genomic instability in human tumors. We have shown previously that amplification of the dihydrofolate reductase (DHFR) gene in Chinese hamster cells is initiated by chromosome breaks, followed by bridge-breakage-fusion cycles that generate large intrachromosomal repeats; these are ultimately trimmed by an unknown process to smaller, more homogenous units manifested as homogenously staining chromosome regions (HSRs). However, in most human tumor cells, amplified DNA sequences are borne on unstable, extrachromosomal double minutes (DMs), which suggests the operation of a different amplification mechanism. In this study, we have isolated a large number of independent methotrexate-resistant human cell lines, all of which contained DHFR-bearing DMs. Surprisingly, all but one of these also had suffered partial or complete loss of one of the parental DHFR-bearing chromosomes. Cells in a few populations displayed what could be transient intermediates in the amplification process, including an initial HSR, its subsequent breakage, the appearance of DHFR-containing fragments, and, finally, DMs. Our studies suggest that HSRs and DMs both are initiated by chromosome breaks, but that cell types differ in how the extra sequences ultimately are processed and/or maintained.
Collapse
Affiliation(s)
- M J Singer
- Department of Molecular Biotechnology, University of Washington, Seattle, WA 98195-7730; and Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
38
|
Mucciolo E, Bertoni L, Mondello C, Giulotto E. Late onset of CAD gene amplification in unamplified PALA resistant Chinese hamster mutants. Cancer Lett 2000; 150:119-27. [PMID: 10704733 DOI: 10.1016/s0304-3835(99)00289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In rodent cells, resistance to PALA (N-phosphonacetyl-L-aspartate) has always been found associated with amplification of the CAD gene (carbamyl-P synthetase, aspartate transcarbamylase, dihydro-orotase). We describe two PALA resistant Chinese hamster mutant cell lines in which amplification of the CAD gene was not present. The PALA resistant phenotype was stable when the cells were grown in non-selective medium. However, after prolonged growth in the presence of the same drug concentration used for selection, cells with increased CAD gene copy number and higher levels of resistance overrode the original population. In these cell populations, a heterogeneous organization of the CAD genes was revealed by fluorescence in situ hybridization on mitotic chromosomes indicating that the additional copies of the gene were generated in several ways, such as non-disjunction and breakage-fusion-bridge cycles. The clastogenic effect of PALA, evidenced as chromosomal aberrations in the cells grown in the presence of the drug, could have favored the late onset of the amplified mutants. It is tempting to speculate that, during the expansion of tumor populations, different drug resistance mechanisms, including gene amplification, could occur in succession and lead to the generation of cells highly resistant to chemotherapeutic agents.
Collapse
Affiliation(s)
- E Mucciolo
- Dipartimento di Genetica e Microbiologia 'Adriano Buzzati Traverso' Via Abbiategrasso 207, 27100, Pavia, Italy
| | | | | | | |
Collapse
|
39
|
Soulié P, Fourme E, Hamelin R, Asselain B, Salmon RJ, Dutrillaux B, Muleris M. TP53 status and gene amplification in human colorectal carcinomas. CANCER GENETICS AND CYTOGENETICS 1999; 115:118-22. [PMID: 10598144 DOI: 10.1016/s0165-4608(99)00073-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene amplification is one of the characteristics of cancer cells. In vitro studies suggested that alterations of the TP53 gene might be responsible for gene amplification. We have examined the presence of TP53 mutations and looked for cytogenetic evidence of gene amplification in a series of 79 primary colorectal carcinomas. Other parameters such as the pattern of cytogenetic alterations, microsatellite instability, tumor site, and histological staging were also considered. A multiparametric study supported by statistical analyses suggests the existence of two major pathways of colorectal carcinogenesis. No relationships could be established between the presence of TP53 alterations and gene amplification.
Collapse
|
40
|
Kim SJ, Lee GM. Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(19990920)64:6<741::aid-bit14>3.0.co;2-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Migheli Q, Laugé R, Davière JM, Gerlinger C, Kaper F, Langin T, Daboussi MJ. Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum. Genetics 1999; 151:1005-13. [PMID: 10049918 PMCID: PMC1460518 DOI: 10.1093/genetics/151.3.1005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies was observed through a phenotypic assay for excision based on the restoration of nitrate reductase activity. Inactivation of the Fot1 transposase open reading frame (frameshift, deletion, or disruption) prevented excision in strains free of Fot1 elements. Molecular analysis of the Nia+ revertant strains showed that the Fot1 element reintegrated frequently into new genomic sites after excision and that it can transpose from the introduced niaD gene into a different chromosome. Sequence analysis of several Fot1 excision sites revealed the so-called footprint left by this transposable element. Three reinserted Fot1 elements were cloned and the DNA sequences flanking the transposon were determined using inverse polymerase chain reaction. In all cases, the transposon was inserted into a TA dinucleotide and created the characteristic TA target site duplication. The availability of autonomous Fot1 copies will now permit the development of an efficient two-component transposon tagging system comprising a trans-activator element supplying transposase and a cis-responsive marked element.
Collapse
Affiliation(s)
- Q Migheli
- Institut de Génétique et Microbiologie, Université Paris-sud, Bâtiment 400, F-91405, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Debatisse M, Coquelle A, Toledo F, Buttin G. Gene amplification mechanisms: the role of fragile sites. Recent Results Cancer Res 1999; 154:216-26. [PMID: 10027002 DOI: 10.1007/978-3-642-46870-4_13] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We studied the early stages of gene amplification in a Chinese hamster cell line and identified two distinct amplification mechanisms, both relying on an unequal segregation of gene copies at mitosis. In some cases, a sequence containing the selected gene is looped out, generating an acentric circular molecule, and amplification proceeds through unequal segregation of such extrachromosomal elements in successive cell cycles. In other cases, the accumulation of intrachromosomally amplified copies is driven by cycles of chromatid breakage, followed by fusion of sister chromatids devoid of a telomere, which leads to bridge formation and further break in mitosis (BFB cycles). We showed that some clastogenic drugs specifically trigger the intrachromosomal amplification pathway and strictly correlated this induction of BFB cycles to the ability of these drugs to activate fragile sites. In three model systems, we also established, that the location of centromeric and telomeric fragile sites relative to the selected genes determines the size and sequence content of the early amplicons.
Collapse
Affiliation(s)
- M Debatisse
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
43
|
Soulie P, Poupon MF, Remvikos Y, Dutrillaux B, Muleris M. Distinct chromosomal alterations associated with TP53 status of LoVo cells under PALA selective pressure: a parallel with cytogenetic pathways of colorectal cancers. Oncogene 1999; 18:775-81. [PMID: 9989828 DOI: 10.1038/sj.onc.1202336] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study investigates the chromosomal alterations involved in the acquisition of PALA resistance of LoVo colorectal cancer cells homozygous for wild-type TP53 before and after transfection with a 143Ala-mutated TP53 gene. PALA resistance was always associated with an increased number of CAD gene copies, but gene amplification sensu stricto was rarely observed. Interestingly, distinct chromosome patterns were found in relation to the TP53 status of the cells. In parental LoVo cells, the CAD copy number was increased through gains of normal chromosome 2 whereas in transfectant clones, resistance mostly occurred through chromosome rearrangements. The relationship with the two different cytogenetic patterns described in colorectal tumors is discussed.
Collapse
Affiliation(s)
- P Soulie
- Laboratoire de Cytogénétique Moléculaire et Oncologie, UMR 147 CNRS, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Bernardino J, Apiou F, Gerbault-Seureau M, Malfoy B, Dutrillaux B. Characterization of recurrent homogeneously staining regions in 72 breast carcinomas. Genes Chromosomes Cancer 1998; 23:100-8. [PMID: 9739012 DOI: 10.1002/(sici)1098-2264(199810)23:2<100::aid-gcc2>3.0.co;2-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cytogenetic analyses were performed on 223 breast carcinomas, of which 60% contained homogeneously staining regions (hsr), an intrachromosomal cytogenetic feature of gene amplification. The precise hsr localization could be determined for 123 hsr from 72 cases. The juxtacentromeric region of chromosome 8, band 11q13, and the whole of chromosome 17 were frequently involved. For 28 cases, the origin of the DNA sequences forming HSR could be investigated by chromosome painting, comparative genomic hybridization, and/or Southern blotting. Sequences from chromosomes 11 and 17 were mostly found within hsr located on chromosomes 11 and 17, respectively. In contrast, sequences from chromosome 8 were rarely found within hsr localized on chromosome 8. These observations suggest that different mechanisms lead to hsr formation in breast cancer. Band 11 q13 and the 17p chromosome arm may correspond to sites of in situ amplification driven by deletions distal to the amplification target genes. hsr in the region 17q2, which is also a frequent site of in situ amplification, takes place without the occurrence of a distal deletion. The short arm of chromosome 8 is often deleted, but frequently becomes the site of hsr formed elsewhere in the genome.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/chemistry
- Breast Neoplasms/genetics
- Carcinoma/chemistry
- Carcinoma/genetics
- Chromosome Breakage
- Chromosomes, Human, Pair 11/chemistry
- Chromosomes, Human, Pair 17/chemistry
- Chromosomes, Human, Pair 8/chemistry
- Female
- Genome, Human
- Humans
- Karyotyping
- Middle Aged
- Neoplasm Recurrence, Local/chemistry
- Neoplasm Recurrence, Local/genetics
- Staining and Labeling
Collapse
|
45
|
Bautista S, Theillet C. CCND1 andFGFR1 coamplification results in the colocalization of 11q13 and 8p12 sequences in breast tumor nuclei. Genes Chromosomes Cancer 1998. [DOI: 10.1002/(sici)1098-2264(199808)22:4<268::aid-gcc2>3.0.co;2-t] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
46
|
Coquelle A, Toledo F, Stern S, Bieth A, Debatisse M. A new role for hypoxia in tumor progression: induction of fragile site triggering genomic rearrangements and formation of complex DMs and HSRs. Mol Cell 1998; 2:259-65. [PMID: 9734364 DOI: 10.1016/s1097-2765(00)80137-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome rearrangements including gene amplification are frequent properties of tumor cells, but how they are related to the tumor microenvironment is unknown. Here, we report direct evidence for a causal relationship between hypoxia, induction of fragile sites, and gene amplification. Recently, we showed that breaks at fragile sites initiate intrachromosomal amplification. We demonstrate here that hypoxia is a potent fragile site inducer and that, like fragile sites inducing drugs, it drives fusion of double minutes (DMs) and their targeted reintegration into chromosomal fragile sites, generating homogeneously staining regions (HSRs). This pathway operates efficiently for DMs bearing different sequences, suggesting a model of hypoxia-driven formation of the HSRs containing nonsyntenic sequences frequently observed in solid tumors.
Collapse
Affiliation(s)
- A Coquelle
- Unité de Génétique Somatique, URA CNRS 1960, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
47
|
Toledo F, Baron B, Fernandez MA, Lachagès AM, Mayau V, Buttin G, Debatisse M. oriGNAI3: a narrow zone of preferential replication initiation in mammalian cells identified by 2D gel and competitive PCR replicon mapping techniques. Nucleic Acids Res 1998; 26:2313-21. [PMID: 9580680 PMCID: PMC147574 DOI: 10.1093/nar/26.10.2313] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nature of mammalian origins of DNA replication remains controversial and this is primarily because two-dimensional gel replicon mapping techniques have identified broad zones of replication initiation whereas several other techniques, such as quantitative PCR, have disclosed more discrete sites of initiation at the same chromosomal loci. In this report we analyze the replication of an amplified genomic region encompassing the 3'-end of the GNAI3 gene, the entire GNAT2 gene and the intergenic region between them in exponentially growing Chinese hamster fibroblasts. These cells express GNAI3 but not GNAT2 . The replication pattern was first analyzed by two-dimensional neutral-alkaline gel electrophoresis. Surprisingly, the results revealed a small preferential zone of replication initiation, of at most 1.7 kb, located in a limited part of the GNAI3 - GNAT2 intergenic region. Mapping of this initiation zone was then confirmed by quantitative PCR. The agreement between the two techniques exploited here strengthens the hypothesis that preferred sites of replication initiation do exist in mammalian genomes.
Collapse
Affiliation(s)
- F Toledo
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Pipiras E, Coquelle A, Bieth A, Debatisse M. Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J 1998; 17:325-33. [PMID: 9427766 PMCID: PMC1170383 DOI: 10.1093/emboj/17.1.325] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interstitial deletions of tumour suppressor genes and amplification of oncogenes are two major manifestations of chromosomal instability in tumour cells. The development of model systems allowing the study of the events triggering these processes is of major clinical importance. Using the properties of the I-SceI nuclease to introduce a localized double-strand break (DSB) in a mammalian chromosome carrying its target sequence, we demonstrate here that both types of mutations can be initiated by non-conservative DSB repair pathways. In our system, I-SceI activity dissociates a transfected gpt gene from its promoter, allowing the isolation of gpt- clones. Our results show that intrachromatid single-strand annealing events occur frequently, giving rise to interstitial deletions not accompanied by other chromosomal rearrangements. We also observed that, when present in the cells, extrachromosomal DNA molecules are integrated preferentially at the broken locus. Taking advantage of the insertion of the I-SceI recognition sequence telomeric to and close to the dihydrofolate reductase gene, we show that a less frequent outcome of I-SceI activity is the initiation of cycles of intrachromosomal amplification of this marker, from breaks at a site merging with the enzyme target.
Collapse
Affiliation(s)
- E Pipiras
- Unité de Génétique Somatique (URA CNRS 1960), Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cédex 15, France
| | | | | | | |
Collapse
|
49
|
Chernova OB, Chernov MV, Ishizaka Y, Agarwal ML, Stark GR. MYC abrogates p53-mediated cell cycle arrest in N-(phosphonacetyl)-L-aspartate-treated cells, permitting CAD gene amplification. Mol Cell Biol 1998; 18:536-45. [PMID: 9418900 PMCID: PMC121521 DOI: 10.1128/mcb.18.1.536] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1997] [Accepted: 10/02/1997] [Indexed: 02/05/2023] Open
Abstract
Genomic instability, including the ability to undergo gene amplification, is a hallmark of neoplastic cells. Similar to normal cells, "nonpermissive" REF52 cells do not develop resistance to N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of the synthesis of pyrimidine nucleotides, through amplification of cad, the target gene, but instead undergo protective, long-term, p53-dependent cell cycle arrest. Expression of exogenous MYC prevents this arrest and allows REF52 cells to proceed to mitosis when pyrimidine nucleotides are limiting. This results in DNA breaks, leading to cell death and, rarely, to cad gene amplification and PALA resistance. Pretreatment of REF52 cells with a low concentration of PALA, which slows DNA replication but does not trigger cell cycle arrest, followed by exposure to a high, selective concentration of PALA, promotes the formation of PALA-resistant cells in which the physically linked cad and endogenous N-myc genes are coamplified. The activated expression of endogenous N-myc in these pretreated PALA-resistant cells allows them to bypass the p53-mediated arrest that is characteristic of untreated REF52 cells. Our data demonstrate that two distinct events are required to form PALA-resistant REF52 cells: amplification of cad, whose product overcomes the action of the drug, and increased expression of N-myc, whose product overcomes the PALA-induced cell cycle block. These paired events occur at a detectable frequency only when the genes are physically linked, as cad and N-myc are. In untreated REF52 cells overexpressing N-MYC, the level of p53 is significantly elevated but there is no induction of p21waf1 expression or growth arrest. However, after DNA is damaged, the activated p53 executes rapid apoptosis in these REF52/N-myc cells instead of the long-term protective arrest seen in REF52 cells. The predominantly cytoplasmic localization of stabilized p53 in REF52/N-myc cells suggests that cytoplasmic retention may help to inactivate the growth-suppressing function of p53.
Collapse
Affiliation(s)
- O B Chernova
- Department of Molecular Biology, Research Institute, The Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
50
|
Riboni R, Casati A, Nardo T, Zaccaro E, Ferretti L, Nuzzo F, Mondello C. Telomeric fusions in cultured human fibroblasts as a source of genomic instability. CANCER GENETICS AND CYTOGENETICS 1997; 95:130-6. [PMID: 9169029 DOI: 10.1016/s0165-4608(96)00248-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In a human fibroblast clone we studied the evolution, during culture propagation, of a dicentric chromosome consisting of the end-to-end association of the short arm of chromosome 5 and the long arm of chromosome 16. Dual-color fluorescence in situ hybridization (FISH) with painting probes allowed us to define the structure of a variety of derivative chromosomes and to identify the mechanisms by which they originated. Asymmetric interchanges involving the intercentromeric region of the dicentric, bridge-breakage-fusion events, or breaks followed by sister chromatid fusion, originate unstable hetero- or homodicentric chromosomes with deletion or duplication; breakages not followed by reunion, or intradicentric recombination, presumably originate stable rearranged monocentric chromosomes. The variety of the derivatives is extremely large because the observed events may involve any site of the intercentromeric region, although the majority of them occurs after a break in 16qh. The results of this investigation document the evolution through successive steps of a telomeric fusion, a chromosome anomaly frequently observed in tumor and senescent cells. They also demonstrate that in cultured cells of normal origin, starting with this anomaly, various chromosomal mechanisms may produce translocations, duplications, and deletions. The karyotype instability produced by a telomeric fusion can be relevant for carcinogenesis because it may generate genetic changes critical in the multistep process of transformation.
Collapse
Affiliation(s)
- R Riboni
- Istituto di Genetica Biochimica ed Evoluzionistica, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|