1
|
Ullah S, Huang JS, Khan A, Cossío-Bayúgar R, Nasreen N, Niaz S, Khan A, Yen TY, Tsai KH, Ben Said M. First report of Anaplasma spp., Ehrlichia spp., and Rickettsia spp. in Amblyomma gervaisi ticks infesting monitor lizards (Varanus begalensis) of Pakistan. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105569. [PMID: 38354994 DOI: 10.1016/j.meegid.2024.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Ticks pose significant health risks to both wildlife and humans due to their role as vectors for various pathogens. In this study, we investigated tick infestation patterns, tick-associated pathogens, and genetic relationships within the tick species Amblyomma gervaisi, focusing on its prevalence in monitor lizards (Varanus bengalensis) across different districts in Pakistan. We examined 85 monitor lizards and identified an overall mean intensity of 19.59 ticks per infested lizard and an overall mean abundance of 11.98 ticks per examined lizard. All collected ticks (n = 1019) were morphologically identified as A. gervaisi, including 387 males, 258 females, 353 nymphs, and 21 larvae. The highest tick prevalence was observed in the Buner district, followed by Torghar and Shangla, with the lowest prevalence in Chitral. Lizard captures primarily occurred from May to October, correlating with the period of higher tick infestations. Molecular analysis was conducted on tick DNA, revealing genetic similarities among A. gervaisi ticks based on 16S rDNA and ITS2 sequences. Notably, we found the absence of A. gervaisi ITS2 sequences in the NCBI GenBank, highlighting a gap in existing genetic data. Moreover, our study identified the presence of pathogenic microorganisms, including Ehrlichia sp., Candidatus Ehrlichia dumleri, Anaplasma sp., Francisella sp., Rickettsia sp., and Coxiella sp., in these ticks. BLAST analysis revealed significant similarities between these pathogenic sequences and known strains, emphasizing the potential role of these ticks as vectors for zoonotic diseases. Phylogenetic analyses based on nuclear ITS2 and mitochondrial 16S rDNA genes illustrated the genetic relationships of A. gervaisi ticks from Pakistan with other Amblyomma species, providing insights into their evolutionary history. These findings contribute to our understanding of tick infestation patterns, and tick-borne pathogens in monitor lizards, which has implications for wildlife health, zoonotic disease transmission, and future conservation efforts. Further research in this area is crucial for a comprehensive assessment of the risks associated with tick-borne diseases in both wildlife and humans.
Collapse
Affiliation(s)
- Shakir Ullah
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Jing-Syuan Huang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Afshan Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Raquel Cossío-Bayúgar
- Centro Nacional de Investigación Disciplinaria en Salud Animal eInocuidad, INIFAP, Km 11 Carretera Federal Cuernavaca- Cuautla, No. 8534, Col. Progreso, CP 62550 Jiutepec, Morelos, Mexico
| | - Nasreen Nasreen
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sadaf Niaz
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Adil Khan
- Department of Zoology, Bacha Khan University, Charsadda 24420, Pakistan.
| | - Tsai-Ying Yen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University, Taipei, Taiwan; Global Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia; Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
2
|
Ramirez A, Felgner J, Jain A, Jan S, Albin TJ, Badten AJ, Gregory AE, Nakajima R, Jasinskas A, Felgner PL, Burkhardt AM, Davies DH, Wang SW. Engineering Protein Nanoparticles Functionalized with an Immunodominant Coxiella burnetii Antigen to Generate a Q Fever Vaccine. Bioconjug Chem 2023; 34:1653-1666. [PMID: 37682243 PMCID: PMC10515490 DOI: 10.1021/acs.bioconjchem.3c00317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Coxiella burnetii is the causative agent of Q fever, for which there is yet to be an FDA-approved vaccine. This bacterial pathogen has both extra- and intracellular stages in its life cycle, and therefore both a cell-mediated (i.e., T lymphocyte) and humoral (i.e., antibody) immune response are necessary for effective eradication of this pathogen. However, most proposed vaccines elicit strong responses to only one mechanism of adaptive immunity, and some can either cause reactogenicity or lack sufficient immunogenicity. In this work, we aim to apply a nanoparticle-based platform toward producing both antibody and T cell immune responses against C. burnetii. We investigated three approaches for conjugation of the immunodominant outer membrane protein antigen (CBU1910) to the E2 nanoparticle to obtain a consistent antigen orientation: direct genetic fusion, high affinity tris-NTA-Ni conjugation to polyhistidine-tagged CBU1910, and the SpyTag/SpyCatcher (ST/SC) system. Overall, we found that the ST/SC approach yielded nanoparticles loaded with the highest number of antigens while maintaining stability, enabling formulations that could simultaneously co-deliver the protein antigen (CBU1910) and adjuvant (CpG1826) on one nanoparticle (CBU1910-CpG-E2). Using protein microarray analyses, we found that after immunization, antigen-bound nanoparticle formulations elicited significantly higher antigen-specific IgG responses than soluble CBU1910 alone and produced more balanced IgG1/IgG2c ratios. Although T cell recall assays from these protein antigen formulations did not show significant increases in antigen-specific IFN-γ production compared to soluble CBU1910 alone, nanoparticles conjugated with a CD4 peptide epitope from CBU1910 generated elevated T cell responses in mice to both the CBU1910 peptide epitope and whole CBU1910 protein. These investigations highlight the feasibility of conjugating antigens to nanoparticles for tuning and improving both humoral- and cell-mediated adaptive immunity against C. burnetii.
Collapse
Affiliation(s)
- Aaron Ramirez
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Jiin Felgner
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Aarti Jain
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Sharon Jan
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Tyler J. Albin
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Alexander J. Badten
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Anthony E. Gregory
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Rie Nakajima
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Algimantas Jasinskas
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Philip L. Felgner
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Amanda M. Burkhardt
- Department
of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - D. Huw Davies
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| | - Szu-Wen Wang
- Department
of Chemical and Biomolecular Engineering, Vaccine Research and Development
Center, Department of Physiology and Biophysics, Department of Chemistry, Department of Biomedical
Engineering, Chao Family Comprehensive Cancer Center, and Institute for Immunology, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Omar Osman I, Mezouar S, Brahim-Belhaouari D, Mege JL, Devaux CA. Modulation of the E-cadherin in human cells infected in vitro with Coxiella burnetii. PLoS One 2023; 18:e0285577. [PMID: 37285354 PMCID: PMC10246793 DOI: 10.1371/journal.pone.0285577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 06/09/2023] Open
Abstract
High concentration of soluble E-cadherin (E-cad) was previously found in sera from Q fever patients. Here, BeWo cells which express a high concentration of E-cad were used as an in vitro model to investigate the expression and function of E-cad in response to infection by Coxiella burnetii, the etiological agent of Q fever. Infection of BeWo cells with C. burnetii leads to a decrease in the number of BeWo cells expressing E-cad at their membrane. A shedding of soluble E-cad was associated with the post-infection decrease of membrane-bound E-cad. The modulation of E-cad expression requires bacterial viability and was not found with heat-inactivated C. burnetii. Moreover, the intracytoplasmic cell concentration of β-catenin (β-cat), a ligand of E-cad, was reduced after bacterial infection, suggesting that the bacterium induces modulation of the E-cad/β-cat signaling pathway and CDH1 and CTNNB1 genes transcription. Finally, several genes operating the canonical Wnt-Frizzled/β-cat pathway were overexpressed in cells infected with C. burnetii. This was particularly evident with the highly virulent strain of C. burnetii, Guiana. Our data demonstrate that infection of BeWo cells by live C. burnetii modulates the E-cad/β-cat signaling pathway.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Djamal Brahim-Belhaouari
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Jean-Louis Mege
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Christian Albert Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| |
Collapse
|
4
|
Mauermeir M, Ölke M, Hayek I, Schulze-Luehrmann J, Dettmer K, Oefner PJ, Berens C, Menge C, Lührmann A. Bovine blood derived macrophages are unable to control Coxiella burnetii replication under hypoxic conditions. Front Immunol 2023; 14:960927. [PMID: 36793725 PMCID: PMC9923158 DOI: 10.3389/fimmu.2023.960927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Background Coxiella burnetii is a zoonotic pathogen, infecting humans, livestock, pets, birds and ticks. Domestic ruminants such as cattle, sheep, and goats are the main reservoir and major cause of human infection. Infected ruminants are usually asymptomatic, while in humans infection can cause significant disease. Human and bovine macrophages differ in their permissiveness for C. burnetii strains from different host species and of various genotypes and their subsequent host cell response, but the underlying mechanism(s) at the cellular level are unknown. Methods C. burnetii infected primary human and bovine macrophages under normoxic and hypoxic conditions were analyzed for (i) bacterial replication by CFU counts and immunofluorescence; (ii) immune regulators by westernblot and qRT-PCR; cytokines by ELISA; and metabolites by gas chromatography-mass spectrometry (GC-MS). Results Here, we confirmed that peripheral blood-derived human macrophages prevent C. burnetii replication under oxygen-limiting conditions. In contrast, oxygen content had no influence on C. burnetii replication in bovine peripheral blood-derived macrophages. In hypoxic infected bovine macrophages, STAT3 is activated, even though HIF1α is stabilized, which otherwise prevents STAT3 activation in human macrophages. In addition, the TNFα mRNA level is higher in hypoxic than normoxic human macrophages, which correlates with increased secretion of TNFα and control of C. burnetii replication. In contrast, oxygen limitation does not impact TNFα mRNA levels in C. burnetii-infected bovine macrophages and secretion of TNFα is blocked. As TNFα is also involved in the control of C. burnetii replication in bovine macrophages, this cytokine is important for cell autonomous control and its absence is partially responsible for the ability of C. burnetii to replicate in hypoxic bovine macrophages. Further unveiling the molecular basis of macrophage-mediated control of C. burnetii replication might be the first step towards the development of host directed intervention measures to mitigate the health burden of this zoonotic agent.
Collapse
Affiliation(s)
- Michael Mauermeir
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martha Ölke
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Inaya Hayek
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Dettmer
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institut für molekulare Pathogenese, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut, Institut für molekulare Pathogenese, Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,*Correspondence: Anja Lührmann,
| |
Collapse
|
5
|
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines (Basel) 2022; 10:751. [PMID: 35632507 PMCID: PMC9144739 DOI: 10.3390/vaccines10050751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacterial infections are major health problems worldwide, and treatment of many of these infectious diseases is becoming increasingly difficult due to the development of antibiotic resistance, which is a major threat. Prophylactic vaccines against these bacterial pathogens are urgently needed. This is also true for bacterial infections that are still neglected, even though they affect a large part of the world's population, especially under poor hygienic conditions. One example is typhus, a life-threatening disease also known as "war plague" caused by Rickettsia prowazekii, which could potentially come back in a war situation such as the one in Ukraine. However, vaccination against bacterial infections is a challenge. In general, bacteria are much more complex organisms than viruses and as such are more difficult targets. Unlike comparatively simple viruses, bacteria possess a variety of antigens whose immunogenic potential is often unknown, and it is unclear which antigen can elicit a protective and long-lasting immune response. Several vaccines against extracellular bacteria have been developed in the past and are still used successfully today, e.g., vaccines against tetanus, pertussis, and diphtheria. However, while induction of antibody production is usually sufficient for protection against extracellular bacteria, vaccination against intracellular bacteria is much more difficult because effective defense against these pathogens requires T cell-mediated responses, particularly the activation of cytotoxic CD8+ T cells. These responses are usually not efficiently elicited by immunization with non-living whole cell antigens or subunit vaccines, so that other antigen delivery strategies are required. This review provides an overview of existing antibacterial vaccines and novel approaches to vaccination with a focus on immunization against intracellular bacteria.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Infection Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| |
Collapse
|
6
|
Körner S, Makert GR, Ulbert S, Pfeffer M, Mertens-Scholz K. The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited-A Systematic Review. Front Vet Sci 2021; 8:655715. [PMID: 33981744 PMCID: PMC8109271 DOI: 10.3389/fvets.2021.655715] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
The zoonosis Q fever is caused by the obligate intracellular bacterium Coxiella burnetii. Besides the main transmission route via inhalation of contaminated aerosols, ticks are discussed as vectors since the first isolation of the pathogen from a Dermacentor andersonii tick. The rare detection of C. burnetii in ticks and the difficult differentiation of C. burnetii from Coxiella-like endosymbionts (CLEs) are questioning the relevance of ticks in the epidemiology of Q fever. In this review, literature databases were systematically searched for recent prevalence studies concerning C. burnetii in ticks in Europe and experimental studies evaluating the vector competence of tick species. A total of 72 prevalence studies were included and evaluated regarding DNA detection methods and collection methods, country, and tested tick species. Specimens of more than 25 different tick species were collected in 23 European countries. Overall, an average prevalence of 4.8% was determined. However, in half of the studies, no Coxiella-DNA was detected. In Southern European countries, a significantly higher prevalence was observed, possibly related to the abundance of different tick species here, namely Hyalomma spp. and Rhipicephalus spp. In comparison, a similar proportion of studies used ticks sampled by flagging and dragging or tick collection from animals, under 30% of the total tick samples derived from the latter. There was no significant difference in the various target genes used for the molecular test. In most of the studies, no distinction was made between C. burnetii and CLEs. The application of specific detection methods and the confirmation of positive results are crucial to determine the role of ticks in Q fever transmission. Only two studies were available, which assessed the vector competence of ticks for C. burnetii in the last 20 years, demonstrating the need for further research.
Collapse
Affiliation(s)
- Sophia Körner
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany
| | - Gustavo R. Makert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sebastian Ulbert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Katja Mertens-Scholz
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Jena, Germany
| |
Collapse
|
7
|
Xiong Q, Yang M, Li P, Wu C. Bacteria Exploit Autophagy For Their Own Benefit. Infect Drug Resist 2019; 12:3205-3215. [PMID: 31632106 PMCID: PMC6792943 DOI: 10.2147/idr.s220376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a lysosomal degradation pathway to clear long-lived proteins, protein aggregates, and damaged organelles. Certain microorganisms can be eliminated by an autophagic degradation process termed xenophagy. However, many pathogens deploy highly evolved mechanisms to evade autophagic degradation. What is more, series of pathogens have developed different strategies to exploit autophagy to ensure their survival. These bacteria could induce autophagy and/or prevent autophagosomes fusion with lysosomes through secreted effector proteins or utilizing host components, thereby maintaining the localization of the bacteria within the autophagosomes where they replicate. Here, we review the current knowledge of the mechanisms developed by the bacteria to benefit from autophagy for their survival.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Min Yang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
8
|
Abnave P, Muracciole X, Ghigo E. Coxiella burnetii Lipopolysaccharide: What Do We Know? Int J Mol Sci 2017; 18:ijms18122509. [PMID: 29168790 PMCID: PMC5751112 DOI: 10.3390/ijms18122509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/28/2022] Open
Abstract
A small gram-negative bacterium, Coxiella burnetii (C. burnetii), is responsible for a zoonosis called Q fever. C. burnetii is an intracellular bacterium that can survive inside microbicidal cells like monocytes and macrophages by hijacking several functions of the immune system. Among several virulence factors, the lipopolysaccharide (LPS) of C. burnetii is one of the major factors involved in this immune hijacking because of its atypical composition and structure. Thus, the aim of this mini-review is to summarize the repressive effects of C. burnetii LPS on the antibacterial immunity of cells.
Collapse
Affiliation(s)
- Prasad Abnave
- Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK.
| | - Xavier Muracciole
- Department of Radiotherapy Oncology, CHU de la Timone, Assistance Publique-Hopitaux Marseille, 13385 Marseille, France.
| | - Eric Ghigo
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), Institut Hospitalier Universitaire Méditerranée-Infection, 19-21 Bd Jean Moulin, CEDEX 05, 13385 Marseille, France.
| |
Collapse
|
9
|
Schäfer W, Eckart RA, Schmid B, Cagköylü H, Hof K, Muller YA, Amin B, Lührmann A. Nuclear trafficking of the anti-apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin-α1. Cell Microbiol 2016; 19. [PMID: 27328359 DOI: 10.1111/cmi.12634] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/02/2016] [Accepted: 06/16/2016] [Indexed: 12/28/2022]
Abstract
The obligate intracellular bacterium Coxiella burnetii causes the zoonotic disease Q-fever. Coxiella pathogenesis depends on a functional type IV secretion system (T4SS). The T4SS effector AnkG inhibits pathogen-induced host cell apoptosis, which is believed to be important for the establishment of a persistent infection. However, the mode of action of AnkG is not fully understood. We have previously demonstrated that binding of AnkG to p32 is crucial for migration of AnkG into the nucleus and that nuclear localization of AnkG is essential for its anti-apoptotic activity. Here, we compared the activity of AnkG from the C. burnetii strains Nine Mile and Dugway. Although there is only a single amino acid exchange at residue 11, we observed a difference in anti-apoptotic activity and nuclear migration. Mutation of amino acid 11 to glutamic acid, threonine or valine results in AnkG mutants that had lost the anti-apoptotic activity and the ability to migrate into the nucleus. We identified Importin-α1 to bind to AnkG, but not to the mutants and concluded that binding of AnkG to p32 and Importin-α1 is essential for migration into the nucleus. Also during Coxiella infection binding of AnkG to p32 and Importin-α1 is crucial for nuclear localization of AnkG.
Collapse
Affiliation(s)
- Walter Schäfer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054, Erlangen, Germany
| | - Rita A Eckart
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054, Erlangen, Germany
| | - Benedikt Schmid
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052, Erlangen, Germany
| | - Hasret Cagköylü
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054, Erlangen, Germany
| | - Kerstin Hof
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052, Erlangen, Germany
| | - Yves A Muller
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 91, D-91052, Erlangen, Germany
| | - Bushra Amin
- Lehrstuhl für Biochemie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstrasse 3-5, D-91054, Erlangen, Germany
| |
Collapse
|
10
|
Schulze-Luehrmann J, Eckart RA, Ölke M, Saftig P, Liebler-Tenorio E, Lührmann A. LAMP proteins account for the maturation delay during the establishment of the Coxiella burnetii-containing vacuole. Cell Microbiol 2016; 18:181-94. [PMID: 26249821 DOI: 10.1111/cmi.12494] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 12/28/2022]
Abstract
The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-1/2 double-deficient fibroblasts as well as in LAMP-1/2 knock-down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Jan Schulze-Luehrmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Germany
| | - Rita A Eckart
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Germany
| | - Martha Ölke
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Germany
| | - Paul Saftig
- Biochemical Institute, Christian Albrechts University of Kiel, Kiel, Germany
| | | | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Germany
| |
Collapse
|
11
|
Asghar MT, Al-Ghanim K, Mahboob S, Sharif M, Nazir J, Shakoori AR. Sphingomonas sp. is a novel cell culture contaminant. J Cell Biochem 2015; 116:934-42. [PMID: 25559735 DOI: 10.1002/jcb.25044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/16/2014] [Indexed: 11/09/2022]
Abstract
A novel contaminant was isolated from Madin Darby Bovine Kidney (MDBK) cells. The organism was unable to grow on standard microbiological media by conventional techniques, but grew well in Dulbecco's Modified Eagle's Medium (DMEM) containing high glucose concentration. The organism formed a white biofilm on the bottom without any signs of turbidity. Upon genome sequence analysis of 16 S rDNA, the contaminant was identified as Sphingomonas sp. Shah, a member of the group α-Proteobacteria. Neutral red dye uptake method confirmed clear cytotoxic potential of the bacterium on A-549 cells. The organism was capable of invading and infecting different mammalian cell lines: MDBK, ZZ-R, 293-T, A549, and HeLa cells. Infected cells showed a variety of cytopathic effects including vacuolation at perinuclear area, cytoplasmic granulation and membrane blebbing. Microscopic analysis of the infected cells revealed the presence of cytoplasmic vacuoles harboring motile organisms. Apparently local serum preparations seem to be the source of this contamination, which is imperceptibly passed on from one culture passage to the other and ultimately leading to serious cytopathic manifestations.
Collapse
Affiliation(s)
- Muhammad Tahir Asghar
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| | | | | | | | | | | |
Collapse
|
12
|
The Coxiella burnetii parasitophorous vacuole. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 984:141-69. [PMID: 22711631 DOI: 10.1007/978-94-007-4315-1_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coxiella burnetii is a bacterial intracellular parasite of eucaryotic cells that replicates within a membrane-bound compartment, or "parasitophorous vacuole" (PV). With the exception of human macrophages/monocytes, the consensus model of PV trafficking in host cells invokes endolysosomal maturation culminating in lysosome fusion. C. burnetii resists the degradative functions of the vacuole while at the same time exploiting the acidic pH for metabolic activation. While at first glance the mature PV resembles a large phagolysosome, an increasing body of evidence indicates the vacuole is in fact a specialized compartment that is actively modified by the pathogen. Adding to the complexity of PV biogenesis is new data showing vacuole engagement with autophagic and early secretory pathways. In this chapter, we review current knowledge of PV nature and development, and discuss disparate data related to the ultimate maturation state of PV harboring virulent or avirulent C. burnetii lipopolysaccharide phase variants in human mononuclear phagocytes.
Collapse
|
13
|
Omsland A, Heinzen RA. Life on the Outside: The Rescue ofCoxiella burnetiifrom Its Host Cell. Annu Rev Microbiol 2011; 65:111-28. [DOI: 10.1146/annurev-micro-090110-102927] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| |
Collapse
|
14
|
Caprilli R, Lapaquette P, Darfeuille-Michaud A. Eating the enemy in Crohn's disease: an old theory revisited. J Crohns Colitis 2010; 4:377-83. [PMID: 21122532 DOI: 10.1016/j.crohns.2010.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/20/2010] [Accepted: 05/20/2010] [Indexed: 12/16/2022]
Abstract
Several old and new observations suggest the existence in Crohn's disease of a phagocytic disorder of macrophages related to impaired bactericidal activity of host cells or to the presence of invasive bacteria that have developed strategies to counteract macrophage killing. It was recently reported that disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease. Secretion of proinflammatory cytokines by CD macrophages was impaired in response to E. coli or specific Toll-like receptor agonists. In addition, major advances in the etiology of Crohn's disease came from the existence of polymorphism in NOD2 and autophagy-related susceptibility genes (ATG16L1 and IRGM) in patients and from the identification of the presence of adherent-invasive E. coli (AIEC) colonizing the CD ileal mucosa and able to resist to macrophage killing. The role of impaired autophagy in Crohn's disease patients has been recently reinforced by the observation that the peptidoglycan receptor NOD2, in addition to sense intracellular bacteria, can induce autophagy by recruiting the critical autophagy protein ATG16L1 to the plasma membrane during bacterial internalization. Defects in autophagy might be the key element of the pathogenic pathway that lead to defective microbial killing, increased exposure to commensal and pathogenic intestinal bacteria and T cell activation. Defects in Paneth cells secreting lysozyme and antimicrobial peptides are observed in patients with ATG16L1 risk allele. Thus, the induction of autophagy or administration of preparations that mirrors the secretion of Paneth cells or both may be regarded as new therapeutic avenues for the treatment of Crohn's disease.
Collapse
|
15
|
|
16
|
Park SH, Lee HW, Cao W. Screening of nitrosative stress resistance genes in Coxiella burnetii: Involvement of nucleotide excision repair. Microb Pathog 2010; 49:323-9. [PMID: 20705129 DOI: 10.1016/j.micpath.2010.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 11/18/2022]
Abstract
Coxiella burnetii, an obligate intracellular Gram-negative bacterium, is the etiological agent of Q fever. This work takes advantage of a hypersensitive Escherichia coli genetic system to identify genes involved in resistance to nitrosative stress imposed by reactive nitrogen intermediates. Among the ten candidate genes identified, the transposase, UvrB and DNA topoisomerase IV are involved in DNA transaction; the sigma-32 factor and the putative DNA-binding protein may be involved in transcriptional regulation; IF-2 is involved in protein translation; malate dehydrogenase and carbamoyl-phosphate synthase are metabolic enzymes; and the ABC transporter is a membrane-bound protein. In addition, a hypothetical protein was identified. The role of the DNA repair gene uvrB in resistance to RNI was further confirmed by investigating the sensitivity of uvrB deletion mutant and complementation by C. burnetii uvrB. Deletion of two other components of the UvrABC nuclease, uvrA and uvrC also renders the cell sensitive to RNI. The relationship between UvrABC and nitrosative stress is discussed.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Genetics and Biochemistry, South Carolina Experiment Station, Clemson University, Room 219 Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | |
Collapse
|
17
|
Samoilis G, Aivaliotis M, Vranakis I, Papadioti A, Tselentis Y, Tsiotis G, Psaroulaki A. Proteomic screening for possible effector molecules secreted by the obligate intracellular pathogen Coxiella burnetii. J Proteome Res 2010; 9:1619-26. [PMID: 20044831 DOI: 10.1021/pr900605q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coxiella burnetii is a Gram-negative, gamma-proteobacteria with nearly worldwide distribution, and it is the pathogenic agent of Q-fever in man. It is an obligate intracellular parasite that is highly adapted to reside within the eukaryotic phagolysosome. In fact, it is the only known intracellular bacterium that manages to survive and replicate within a fully formed, acidic phagolysosome. C. burnetti possesses a functional Type 4 Secretion System (T4SS), similar to the Dot/Icm system of Legionella pneumophila. Up to date there have been no reports for the effector molecules secreted by Coxiella's T4SS. These are speculated to have quite different roles than the effectors of other intracellular pathogens, since there is no need for phagosomal arrest or escape in the case of Coxiella. In this study, we have investigated the cytoplasm of Vero cells infected with C. burnetti strain Nine Mile Phase II. We have identified by mass spectrometry (ESI-MS/MS) several C. burnetti proteins that bear typical characteristics of effector molecules. Most of the identified proteins were also very alkaline, something which is supportive for a protective strategy that has evolved in this bizarre pathogen against acidic environments.
Collapse
Affiliation(s)
- Georgios Samoilis
- Division of Biochemistry, Department of Chemistry, University of Crete, P.O. Box 2208, GR-71003 Voutes, Greece
| | | | | | | | | | | | | |
Collapse
|
18
|
Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1465-77. [DOI: 10.1016/j.bbamcr.2009.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/06/2009] [Accepted: 03/10/2009] [Indexed: 12/24/2022]
|
19
|
Ghigo E, Pretat L, Desnues B, Capo C, Raoult D, Mege JL. Intracellular life of Coxiella burnetii in macrophages. Ann N Y Acad Sci 2009; 1166:55-66. [PMID: 19538264 DOI: 10.1111/j.1749-6632.2009.04515.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Coxiella burnetii, the agent of Q fever, is an obligate intracellular bacterium that is considered a potential biological weapon of category B. C. burnetii survives within myeloid cells by subverting receptor-mediated phagocytosis and preventing phagosome maturation. The intracellular fate of C. burnetii also depends on the functional state of myeloid cells. This review describes the mechanisms used by C. burnetii to circumvent uptake and trafficking events, and the role of cytokines on C. burnetii survival in myeloid cells.
Collapse
Affiliation(s)
- Eric Ghigo
- URMITE CNRS UMR 6236 - IRD 3R198, Institut Fédératif de Recherche 48, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | |
Collapse
|
20
|
Angus AA, Lee AA, Augustin DK, Lee EJ, Evans DJ, Fleiszig SMJ. Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility. Infect Immun 2008; 76:1992-2001. [PMID: 18316391 PMCID: PMC2346716 DOI: 10.1128/iai.01221-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 10/10/2007] [Accepted: 02/14/2008] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is known to invade epithelial cells during infection and in vitro. However, little is known of bacterial or epithelial factors modulating P. aeruginosa intracellular survival or replication after invasion, except that it requires a complete lipopolysaccharide core. In this study, real-time video microscopy revealed that invasive P. aeruginosa isolates induced the formation of membrane blebs in multiple epithelial cell types and that these were then exploited for intracellular replication and rapid real-time motility. Further studies revealed that the type three secretion system (T3SS) of P. aeruginosa was required for blebbing. Mutants lacking either the entire T3SS or specific T3SS components were instead localized to intracellular perinuclear vacuoles. Most T3SS mutants that trafficked to perinuclear vacuoles gradually lost intracellular viability, and vacuoles containing those bacteria were labeled by the late endosomal marker lysosome-associated marker protein 3 (LAMP-3). Interestingly, mutants deficient only in the T3SS translocon structure survived and replicated within the vacuoles that did not label with LAMP-3. Taken together, these data suggest two novel roles of the P. aeruginosa T3SS in enabling bacterial intracellular survival: translocon-dependent formation of membrane blebs, which form a host cell niche for bacterial growth and motility, and effector-dependent bacterial survival and replication within intracellular perinuclear vacuoles.
Collapse
Affiliation(s)
- Annette A Angus
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
21
|
Manipulation of rab GTPase function by intracellular bacterial pathogens. Microbiol Mol Biol Rev 2008; 71:636-52. [PMID: 18063721 PMCID: PMC2168649 DOI: 10.1128/mmbr.00023-07] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular bacterial pathogens have evolved highly specialized mechanisms to enter and survive within their eukaryotic hosts. In order to do this, bacterial pathogens need to avoid host cell degradation and obtain nutrients and biosynthetic precursors, as well as evade detection by the host immune system. To create an intracellular niche that is favorable for replication, some intracellular pathogens inhibit the maturation of the phagosome or exit the endocytic pathway by modifying the identity of their phagosome through the exploitation of host cell trafficking pathways. In eukaryotic cells, organelle identity is determined, in part, by the composition of active Rab GTPases on the membranes of each organelle. This review describes our current understanding of how selected bacterial pathogens regulate host trafficking pathways by the selective inclusion or retention of Rab GTPases on membranes of the vacuoles that they occupy in host cells during infection.
Collapse
|
22
|
Replication of Colonic Crohn's Disease Mucosal Escherichia coli Isolates within Macrophages and Their Susceptibility to Antibiotics. Antimicrob Agents Chemother 2007; 52:427-34. [PMID: 18070962 DOI: 10.1128/aac.00375-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is increasing evidence that Escherichia coli organisms are important in Crohn's disease (CD) pathogenesis. In CD tissue they are found within macrophages, and the adherent-invasive CD ileal E. coli isolate LF82 can replicate inside macrophage phagolysosomes. This study investigates replication and antibiotic susceptibility of CD colonic E. coli isolates inside macrophages. Replication of CD colonic E. coli within J774-A1 murine macrophages and human monocyte-derived macrophages (HMDM) was assessed by culture and lysis after gentamicin killing of noninternalized bacteria and verified by electron microscopy (EM). All seven CD colonic isolates tested replicated within J774-A1 macrophages by 3 h (6.36-fold +/- 0.7-fold increase; n = 7 isolates) to a similar extent to CD ileal E. coli LF82 (6.8-fold +/- 0.8-fold) but significantly more than control patient isolates (5.2-fold +/- 0.25-fold; n = 6; P = 0.006) and E. coli K-12 (1.0-fold +/- 0.1-fold; P < 0.0001). Replication of CD E. coli HM605 within HMDM (3.9-fold +/- 0.7-fold) exceeded that for K-12 (1.4-fold +/- 0.2-fold; P = 0.03). EM showed replicating E. coli within macrophage vacuoles. Killing of HM605 within J774-A1 macrophages following a 3-h incubation with antibiotics at published peak serum concentrations (C(max)) was as follows: for ciprofloxacin, 99.5% +/- 0.2%; rifampin, 85.1% +/- 6.6%; tetracycline, 62.8% +/- 6.1%; clarithromycin, 62.1% +/- 5.6% (all P < 0.0001); sulfamethoxazole, 61.3% +/- 7.0% (P = 0.0007); trimethoprim, 56.3% +/- 3.4% (P < 0.0001); and azithromycin, 41.0% +/- 10.5% (P = 0.03). Ampicillin was not effective against intracellular E. coli. Triple antibiotic combinations were assessed at 10% C(max), with ciprofloxacin, tetracycline, and trimethoprim causing 97% +/- 0.0% killing versus 86% +/- 2.0% for ciprofloxacin alone. Colonic mucosa-associated E. coli, particularly CD isolates, replicate within macrophages. Clinical trials are indicated to assess the efficacy of a combination antibiotic therapy targeting intramacrophage E. coli.
Collapse
|
23
|
Mpofu CM, Campbell BJ, Subramanian S, Marshall-Clarke S, Hart CA, Cross A, Roberts CL, McGoldrick A, Edwards SW, Rhodes JM. Microbial mannan inhibits bacterial killing by macrophages: a possible pathogenic mechanism for Crohn's disease. Gastroenterology 2007; 133:1487-98. [PMID: 17919633 DOI: 10.1053/j.gastro.2007.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 07/19/2007] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Crohn's disease (CD) is mimicked by inherited phagocyte disorders and is associated with circulating antibodies against yeast mannan (anti-Saccharomyces cerevisiae antibody; ASCA). We speculated that mannans might impair phagocyte function. METHODS S cerevisiae mannan was assessed for its effects on human peripheral blood neutrophils, adherent monocytes, and monocyte-derived macrophages (MDM). RESULTS Mannan caused dose-related increased survival of CD Escherichia coli HM605 within adherent monocytes from 24% +/- 10.5% (control) to 114% +/- 22.7% with mannan 1 mg/mL at 2 hours (mean +/- SEM, n = 9; P = .0002). Electron microscopy showed E coli HM605 surviving and probably replicating within macrophage vesicles. Mannan (1 mg/mL) inhibited the respiratory burst in neutrophils and monocytes (both P = .002) and bacterial killing within MDM (P < .001). E coli survival was increased within macrophages from TLR4(-/-) (126% +/- 3.5% survival at 2 hours) and MyD88(-/-) (134.8% +/- 6.5%) mice compared with wild-type mice (both P < .0001). Mannan had no additional effect, showing that TLR4 and MyD88 are involved in bacterial killing by macrophages and its inhibition by mannan. Putative CD-associated micro-organisms were screened for the ASCA mannan epitope by Galanthus nivalis lectin (GNA) blotting. ASCA epitope was expressed by Candida albicans and Mycobacterium paratuberculosis but not by Mycobacterium tuberculosis or E coli. Supernatants from M paratuberculosis culture inhibited killing of E coli HM605 by adherent human monocytes and murine macrophages. The inhibitory activity was removed by GNA-affinity chromatography. CONCLUSIONS Suppression of mucosal phagocyte function by microbial mannans, possibly of Mycobacterial origin, may contribute to CD pathogenesis.
Collapse
Affiliation(s)
- Chiedzo M Mpofu
- Division of Gastroenterology, School of Clinical Science, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lührmann A, Roy CR. Coxiella burnetii inhibits activation of host cell apoptosis through a mechanism that involves preventing cytochrome c release from mitochondria. Infect Immun 2007; 75:5282-9. [PMID: 17709406 PMCID: PMC2168311 DOI: 10.1128/iai.00863-07] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular pathogen and the etiological agent of the human disease Q fever. C. burnetii infects mammalian cells and then remodels the membrane-bound compartment in which it resides into a unique lysosome-derived organelle that supports bacterial multiplication. To gain insight into the mechanisms by which C. burnetii is able to multiply intracellularly, we examined the ability of host cells to respond to signals that normally induce apoptosis. Our data show that mammalian cells infected with C. burnetii are resistant to apoptosis induced by staurosporine and UV light. C. burnetii infection prevented caspase 3/7 activation and limited fragmentation of the host cell nucleus in response to agonists that induce apoptosis. Inhibition of bacterial protein synthesis reduced the antiapoptotic effect that C. burnetii exerted on infected host cells. Inhibition of apoptosis in C. burnetii-infected cells did not correlate with the degradation of proapoptotic BH3-only proteins involved in activation of the intrinsic cell death pathway; however, cytochrome c release from mitochondria was diminished in cells infected with C. burnetii upon induction of apoptosis. These data indicate that C. burnetii can interfere with the intrinsic cell death pathway during infection by producing proteins that either directly or indirectly prevent release of cytochrome c from mitochondria. It is likely that inhibition of apoptosis by C. burnetii represents an important virulence property that allows this obligate intracellular pathogen to maintain host cell viability despite inducing stress that would normally activate the intrinsic death pathway.
Collapse
Affiliation(s)
- Anja Lührmann
- Yale University School of Medicine, Section of Microbial Pathogenesis, 295 Congress Avenue, New Haven, CT 06536, USA
| | | |
Collapse
|
25
|
Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci 2007; 96:729-46. [PMID: 17117426 DOI: 10.1002/jps.20792] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amine-containing drugs represent a very important class of therapeutic agents, with the majority of all drugs containing at least one basic nitrogen. For many decades, it has been known that weakly basic compounds can be sequestered into acidic organelles such as lysosomes. Some amines can achieve very high concentrations and induce a dramatic expansion (vacuolization) of the compartment. In the early 70s, Nobel laureate and discoverer of lysosomes, Christian de Duve et al. wrote an elegant commentary describing the theoretical basis for lysosomal sequestration of amines, referring to the process as pH-partitioning and the substrates as lysosomotropics. Recently, a resurgence of interest in the intracellular distribution of drugs has occurred considering its therapeutic importance. Specifically, lysosomal sequestration of amines has received considerable attention for reasons including its involvement in drug resistance, inducement of phospholipidosis, and its influence on whole body distribution/pharmacokinetics. Moreover, the sequestration phenomenon has been recently exploited in the development of a novel drug targeting strategy. This review will focus on these occurrences/developments and conclude with a commentary on the expected impact that knowledge regarding the intracellular distribution of drugs will likely have on future drug development processes.
Collapse
Affiliation(s)
- Allyn M Kaufmann
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
26
|
Abstract
Most intracellular parasites employ sophisticated mechanisms to direct biogenesis of a vacuolar replicative niche that circumvents default maturation through the endolysosomal cascade. However, this is not the case of the Q fever bacterium, Coxiella burnetii. This hardy, obligate intracellular pathogen has evolved to not only survive, but to thrive, in the harshest of intracellular compartments: the phagolysosome. Following internalization, the nascent Coxiella phagosome ultimately develops into a large and spacious parasitophorous vacuole (PV) that acquires lysosomal characteristics such as acidic pH, acid hydrolases and cationic peptides, defences designed to rid the host of intruders. However, transit of Coxiella to this environment is initially stalled, a process that is apparently modulated by interactions with the autophagic pathway. Coxiella actively participates in biogenesis of its PV by synthesizing proteins that mediate phagosome stalling, autophagic interactions, and development and maintenance of the mature vacuole. Among the potential mechanisms mediating these processes is deployment of a type IV secretion system to deliver effector proteins to the host cytosol. Here we summarize our current understanding of the cellular events that occur during parasitism of host cells by Coxiella.
Collapse
Affiliation(s)
- Daniel E Voth
- Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | |
Collapse
|
27
|
Psaroulaki A, Hadjichristodoulou C, Loukaides F, Soteriades E, Konstantinidis A, Papastergiou P, Ioannidou MC, Tselentis Y. Epidemiological study of Q fever in humans, ruminant animals, and ticks in Cyprus using a geographical information system. Eur J Clin Microbiol Infect Dis 2006; 25:576-86. [PMID: 16915398 DOI: 10.1007/s10096-006-0170-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A cross-sectional study of Q fever was conducted in a representative sample of the human and animal population in Cyprus in order to assess the seroprevalence of Q fever and the prevalence of related risk factors. A total of 583 human and 974 ruminant animal serum samples were collected and tested for the detection of antibodies against Coxiella burnetii phase II antigen using an indirect immunofluorescent assay. One hundred forty-one ticks were collected from the infested animals examined; the polymerase chain reaction and the shell-vial technique were used to detect and isolate C. burnetii. Standardized questionnaires were used to obtain information concerning inhabitants and their animals. A geographical information system was used to identify high-risk regions. The prevalence of IgG antibodies against C. burnetii phase II antigen was estimated at 52.7% for humans, 48.2% for goats, 18.9% for sheep, and 24% for bovines. C. burnetii was detected in 11 (7.8%) ticks. Using the geographical information system, two villages were identified as high-risk regions on the basis of high seroprevalence rates of IgG antibodies in humans and animals. Risk factors related to Q fever seropositivity were identified by logistic regression analysis and included age, residence, occupation, use of manure in the garden, ownership of animals (especially goats), and the presence of tick-infested or aborting animals. Q fever poses an occupational hazard to humans living in close contact with sheep and/or goats. In parallel, ticks should be considered an important aspect in the epidemiology of Q fever and should be further studied to better elucidate their role.
Collapse
Affiliation(s)
- A Psaroulaki
- Laboratory of Clinical Bacteriology, Parasitology, and Geographical Medicine, Collaborating Center of WHO, Faculty of Medicine, University of Crete, PO Box 1393, TK 71409 Heraklion, Crete, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gutierrez MG, Vázquez CL, Munafó DB, Zoppino FCM, Berón W, Rabinovitch M, Colombo MI. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 2005; 7:981-93. [PMID: 15953030 DOI: 10.1111/j.1462-5822.2005.00527.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pathogens evolved mechanisms to invade host cells and to multiply in the cytosol or in compositionally and functionally customized membrane-bound compartments. Coxiella burnetii, the agent of Q fever in man is a Gram-negative gamma-proteobacterium which multiplies in large, acidified, hydrolase-rich and fusogenic vacuoles with phagolysosomal-like characteristics. We reported previously that C. burnetii phase II replicative compartments are labelled by LC3, a protein specifically localized to autophagic vesicles. We show here that autophagy in Chinese hamster ovary cells, induced by amino acid deprivation prior to infection with Coxiella increased the number of infected cells, the size of the vacuoles, and their bacterial load. Furthermore, overexpression of GFP-LC3 or of GFP-Rab24 - a protein also localized to autophagic vacuoles - likewise accelerated the development of Coxiella-vacuoles at early times after infection. However, overexpression of mutants of those proteins that cannot be targeted to autophagosomes dramatically decreased the number and size of the vacuoles in the first hours of infection, although by 48 h the infection was similar to that of non-transfected controls. Overall, the results suggest that transit through the autophagic pathway increases the infection with Coxiella by providing a niche more favourable to their initial survival and multiplication.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo - CONICET, Mendoza, 5500, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Zamboni DS, Campos MA, Torrecilhas ACT, Kiss K, Samuel JE, Golenbock DT, Lauw FN, Roy CR, Almeida IC, Gazzinelli RT. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J Biol Chem 2004; 279:54405-15. [PMID: 15485838 DOI: 10.1074/jbc.m410340200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Innate and adaptive immune responses are initiated upon recognition of microbial molecules by Toll-like receptors (TLRs). We have investigated the importance of these receptors in the induction of pro-inflammatory cytokines and macrophage resistance to infection with Coxiella burnetii, an obligate intracellular bacterium and the etiological agent of Q fever. By using a Chinese hamster ovary/CD14 cell line expressing either functional TLR2 or TLR4, we determined that C. burnetii phase II activates TLR2 but not TLR4. Macrophages deficient for TLR2, but not TLR4, produced less tumor necrosis factor-alpha and interleukin-12 upon C. burnetii infection. Furthermore, it was found that TLR2 activation interfered with C. burnetii intracellular replication, as macrophages from TLR2-deficient mice were highly permissive for C. burnetii growth compared with macrophages from wild type mice or TLR4-deficient mice. Although LPS modifications distinguish virulent C. burnetii phase I bacteria from avirulent phase II organisms, electrospray ionization-mass spectrometry analysis showed that the lipid A moieties isolated from these two phase variants are identical. Purified lipid A derived from either phase I or phase II LPS failed to activate TLR2 and TLR4. Indeed, the lipid A molecules were able to interfere with TLR4 signaling in response to purified Escherichia coli LPS. These studies indicate that TLR2 is an important host determinant that mediates recognition of C. burnetii and a response that limits growth of this intracellular pathogen.
Collapse
Affiliation(s)
- Dario S Zamboni
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Interactions between microbes and human hosts can range from a benign, even symbiotic collaboration to a competition that may turn fatal--resulting in death of the host, the microbe or both. Despite advances that have been made over the past decades in understanding microbial pathogens, more people worldwide still die every year from infectious disease than from any other cause. This highlights the relevance of continuing to probe the mechanisms used by microorganisms to cause disease, and emphasizes the need for new model systems to advance our understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- D Scott Merrell
- Uniformed Services University of the Health Sciences, Department of Microbiology and Immunology, 4301 Jones Bridge Road, Bethesda, Maryland 20814, USA.
| | | |
Collapse
|
31
|
Tooker BC, Coussens PM. Phagocytosis of M. paratuberculosis fails to activate expression of NADH dehydrogenase and nucleolin-related protein in bovine macrophages. Immunol Lett 2004; 93:137-42. [PMID: 15158609 DOI: 10.1016/j.imlet.2004.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 03/01/2004] [Accepted: 03/09/2004] [Indexed: 11/15/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) is a facultative intracellular bacterium and causal agent of Johne's disease in cattle. Following phagocytosis, M. paratuberculosis resides and replicates in macrophage phagosomes that fail to mature. Differential display reverse transcription polymerase chain reaction (DDRT-PCR) was used as a high throughput initial screen to begin to test the hypothesis that macrophage gene expression patterns would be differentially affected by M. paratuberculosis when compared to readily degraded bacteria or non-degradable latex beads. Gene expression profiles from immortalized bovine macrophage cells (BOMAC) exposed to M. paratuberculosis were compared to gene expression profiles for BOMAC cells exposed to Escherichia coli, latex beads or PBS. Amplicons representing genes specifically activated or repressed during M. paratuberculosis phagocytosis were cloned for further investigation. Northern blot hybridizations preformed using DDRT-PCR-derived amplicons 3-1-4, 5-2-10, 5-4-2 and 4-1-6 confirmed stimuli dependent differential gene expression. Expression pattern observed for amplicon 3-1-4 represents genes that are up-regulated following phagocytosis of E. coli or latex beads, but not M. paratuberculosis. Amplicon 5-2-10 exhibited a pattern of expression representative of genes that are up-regulated strongly following phagocytosis of E. coli or latex beads but only moderately following M. paratuberculosis phagocytosis. Expression pattern of the gene for amplicon 5-4-2 was representative of genes that are specifically suppressed following M. paratuberculosis phagocytosis, while the amplicon 4-1-6 gene expression pattern represented genes that are generally suppressed following phagocytosis of any of the three stimuli. DNA sequencing and Genbank database analysis of these amplicons revealed that amplicon 3-1-4, whose expression failed to activate following M. paratuberculosis phagocytosis, had high levels of similarity to a Rattus norvegicus nucleolin-related protein (NRP). Amplicon 5-2-10, which increased expression moderately following M. paratuberculosis phagocytosis, was a near perfect match to bovine nicotinamide adenine dinucleotide dehydrogenase (FNADH dehydrogenase) subunit 1 (ND1). Failure to activate these two genes at levels observed following phagocytosis of either E. coli or latex beads may uncover new mechanisms for the survival of M. paratuberculosis within bovine macrophage cells.
Collapse
Affiliation(s)
- B C Tooker
- Molecular Pathogenesis Laboratory and Center for Animal Functional Genomics, Department of Animal Science and The Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
32
|
Zamboni DS. Genetic control of natural resistance of mouse macrophages to Coxiella burnetii infection in vitro: macrophages from restrictive strains control parasitophorous vacuole maturation. Infect Immun 2004; 72:2395-9. [PMID: 15039367 PMCID: PMC375151 DOI: 10.1128/iai.72.4.2395-2399.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages from A/J and BALB/c mice were more susceptible to Coxiella burnetii phase II infection than were those from C57BL/6, C57BL/10, B10.A, C3H/HePas, and Swiss mice. Resistant macrophages effectively controlled the development of large replication vacuoles (LRVs), which accounted for the restriction of bacterial multiplication within the cultures. However, compared to fibroblasts, all macrophages controlled bacterial multiplication within LRVs.
Collapse
Affiliation(s)
- Dario S Zamboni
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, São Paulo SP 04023-062, Brazil
| |
Collapse
|
33
|
Zamboni DS, Rabinovitch M. Phagocytosis of apoptotic cells increases the susceptibility of macrophages to infection with Coxiella burnetii phase II through down-modulation of nitric oxide production. Infect Immun 2004; 72:2075-80. [PMID: 15039329 PMCID: PMC375145 DOI: 10.1128/iai.72.4.2075-2080.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coxiella burnetii, the agent of Q fever in humans and coxiellosis in other mammals, is an obligate intracellular bacterium which is sheltered and multiplies within typically large phagolysosome-like replicative vacuoles (LRVs). We have previously shown that, compared with fibroblasts, mouse resident peritoneal macrophages control the development of LRVs and bacterial multiplication within these vacuoles. Earlier experiments with the nitric oxide (NO) synthase inhibitor aminoguanidine (AG) revealed that the control is exerted by NO induced by the bacteria. We report here that phagocytosis of apoptotic-like, but not of aldehyde-killed, lymphocytes by the macrophages reduced the production of NO induced by the bacteria and increased the development of LRVs and, therefore, the total bacterial load in the cultures. Experiments with macrophages from mice deficient for inducible NO synthase (iNOS(-)/(-)) confirmed the involvement of NO in the control of infection, since neither apoptotic lymphocytes nor AG affected the development of LRVs in these phagocytes. Since macrophages are important for the clearance of apoptotic bodies and C. burnetii is able to induce apoptosis in human monocytes, the phenomenon shown here may be biologically relevant to the development of Q fever and coxiellosis.
Collapse
Affiliation(s)
- Dario S Zamboni
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-062 Brazil.
| | | |
Collapse
|
34
|
Zamboni DS, McGrath S, Rabinovitch M, Roy CR. Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol Microbiol 2003; 49:965-76. [PMID: 12890021 DOI: 10.1046/j.1365-2958.2003.03626.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Coxiella burnetii is an obligate intracellular pathogen that replicates in large endocytic vacuoles. Genomic sequence data indicate that 21 genes encoding products that are similar to components of the Legionella pneumophila Dot/Icm type IV secretion system are located on a contiguous 35 kb region of the Coxiella chromosome. It was found that several dot/icm genes were expressed by Coxiella during host cell infection and that dot/icm gene expression preceded the formation of large replicative vacuoles. To determine whether these genes encode a functional type IV secretion system, we have amplified the Coxiella dotB, icmQ, icmS and icmW genes and produced the encoded proteins in Legionella mutants in which the native copy of each gene had been deleted. The Coxiella dotB, icmS and icmW products restored dot/icm-dependent growth of Legionella mutants in eukaryotic host cells. The Coxiella IcmQ protein and the Legionella IcmR protein did not interact, which could explain why the Coxiella icmQ gene was unable to restore growth to a Legionella icmQ mutant. Thus, Coxiella encodes functional components of a type IV secretion system expressed in vivo that is mechanistically related to the Legionella Dot/Icm apparatus. These studies suggest that a dot/icm-related secretion system could play an important role in creating the specialized vacuole that supports Coxiella replication.
Collapse
Affiliation(s)
- Dario S Zamboni
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, 6 degrees andar, São Paulo, SP 04023-062, Brazil
| | | | | | | |
Collapse
|
35
|
Abstract
The skin and contiguous mucosal surfaces define the primary locus of interaction between host and micro-organisms. In this review, we focus on the innate immune system in the mucosa, which manages to deal with invading pathogens, the mechanisms that organisms have evolved in order to circumvent this primary defensive barrier and, finally, potential therapeutic manipulation of the innate immune system that was the focus of meeting at a Euroconference/Workshop on "Novel Strategies of Mucosal Immunisation through Exploitation of Mechanisms of Innate Immunity in Pathogen-Host Interaction", which was held in Siena, Italy, November 2002.
Collapse
Affiliation(s)
- Christelle Basset
- Department of Medical Microbiology, Windeyer Institute of Medical Sciences, Royal Free and University College London Medical School, London, UK.
| | | | | | | |
Collapse
|
36
|
Zamboni DS, Rabinovitch M. Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect Immun 2003; 71:1225-33. [PMID: 12595436 PMCID: PMC148841 DOI: 10.1128/iai.71.3.1225-1233.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most primary or continuous cell cultures infected with the Q-fever agent Coxiella burnetii, bacteria are typically sheltered in phagolysosome-like, large replicative vacuoles (LRVs). We recently reported that only a small proportion of mouse peritoneal macrophages (PMPhi) infected with a nonvirulent, phase II strain of C. burnetii developed LRVs and that their relative bacterial load increased only slowly. In the majority of infected PMPhi, the bacteria were confined to the small vesicles. We show here that nitric oxide (NO) induced by the bacteria partially accounts for the restricted development of LRVs in primary macrophages. Thus, (i) PMPhi and bone marrow-derived macrophages (BMMPhi) challenged with phase II C. burnetii produced significant amounts of NO; (ii) the NO synthase inhibitors aminoguanidine and N-methyl-L-arginine reduced the production of NO and increased the frequency of LRVs (although the relative bacterial loads of individual LRVs did not change, the estimated loads per well increased appreciably); (iii) gamma interferon (IFN-gamma) or the NO donor sodium nitroprusside, added to BMMPhi prior to or after infection, reduced the development and the relative bacterial loads of LRVs and lowered the yield of viable bacteria recovered from the cultures; and (iv) these effects of IFN-gamma may not be entirely dependent on the production of NO since IFN-gamma also controlled the infection in macrophages from inducible NO synthase knockout mice. It remains to be determined whether NO reduced the development of LRVs by acting directly on the bacteria; by acting on the traffic, fusion, or fission of cell vesicles; or by a combination of these mechanisms.
Collapse
Affiliation(s)
- Dario S Zamboni
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, São Paulo, SP 04023-062 Brazil
| | | |
Collapse
|
37
|
Ghigo E, Capo C, Tung CH, Raoult D, Gorvel JP, Mege JL. Coxiella burnetii survival in THP-1 monocytes involves the impairment of phagosome maturation: IFN-gamma mediates its restoration and bacterial killing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:4488-95. [PMID: 12370385 DOI: 10.4049/jimmunol.169.8.4488] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The subversion of microbicidal functions of macrophages by intracellular pathogens is critical for their survival and pathogenicity. The replication of Coxiella burnetii, the agent of Q fever, in acidic phagolysosomes of nonphagocytic cells has been considered as a paradigm of intracellular life of bacteria. We show in this study that C. burnetii survival in THP-1 monocytes was not related to phagosomal pH because bacterial vacuoles were acidic independently of C. burnetii virulence. In contrast, virulent C. burnetii escapes killing in resting THP-1 cells by preventing phagosome maturation. Indeed, C. burnetii vacuoles did not fuse with lysosomes because they were devoid of cathepsin D, and did not accumulate lysosomal trackers; the acquisition of markers of late endosomes and late endosomes-early lysosomes was conserved. In contrast, avirulent variants of C. burnetii were eliminated by monocytes and their vacuoles accumulated late endosomal and lysosomal markers. The fate of virulent C. burnetii in THP-1 monocytes depends on cell activation. Monocyte activation by IFN-gamma restored C. burnetii killing and phagosome maturation as assessed by colocalization of C. burnetii with active cathepsin D. In addition, when IFN-gamma was added before cell infection, it was able to stimulate C. burnetii killing but it also induced vacuolar alkalinization. These findings suggest that IFN-gamma mediates C. burnetii killing via two distinct mechanisms, phagosome maturation, and phagosome alkalinization. Thus, the tuning of vacuole biogenesis is likely a key part of C. burnetii survival and the pathophysiology of Q fever.
Collapse
Affiliation(s)
- Eric Ghigo
- Unité des Rickettsies, Faculté de Médecine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6020, Institut Fédératif de Recherche 48, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | | | |
Collapse
|
38
|
Tooker BC, Burton JL, Coussens PM. Survival tactics of M. paratuberculosis in bovine macrophage cells. Vet Immunol Immunopathol 2002; 87:429-37. [PMID: 12072269 DOI: 10.1016/s0165-2427(02)00065-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium paratuberculosis (M. paratuberculosis) is a facultative intracellular bacterium with the ability to survive and proliferate inside the vesicles of macrophage cells. How M. paratuberculosis and other mycobacteria survive in this hostile environment is not well understood. Present research findings can be divided into three possibilities: (1) mycobacteria may interfere with host protein expression and trafficking to stop vesicle maturation, (2) mycobacteria may express proteins that interfere with macrophage activation in a more direct manner, or (3) mycobacteria may enter macrophages in such a way as to avoid the normal process of activation via Toll-like receptors and other, as yet unknown mechanisms. Research thus far has predominately centered on possible macrophage/mycobacteria protein interactions. To more completely define how mycobacteria interfere with the process of phagosome maturation our group has recently taken a functional genomics approach, allowing the macrophage to "tell" us what host genes may be affected by phagocytosis of mycobacteria. We used DDRT-PCR to examine differences in macrophage cell gene expression during phagocytosis of E. coli and M. paratuberculosis. Macrophage cells not exposed to any phagocytosis target and in the process of phagocytosing latex beads were used as negative and positive controls, respectively. To date, we have identified 380 DDRT-PCR amplicons corresponding to transcripts whose expression profiles appear to be altered during the general process of phagocytosis. Dot-blot and Northern blot hybridizations with a subset of these amplicons were performed to confirm results observed with DDRT-PCR. Our preliminary results indicate that macrophage gene expression profiles change dramatically following phagocytosis and that gene expression profiles following phagocytosis of M. paratuberculosis are different than those following phagocytosis of E. coli or latex beads.
Collapse
Affiliation(s)
- B C Tooker
- Department of Animal Science and Center for Animal Functional Genomics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
39
|
Zamboni DS, Mortara RA, Freymuller E, Rabinovitch M. Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II. Microbes Infect 2002; 4:591-8. [PMID: 12048028 DOI: 10.1016/s1286-4579(02)01577-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coxiella burnetii, the agent of Q fever in man and of coxiellosis in other species, is a small, dimorphic, obligate intracellular bacterium, sheltered within large, acidified, and hydrolase-rich phagosomes. Although several primary and established cell lines, macrophage-like cells, and primary macrophages from other species have been infected with C. burnetii, the infection of mouse primary macrophages has not been sufficiently characterized. In this report quantification of DAPI (4', 6-diamino-2-phenylindole) fluorescence images acquired by confocal microscopy, and transmission electron microscopy were used to compare the infection of three mouse-derived cells, L929 fibroblasts, J774 macrophage-like cells, and resident peritoneal macrophages, with a phase II clone of C. burnetii known to be non-virulent for mammals. Infected peritoneal phagocytes differed from L929 or J774 cells in that: (a) large vacuoles took longer to appear (3-5 d instead of 2), and were only found in a subset (20-30%) of macrophages, as opposed to in more than 70% of the other cells; (b) total and vacuole-associated relative bacterial loads in L929 and J774 cells were several-fold higher than in peritoneal macrophages; (c) estimated doubling times of the bacteria were about 68 h in the primary macrophages, 18 h in J774 and 22 h in L929 cells. Thus, mouse resident peritoneal macrophages control both the formation of the large vacuoles and the intracellular proliferation of C. burnetii phase II.
Collapse
Affiliation(s)
- Dario S Zamboni
- Departamento de Microbiologia, Imunologia e Parasitologia, Disciplina de Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu 862, 6o andar, São Paulo, Brazil
| | | | | | | |
Collapse
|
40
|
Ghigo E, Capo C, Aurouze M, Tung CH, Gorvel JP, Raoult D, Mege JL. Survival of Tropheryma whipplei, the agent of Whipple's disease, requires phagosome acidification. Infect Immun 2002; 70:1501-6. [PMID: 11854238 PMCID: PMC127739 DOI: 10.1128/iai.70.3.1501-1506.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2001] [Revised: 08/15/2001] [Accepted: 11/01/2001] [Indexed: 11/20/2022] Open
Abstract
Tropheryma whipplei was established as the agent of Whipple's disease in 2000, but the mechanisms by which it survives within host cells are still unknown. We show here that T. whipplei survives within HeLa cells by controlling the biogenesis of its phagosome. Indeed, T. whipplei colocalized with lysosome-associated membrane protein 1, a membrane marker of late endosomal and lysosomal compartments, but not with cathepsin D, a lysosomal hydrolase. This defect in phagosome maturation is specific to live organisms, since heat-killed bacilli colocalized with cathepsin D. In addition, T. whipplei survived within HeLa cells by adapting to acidic pH. The vacuoles containing T. whipplei were acidic (pH 4.7 +/- 0.3) and acquired vacuolar ATPase, responsible for the acidic pH of late phagosomes. The treatment of HeLa cells with pH-neutralizing reagents, such as ammonium chloride, N-ethylmaleimide, bafilomycin A1, and chloroquine, increased the intravacuolar pH and promoted the killing of T. whipplei. The ability of T. whipplei to survive in an acidic environment and to interfere with phagosome-lysosome fusion is likely critical for its prolonged persistence in host cells during the course of Whipple's disease. Our results suggest that manipulating the intravacuolar pH may provide a new approach for the treatment of Whipple's disease.
Collapse
Affiliation(s)
- Eric Ghigo
- Unité des Rickettsies, CNRS UMR 6020, Université de la Méditerranée, Faculté de Médecine, 13385 Marseille Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Glasser AL, Boudeau J, Barnich N, Perruchot MH, Colombel JF, Darfeuille-Michaud A. Adherent invasive Escherichia coli strains from patients with Crohn's disease survive and replicate within macrophages without inducing host cell death. Infect Immun 2001; 69:5529-37. [PMID: 11500426 PMCID: PMC98666 DOI: 10.1128/iai.69.9.5529-5537.2001] [Citation(s) in RCA: 333] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Escherichia coli strains recovered from Crohn's disease (CD) lesions are able to adhere to and invade cultured intestinal epithelial cells. We analyzed the behavior within macrophages of adherent invasive E. coli (AIEC) strains isolated from patients with CD. All the 15 AIEC strains tested were able to replicate extensively within J774-A1 cells: the numbers of intracellular bacteria increased 2.2- to 74.2-fold at 48 h over that at 1 h postinfection. By use of murine peritoneal macrophages and human monocyte-derived-macrophages, the reference AIEC strain LF82 was confirmed to be able to survive intracellularly. Transmission electron micrographs of AIEC LF82-infected macrophages showed that at 24 h postinfection, infected cells harbored large vacuoles containing numerous bacteria, as a result of the fusion of several vacuoles occurring after 8 h postinfection. No lactate dehydrogenase (LDH) release, no sign of DNA fragmentation or degradation, and no binding to fluorescein isothlocyanate-labeled annexin V were observed with LF82-infected J774-A1 cells, even after 24 h postinfection. LF82-infected J774-A1 cells secreted 2.7-fold more tumor necrosis factor alpha (TNF-alpha) than cells stimulated with 1 microg of lipopolysaccharide (LPS)/ml. No release of interleukin-1beta was observed with LPS-prestimulated J774-A1 cells infected with AIEC LF82. These findings showed that (i) AIEC strains are able to survive and to replicate within macrophages, (ii) AIEC LF82 replication does not induce any cell death of the infected cells, and (iii) LF82-infected J774-A1 cells release high levels of TNF-alpha. These properties could be related to some features of CD and particularly to granuloma formation, one of the hallmarks of CD lesions.
Collapse
Affiliation(s)
- A L Glasser
- Pathogénie Bactérienne Intestinale, Laboratoire de Bactériologie, Université d'Auvergne, 63001 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
42
|
Rousset E, Russo P, Pépin M, Raoult D. Épidémiologie de la fièvre Q animale. Situation en France. Med Mal Infect 2001. [DOI: 10.1016/s0399-077x(01)80064-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Zamboni DS, Mortara RA, Rabinovitch M. Infection of Vero cells with Coxiella burnetii phase II: relative intracellular bacterial load and distribution estimated by confocal laser scanning microscopy and morphometry. J Microbiol Methods 2001; 43:223-32. [PMID: 11118656 DOI: 10.1016/s0167-7012(00)00223-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coxiella burnetii, the agent of Q fever in man and of coxiellosis in other species, is an intracellular pathogen not yet grown axenically. Confocal laser fluorescence microscopy and morphometry were used to measure relative C. burnetii phase II loads and their intracellular distribution in aldehyde fixed and DAPI stained Vero cell monolayers. The fluorescence of single horizontal optical sections provided useful information on relative loads of bacteria in cells and vacuoles. The relative density of the bacteria in the vacuoles was inferred from ratios of fluorescence to vacuolar section areas. Relative bacterial loads, bacterial densities and section areas of large vacuoles increased exponentially between days 2 and 4 of the infection of gamma-irradiated host cells, stabilized between days 4 and 6, and decreased thereafter. Estimated minimum doubling times were higher for the overall complement of the intracellular organisms (about 12 h) than for bacteria that were confined to larger vacuoles (about 10 h).
Collapse
Affiliation(s)
- D S Zamboni
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, 6th andar, São Paulo, SP 04023-062, Brazil
| | | | | |
Collapse
|
44
|
Sinai AP, Paul S, Rabinovitch M, Kaplan G, Joiner KA. Coinfection of fibroblasts with Coxiella burnetti and Toxoplasma gondii: to each their own. Microbes Infect 2000; 2:727-36. [PMID: 10955952 DOI: 10.1016/s1286-4579(00)90362-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracellular pathogens have evolved distinct strategies to subvert host cell defenses. At diametrically opposed ends of the spectrum with regard to the host endosomal/lysosomal defenses are the obligate intracellular protozoan Toxoplasma gondii and the bacterium Coxiella burnetti. While the intracellular replication of T. gondii requires complete avoidance of the host endocytic cascade, C. burnetti actively subverts it. This results in these organisms establishing and growing in very different vacuolar compartments. In this study we examined the potential interaction between these distinct compartments following coinfection of mammalian fibroblasts. When present within the same cell, these organisms exhibit minimal interaction with each other. Colocalization of T. gondii and C. burnetti within the same vacuole occurs at a low frequency in doubly infected cells. In such instances only one of the organisms appears to be replication competent, emphasizing the different requirements for survival and/or intracellular growth. The potential basis for both the lack of interaction between these distinct pathogen-containing compartments, and the mechanisms to address their low frequency of colocalization are discussed in the context of our understanding of the biology of the organisms and membrane traffic in eukaryotic cells.
Collapse
Affiliation(s)
- A P Sinai
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Phagocytosis of microorganisms and other particles is mediated most efficiently by receptors such as Fc-receptors (FcR) and complement-receptors (C3R). Interaction between these receptors and ligands on the particle results in signal transduction events that lead to actin polymerisation and phagosome formation. The phagosome then undergoes a maturation process whereby it transforms into a phagolysosome. Phagosome maturation depends on interactions (fusion events) with early and late endosomes as well as with lysosomes. The fusion processes are regulated by small GTP-binding proteins and other proteins that are also involved in fusion processes in the endocytic pathway. Although most phagocytosed microorganisms are killed in the lysosome, some pathogens have developed survival strategies and are able to live in the harsh conditions in the phagolysosome or interfere with the maturation process and thereby evade destruction by acid hydrolases.
Collapse
Affiliation(s)
- T E Tjelle
- Norwegian Radium Hospital, Department of Biophysics, Institute for Cancer Research, Montebello, 0310 Oslo, Norway.
| | | | | |
Collapse
|
46
|
Porte F, Liautard JP, Köhler S. Early acidification of phagosomes containing Brucella suis is essential for intracellular survival in murine macrophages. Infect Immun 1999; 67:4041-7. [PMID: 10417172 PMCID: PMC96697 DOI: 10.1128/iai.67.8.4041-4047.1999] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella suis is a facultative intracellular pathogen of mammals, residing in macrophage vacuoles. In this work, we studied the phagosomal environment of these bacteria in order to better understand the mechanisms allowing survival and multiplication of B. suis. Intraphagosomal pH in murine J774 cells was determined by measuring the fluorescence intensity of opsonized, carboxyfluorescein-rhodamine- and Oregon Green 488-rhodamine-labeled bacteria. Compartments containing live B. suis acidified to a pH of about 4.0 to 4.5 within 60 min. Acidification of B. suis-containing phagosomes in the early phase of infection was abolished by treatment of host cells with 100 nM bafilomycin A(1), a specific inhibitor of vacuolar proton-ATPases. This neutralization at 1 h postinfection resulted in a 2- to 34-fold reduction of opsonized and nonopsonized viable intracellular bacteria at 4 and 6 h postinfection, respectively. Ammonium chloride and monensin, other pH-neutralizing reagents, led to comparable loss of intracellular viability. Addition of ammonium chloride at 7 h after the beginning of infection, however, did not affect intracellular multiplication of B. suis, in contrast to treatment at 1 h postinfection, where bacteria were completely eradicated within 48 h. Thus, we conclude that phagosomes with B. suis acidify rapidly after infection, and that this early acidification is essential for replication of the bacteria within the macrophage.
Collapse
Affiliation(s)
- F Porte
- Institut National de la Santé et de la Recherche Médicale U-431, Montpellier, France.
| | | | | |
Collapse
|
47
|
de Chastellier C, Thibon M, Rabinovitch M. Construction of chimeric phagosomes that shelter Mycobacterium avium and Coxiella burnetii (phase II) in doubly infected mouse macrophages: an ultrastructural study. Eur J Cell Biol 1999; 78:580-92. [PMID: 10494865 DOI: 10.1016/s0171-9335(99)80024-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dual infection of cells may divert pathogens to intracellular compartments different from those occupied in mono-infected cells. In the present studies, mouse bone marrow in vitro-derived macrophages were first infected with virulent Mycobacterium avium, which are normally singly lodged within tight phagosomes. These phagosomes do not mature; they undergo homotypic fusion with early endosomes and do not fuse with lysosomes. Seven days later, the cultures were superinfected with phase II (non-virulent) Coxiella burnetii, organisms sheltered in lysosome- (or prelysosome)-like, multi-occupancy phagosomes. The latter can attain large size and engage in efficient homo- and heterotypic fusion with other phagosomes. Cultures were fixed for transmission electron microscopy 6, 12, 24, and 48 h later. Other M. avium-infected cultures were superinfected with amastigotes of the trypanosomatid flagellate Leishmania amazonensis, which are also sheltered in lysosome- (or prelysosome)-like multi-occupancy vacuoles, and fixed at the same time periods. Chimeric phagosomes containing both M. avium and C. burnetii, were found already at 6 h and the proportion of M. avium that colocalized with C. burnetii in the same phagosomes reached over 90% after 48 h. In such phagosomes, both organisms were ultrastructurally well preserved. In contrast, colocalization of M. avium and L. amazonensis was rarely found. Speculative scenarios that could underlie the formation of chimeric phagosomes could involve delayed maturation of C. burnetii-containing phagosomes in presence of M. avium, which would allow for fusion of C. burnetii- and M. avium-containing phagosomes; the production, by C. burnetii, of molecules that upregulate the fusion of M. avium-containing phagosomes with those that contain C. burnetii; and the secretion of factors that could favour the survival of M. avium within chimeric vacuoles.
Collapse
|
48
|
Abstract
The obligate intracellular bacterial agent of human Q fever, Coxiella burnetii, has a remarkable ability to persist in the extracellular environment. It replicates only when phagocytosed and delivered to the phagolysosome, where it resists degradation. Different morphological forms of the bacterium have different resistance properties and appear to be stages of a developmental cycle. Despite the lack of genetic systems, the molecular events surrounding C. burnetii development are now being unraveled.
Collapse
Affiliation(s)
- R A Heinzen
- Dept of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA.
| | | | | |
Collapse
|
49
|
Haas A. Reprogramming the phagocytic pathway--intracellular pathogens and their vacuoles (review). Mol Membr Biol 1998; 15:103-21. [PMID: 9859108 DOI: 10.3109/09687689809074522] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phagocytic immune cells (particularly macrophages and neutrophils) take up and digest particles that have invaded our bodies. In doing so, they represent a very early line of defence against a microbial attack. During uptake, the particles are wrapped by a portion of the phagocyte's plasma membrane, and a new endocytic compartment, the phagosome, is formed. The typical fate of a phagosome is its fusion with lysosomes to yield a phagolysosome in which the particle is digested. Recent data show that some 'intracellular microorganisms' that can cause severe illnesses (tuberculosis, leprosy, legionnaire's disease and others) manage to reprogramme the host phagocytes not to deliver them to the lysosomal compartment. This probably results in increased survival of the pathogens. The analysis of the composition of such 'novel' compartments and research on the molecular mechanisms underlying the microbial interference with host cell functions are likely to yield important insights into: (1) which endocytic/phagocytic compartments phagocytes employ to handle ingested material in general; (2) how some pathogenic microorganisms can reprogramme the phagocytic pathway; and possibly (3) how infections caused by these microorganisms can be treated more effectively. Here, some studies are presented analysing which compartments intracellular pathogens inhabit and how microbes might be able to reprogramme their host cells.
Collapse
Affiliation(s)
- A Haas
- Department of Microbiology, Biocentre of the University, Würzburg, Germany
| |
Collapse
|
50
|
Via LE, Fratti RA, McFalone M, Pagan-Ramos E, Deretic D, Deretic V. Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 1998; 111 ( Pt 7):897-905. [PMID: 9490634 DOI: 10.1242/jcs.111.7.897] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the major mechanisms permitting intracellular pathogens to parasitize macrophages is their ability to alter maturation of the phagosome or affect its physical integrity. These processes are opposed by the host innate and adaptive immune defenses, and in many instances mononuclear phagocytes can be stimulated with appropriate cytokines to restrict the growth of the microorganisms within the phagosomal compartment. Very little is known about the effects that cytokines have on phagosome maturation. Here we have used green fluorescent protein (GFP)-labeled mycobacteria and a fixable acidotropic probe, LysoTracker Red DND-99, to monitor maturation of the mycobacterial phagosome. The macrophage compartments that stained with the LysoTracker probe were examined first. This dye was found to colocalize preferentially with the late endosomal and lysosomal markers rab7 and Lamp1, and with a fluid phase marker chased into the late endosomal compartments. In contrast, LysoTracker showed only a minor overlap with the early endosomal marker rab5. Pathogenic mycobacteria are believed to reside in nonacidified vacuoles sequestered away from late endosomal compartments as a part of their intracellular survival strategy. We examined the status of mycobacterial phagosomes in macrophages from IL-10 knockout mice, in quiescent cells, and in mononuclear phagocytes stimulated with the macrophage-activating cytokine IFN-(gamma). When macrophages were derived from the bone marrow of transgenic IL-10 mice lacking this major deactivating cytokine, colocalization of GFP-fluorescing mycobacteria with the LysoTracker staining appeared enhanced, suggestive of increased acidification of the mycobacterial phagosome relative to macrophages from normal mice. When bone marrow-derived macrophages from normal mice or a J774 murine macrophage cell line were stimulated with IFN-(gamma) and LPS, this resulted in increased colocalization of mycobacteria and LysoTracker, but no statistically significant enhancement was observed in IL-10 transgenic animals. These studies are consistent with the interpretation that proinflammatory and anti-inflammatory cytokines affect maturation of mycobacterial phagosomes. Although multiple mechanisms are likely to be at work, we propose the existence of a direct link between cytokine effects on the host cell and phagosome maturation in the macrophage.
Collapse
Affiliation(s)
- L E Via
- Department of Microbiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|