1
|
Kao MR, Parker J, Oehme D, Chang SC, Cheng LC, Wang D, Srivastava V, Wagner JM, Harris PJ, Hsieh YSY. Substrate Specificities of Variants of Barley (1,3)- and (1,3;1,4)-β-d-Glucanases Resulting from Mutagenesis and Segment Hybridization. Biochemistry 2024; 63:1194-1205. [PMID: 38598309 PMCID: PMC11080057 DOI: 10.1021/acs.biochem.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Barley (1,3;1,4)-β-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-β-d-glucanase, enabling the hydrolysis of (1,3;1,4)-β-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-β-d-glucan endohydrolase [(1,3;1,4)-β-d-glucanase] isoenzyme EII (HvEII) and (1,3)-β-d-glucan endohydrolase [(1,3)-β-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-β-d-glucanase and one variant that hydrolyzed both (1,3)-β-d-glucans and (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-β-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-β-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-β-d-glucans or (1,3)-β-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-β-d-glucans and (1,3)-β-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.
Collapse
Affiliation(s)
- Mu-Rong Kao
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jake Parker
- School
of Agriculture, Food and Wine, University
of Adelaide, Waite Campus, Glen Osmond SA 5064, Australia
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Daniel Oehme
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Shu-Chieh Chang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Lin-Chen Cheng
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Damao Wang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- College
of Food Science, Southwest University, Chongqing 400715, China
| | - Vaibhav Srivastava
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - John M. Wagner
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Philip J. Harris
- School of
Biological Sciences, The University of Auckland,
Auckland Mail Centre, Private Bag 92019, Auckland 1142, New Zealand
| | - Yves S. Y. Hsieh
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
2
|
A Hypothesis on How the Azolla Symbiosis Mitigates Nitrous Oxide Based on In Silico Analyses. J 2022. [DOI: 10.3390/j5010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nitrous oxide is a long-lived greenhouse gas that exists for 114 years in the atmosphere and is 298-fold more potent than carbon dioxide in its global warming potential. Two recent studies showcased the utility of Azolla plants for a lesser footprint in nitrous oxide production from urea and other supplements to the irrigated ecosystem, which mandates exploration since there is still no clear solution to nitrous oxide in paddy fields or in other ecosystems. Here, we propose a solution based on the evolution of a single cytochrome oxidase subunit II protein (WP_013192178.1) from the cyanobiont Trichormus azollae that we hypothesize to be able to quench nitrous oxide. First, we draw attention to a domain in the candidate protein that is emerging as a sensory periplasmic Y_Y_Y domain that is inferred to bind nitrous oxide. Secondly, we draw the phylogeny of the candidate protein showcasing the poor bootstrap support of its position in the wider clade showcasing its deviation from the core function. Thirdly, we show that the NtcA protein, the apical N-effecting transcription factor, can putatively bind to a promoter sequence of the gene coding for the candidate protein (WP_013192178.1), suggesting a function associated with heterocysts and N-metabolism. Our fourth point involves a string of histidines at the C-terminal extremity of the WP_013192178.1 protein that is missing on all other T. azollae cytochrome oxidase subunit II counterparts, suggesting that such histidines are perhaps involved in forming a Cu center. As the fifth point, we showcase a unique glycine-183 in a lengthy linker region containing multiple glycines that is absent in all proximal Nostocales cyanobacteria, which we predict to be a DNA binding residue. We propose a mechanism of action for the WP_013192178.1 protein based on our in silico analyses. In total, we hypothesize the incomplete and rapid conversion of a likely heterocystous cytochrome oxidase subunit II protein to an emerging nitrous oxide sensing/quenching subunit based on bioinformatics analyses and past literature, which can have repercussions to climate change and consequently, future human life.
Collapse
|
3
|
Allen KN, Whitman CP. The Birth of Genomic Enzymology: Discovery of the Mechanistically Diverse Enolase Superfamily. Biochemistry 2021; 60:3515-3528. [PMID: 34664940 DOI: 10.1021/acs.biochem.1c00494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzymes are categorized into superfamilies by sequence, structural, and mechanistic similarities. The evolutionary implications can be profound. Until the mid-1990s, the approach was fragmented largely due to limited sequence and structural data. However, in 1996, Babbitt et al. published a paper in Biochemistry that demonstrated the potential power of mechanistically diverse superfamilies to identify common ancestry, predict function, and, in some cases, predict specificity. This Perspective describes the findings of the original work and reviews the current understanding of structure and mechanism in the founding family members. The outcomes of the genomic enzymology approach have reached far beyond the functional assignment of members of the enolase superfamily, inspiring the study of superfamilies and the adoption of sequence similarity networks and genome context and yielding fundamental insights into enzyme evolution.
Collapse
Affiliation(s)
- Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Álvarez-Lugo A, Becerra A. The Role of Gene Duplication in the Divergence of Enzyme Function: A Comparative Approach. Front Genet 2021; 12:641817. [PMID: 34335678 PMCID: PMC8318041 DOI: 10.3389/fgene.2021.641817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Gene duplication is a crucial process involved in the appearance of new genes and functions. It is thought to have played a major role in the growth of enzyme families and the expansion of metabolism at the biosphere's dawn and in recent times. Here, we analyzed paralogous enzyme content within each of the seven enzymatic classes for a representative sample of prokaryotes by a comparative approach. We found a high ratio of paralogs for three enzymatic classes: oxidoreductases, isomerases, and translocases, and within each of them, most of the paralogs belong to only a few subclasses. Our results suggest an intricate scenario for the evolution of prokaryotic enzymes, involving different fates for duplicated enzymes fixed in the genome, where around 20-40% of prokaryotic enzymes have paralogs. Intracellular organisms have a lesser ratio of duplicated enzymes, whereas free-living enzymes show the highest ratios. We also found that phylogenetically close phyla and some unrelated but with the same lifestyle share similar genomic and biochemical traits, which ultimately support the idea that gene duplication is associated with environmental adaptation.
Collapse
Affiliation(s)
- Alejandro Álvarez-Lugo
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Viola RE. The ammonia-lyases: enzymes that use a wide range of approaches to catalyze the same type of reaction. Crit Rev Biochem Mol Biol 2020; 54:467-483. [PMID: 31906712 DOI: 10.1080/10409238.2019.1708261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, USA
| |
Collapse
|
6
|
Yeh HW, Lin KH, Lyu SY, Li YS, Huang CM, Wang YL, Shih HW, Hsu NS, Wu CJ, Li TL. Biochemical and structural explorations of α-hydroxyacid oxidases reveal a four-electron oxidative decarboxylation reaction. Acta Crystallogr D Struct Biol 2019; 75:733-742. [PMID: 31373572 PMCID: PMC6677016 DOI: 10.1107/s2059798319009574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/03/2019] [Indexed: 11/05/2022] Open
Abstract
p-Hydroxymandelate oxidase (Hmo) is a flavin mononucleotide (FMN)-dependent enzyme that oxidizes mandelate to benzoylformate. How the FMN-dependent oxidation is executed by Hmo remains unclear at the molecular level. A continuum of snapshots from crystal structures of Hmo and its mutants in complex with physiological/nonphysiological substrates, products and inhibitors provides a rationale for its substrate enantioselectivity/promiscuity, its active-site geometry/reactivity and its direct hydride-transfer mechanism. A single mutant, Y128F, that extends the two-electron oxidation reaction to a four-electron oxidative decarboxylation reaction was unexpectedly observed. Biochemical and structural approaches, including biochemistry, kinetics, stable isotope labeling and X-ray crystallography, were exploited to reach these conclusions and provide additional insights.
Collapse
Affiliation(s)
- Hsien-Wei Yeh
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Syue-Yi Lyu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Shan Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Man Huang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hao-Wei Shih
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
7
|
Mhashal AR, Pshetitsky Y, Cheatum CM, Kohen A, Major DT. Evolutionary Effects on Bound Substrate pKa in Dihydrofolate Reductase. J Am Chem Soc 2018; 140:16650-16660. [DOI: 10.1021/jacs.8b09089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaron Pshetitsky
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
8
|
Siddiq MA, Hochberg GK, Thornton JW. Evolution of protein specificity: insights from ancestral protein reconstruction. Curr Opin Struct Biol 2017; 47:113-122. [PMID: 28841430 PMCID: PMC6141201 DOI: 10.1016/j.sbi.2017.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
Specific interactions between proteins and their molecular partners drive most biological processes, so understanding how these interactions evolve is an important question for biochemists and evolutionary biologists alike. It is often thought that ancestral proteins were systematically more promiscuous than modern proteins and that specificity usually evolves after gene duplication by partitioning and refining the activities of multifunctional ancestors. However, recent studies using ancestral protein reconstruction (APR) have found that ligand-specific functions in some modern protein families evolved de novo from ancestors that did not already have those functions. Further, the new specific interactions evolved by simple mechanisms, with just a few mutations changing classically recognized biochemical determinants of specificity, such as steric and electrostatic complementarity. Acquiring new specific interactions during evolution therefore appears to be neither difficult nor rare. Rather, it is likely that proteins continually gain and lose new activities over evolutionary time as mutations cause subtle but consequential changes in the shape and electrostatics of interaction interfaces. Only a few of these activities, however, are incorporated into the biological processes that contribute to fitness before they are lost to the ravages of further mutation.
Collapse
Affiliation(s)
| | | | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, USA; Department of Human Genetics, University of Chicago, USA.
| |
Collapse
|
9
|
Akiva E, Copp JN, Tokuriki N, Babbitt PC. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily. Proc Natl Acad Sci U S A 2017; 114:E9549-E9558. [PMID: 29078300 PMCID: PMC5692541 DOI: 10.1073/pnas.1706849114] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold.
Collapse
Affiliation(s)
- Eyal Akiva
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158
| | - Janine N Copp
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada V6T 1Z4;
| | - Patricia C Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158;
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158
| |
Collapse
|
10
|
Markov GV, Gutierrez-Mazariegos J, Pitrat D, Billas IML, Bonneton F, Moras D, Hasserodt J, Lecointre G, Laudet V. Origin of an ancient hormone/receptor couple revealed by resurrection of an ancestral estrogen. SCIENCE ADVANCES 2017; 3:e1601778. [PMID: 28435861 PMCID: PMC5375646 DOI: 10.1126/sciadv.1601778] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/10/2017] [Indexed: 05/11/2023]
Abstract
The origin of ancient ligand/receptor couples is often analyzed via reconstruction of ancient receptors and, when ligands are products of metabolic pathways, they are not supposed to evolve. However, because metabolic pathways are inherited by descent with modification, their structure can be compared using cladistic analysis. Using this approach, we studied the evolution of steroid hormones. We show that side-chain cleavage is common to most vertebrate steroids, whereas aromatization was co-opted for estrogen synthesis from a more ancient pathway. The ancestral products of aromatic activity were aromatized steroids with a side chain, which we named "paraestrols." We synthesized paraestrol A and show that it effectively binds and activates the ancestral steroid receptor. Our study opens the way to comparative studies of biologically active small molecules.
Collapse
Affiliation(s)
- Gabriel V. Markov
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, CNRS UMR 7221, Sorbonne Universités, Muséum National d’Histoire Naturelle (MNHN), Paris, France
| | - Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Delphine Pitrat
- Laboratoire de Chimie, Université de Lyon, Université Lyon 1, CNRS UMR 5182, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Isabelle M. L. Billas
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - François Bonneton
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Dino Moras
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Jens Hasserodt
- Laboratoire de Chimie, Université de Lyon, Université Lyon 1, CNRS UMR 5182, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| | - Guillaume Lecointre
- Département Systématique et Evolution, Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS–MNHN–Université Pierre et Marie Curie (UPMC)–École Pratique des Hautes Études (EPHE), Sorbonne Universités, Muséum National d’Histoire Naturelle, CP 30, 57 rue Cuvier, 75005 Paris, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Institut National de la Recherche Agronomique (INRA), École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
11
|
Ma S, Martin-Laffon J, Mininno M, Gigarel O, Brugière S, Bastien O, Tardif M, Ravanel S, Alban C. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants. MOLECULAR PLANT 2016; 9:569-81. [PMID: 26785049 DOI: 10.1016/j.molp.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/07/2015] [Accepted: 01/11/2016] [Indexed: 05/09/2023]
Abstract
Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity.
Collapse
Affiliation(s)
- Sheng Ma
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Jacqueline Martin-Laffon
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Morgane Mininno
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Océane Gigarel
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Sabine Brugière
- Université Grenoble Alpes, 38041 Grenoble, France; CEA, iRTSV, Biologie à Grande Echelle, 38054 Grenoble, France; INSERM, U1038, 38054 Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Marianne Tardif
- Université Grenoble Alpes, 38041 Grenoble, France; CEA, iRTSV, Biologie à Grande Echelle, 38054 Grenoble, France; INSERM, U1038, 38054 Grenoble, France
| | - Stéphane Ravanel
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France
| | - Claude Alban
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire & Végétale, 38041 Grenoble, France; CNRS, UMR5168, 38054 Grenoble, France; CEA, iRTSV, Laboratoire de Physiologie Cellulaire & Végétale, 38054 Grenoble, France; INRA, USC1359, 38054 Grenoble, France.
| |
Collapse
|
12
|
Brown S, Babbitt P. Using the structure-function linkage database to characterize functional domains in enzymes. ACTA ACUST UNITED AC 2014; 48:2.10.1-2.10.16. [PMID: 25501940 DOI: 10.1002/0471250953.bi0210s48] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases.
Collapse
Affiliation(s)
- Shoshana Brown
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | | |
Collapse
|
13
|
Kaur G, Subramanian S. Repurposing TRASH: emergence of the enzyme organomercurial lyase from a non-catalytic zinc finger scaffold. J Struct Biol 2014; 188:16-21. [PMID: 25220669 DOI: 10.1016/j.jsb.2014.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/26/2022]
Abstract
The mercury resistance pathway enzyme organomercurial lyase (MerB) catalyzes the conversion of organomercurials to ionic mercury (Hg(2+)). Here, we provide evidence for the emergence of this enzyme from a TRASH-like, non-enzymatic, treble-clef zinc finger ancestor by domain duplication and fusion. Surprisingly, the structure-stabilizing metal-binding core of the treble-clef appears to have been repurposed in evolution to serve a catalytic role. Novel enzymatic functions are believed to have evolved from ancestral generalist catalytic scaffolds or from already specialized enzymes with catalytic promiscuity. The emergence of MerB from a zinc finger ancestor serves as a rare example of how a novel enzyme may emerge from a non-catalytic scaffold with a related binding function.
Collapse
Affiliation(s)
- Gurmeet Kaur
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | | |
Collapse
|
14
|
Li R, Chou WKW, Himmelberger JA, Litwin KM, Harris GG, Cane DE, Christianson DW. Reprogramming the chemodiversity of terpenoid cyclization by remolding the active site contour of epi-isozizaene synthase. Biochemistry 2014; 53:1155-68. [PMID: 24517311 PMCID: PMC3985761 DOI: 10.1021/bi401643u] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The class I terpenoid cyclase epi-isozizaene synthase (EIZS) utilizes the universal achiral isoprenoid substrate, farnesyl diphosphate, to generate epi-isozizaene as the predominant sesquiterpene cyclization product and at least five minor sesquiterpene products, making EIZS an ideal platform for the exploration of fidelity and promiscuity in a terpenoid cyclization reaction. The hydrophobic active site contour of EIZS serves as a template that enforces a single substrate conformation, and chaperones subsequently formed carbocation intermediates through a well-defined mechanistic sequence. Here, we have used the crystal structure of EIZS as a guide to systematically remold the hydrophobic active site contour in a library of 26 site-specific mutants. Remolded cyclization templates reprogram the reaction cascade not only by reproportioning products generated by the wild-type enzyme but also by generating completely new products of diverse structure. Specifically, we have tripled the overall number of characterized products generated by EIZS. Moreover, we have converted EIZS into six different sesquiterpene synthases: F96A EIZS is an (E)-β-farnesene synthase, F96W EIZS is a zizaene synthase, F95H EIZS is a β-curcumene synthase, F95M EIZS is a β-acoradiene synthase, F198L EIZS is a β-cedrene synthase, and F96V EIZS and W203F EIZS are (Z)-γ-bisabolene synthases. Active site aromatic residues appear to be hot spots for reprogramming the cyclization cascade by manipulating the stability and conformation of critical carbocation intermediates. A majority of mutant enzymes exhibit only relatively modest 2-100-fold losses of catalytic activity, suggesting that residues responsible for triggering substrate ionization readily tolerate mutations deeper in the active site cavity.
Collapse
Affiliation(s)
- Ruiqiong Li
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The mica hypothesis for the origin of life proposes that life originated between the sheets of muscovite mica. This paper elaborates on two ways that life resembles what might have originated between mica sheets. First, enzymes: The configurations and dynamics of enzymes, with their substrates, cofactors, and sometimes transition metal ions, often resemble mica sheets, with their open-and-shut motions, acting on small molecules between them, sometimes assisted by transition metal ions. Second, organisms: Mica world had the potential to be a community or ecosystem of prebiotic organisms in a way unlike other models for the origin of life.
Collapse
|
16
|
Almonacid DE, Babbitt PC. Toward mechanistic classification of enzyme functions. Curr Opin Chem Biol 2011; 15:435-42. [PMID: 21489855 DOI: 10.1016/j.cbpa.2011.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 11/15/2022]
Abstract
Classification of enzyme function should be quantitative, computationally accessible, and informed by sequences and structures to enable use of genomic information for functional inference and other applications. Large-scale studies have established that divergently evolved enzymes share conserved elements of structure and common mechanistic steps and that convergently evolved enzymes often converge to similar mechanisms too, suggesting that reaction mechanisms could be used to develop finer-grained functional descriptions than provided by the Enzyme Commission (EC) system currently in use. Here we describe how evolution informs these structure-function mappings and review the databases that store mechanisms of enzyme reactions along with recent developments to measure ligand and mechanistic similarities. Together, these provide a foundation for new classifications of enzyme function.
Collapse
Affiliation(s)
- Daniel E Almonacid
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1700 4th Street, MC 2550, San Francisco, CA 94158, USA
| | | |
Collapse
|
17
|
Ullrich A, Rohrschneider M, Scheuermann G, Stadler PF, Flamm C. In silico evolution of early metabolism. ARTIFICIAL LIFE 2011; 17:87-108. [PMID: 21370961 DOI: 10.1162/artl_a_00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We developed a simulation tool for investigating the evolution of early metabolism, allowing us to speculate on the formation of metabolic pathways from catalyzed chemical reactions and on the development of their characteristic properties. Our model consists of a protocellular entity with a simple RNA-based genetic system and an evolving metabolism of catalytically active ribozymes that manipulate a rich underlying chemistry. Ensuring an almost open-ended and fairly realistic simulation is crucial for understanding the first steps in metabolic evolution. We show here how our simulation tool can be helpful in arguing for or against hypotheses on the evolution of metabolic pathways. We demonstrate that seemingly mutually exclusive hypotheses may well be compatible when we take into account that different processes dominate different phases in the evolution of a metabolic system. Our results suggest that forward evolution shapes metabolic network in the very early steps of evolution. In later and more complex stages, enzyme recruitment supersedes forward evolution, keeping a core set of pathways from the early phase.
Collapse
Affiliation(s)
- Alexander Ullrich
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany.
| | | | | | | | | |
Collapse
|
18
|
Abstract
BACKGROUND A common assumption about enzyme active sites is that their structures are highly conserved to specifically distinguish between closely similar compounds. However, with the discovery of distinct enzymes with similar reaction chemistries, more and more studies discussing the structural flexibility of the active site have been conducted. RESULTS Most of the existing works on the flexibility of active sites focuses on a set of pre-selected active sites that were already known to be flexible. This study, on the other hand, proposes an analysis framework composed of a new data collecting strategy, a local structure alignment tool and several physicochemical measures derived from the alignments. The method proposed to identify flexible active sites is highly automated and robust so that more extensive studies will be feasible in the future. The experimental results show the proposed method is (a) consistent with previous works based on manually identified flexible active sites and (b) capable of identifying potentially new flexible active sites. CONCLUSIONS This proposed analysis framework and the former analyses on flexibility have their own advantages and disadvantage, depending on the cause of the flexibility. In this regard, this study proposes an alternative that complements previous studies and helps to construct a more comprehensive view of the flexibility of enzyme active sites.
Collapse
Affiliation(s)
- Yi-Zhong Weng
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | |
Collapse
|
19
|
Bains J, Kaufman L, Farnell B, Boulanger MJ. A product analog bound form of 3-oxoadipate-enol-lactonase (PcaD) reveals a multifunctional role for the divergent cap domain. J Mol Biol 2011; 406:649-58. [PMID: 21237173 DOI: 10.1016/j.jmb.2011.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/15/2022]
Abstract
Lactones are a class of structurally diverse molecules that serve essential roles in biological processes ranging from quorum sensing to the aerobic catabolism of aromatic compounds. Not surprisingly, enzymes involved in the bioprocessing of lactones are often targeted for protein engineering studies with the potential, for example, of optimized bioremediation of aromatic pollutants. The enol-lactone hydrolase (ELH) represents one such class of targeted enzymes and catalyzes the conversion of 3-oxoadipate-enol-lactone into the linear β-ketoadipate. To define the structural details that govern ELH catalysis and assess the impact of divergent features predicted by sequence analysis, we report the first structural characterization of an ELH (PcaD) from Burkholderia xenovorans LB400 in complex with the product analog levulinic acid. The overall dimeric structure of PcaD reveals an α-helical cap domain positioned atop a core α/β-hydrolase domain. Despite the localization of the conserved catalytic triad to the core domain, levulinic acid is bound largely within the region of the active site defined by the cap domain, suggesting a key role for this divergent substructure in mediating product release. Furthermore, the architecture of the cap domain results in an unusually deep active-site pocket with topological features to restrict binding to small or kinked substrates. The evolutionary basis for this substrate selectivity is discussed with respect to the homologous dienelactone hydrolase. Overall, the PcaD costructure provides a detailed insight into the intimate role of the cap domain in influencing all aspects of substrate binding, turnover, and product release.
Collapse
Affiliation(s)
- Jasleen Bains
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria, BC, Canada
| | | | | | | |
Collapse
|
20
|
Evolution of enzymatic activities of testis-specific short-chain dehydrogenase/reductase in Drosophila. J Mol Evol 2010; 71:241-9. [PMID: 20809353 DOI: 10.1007/s00239-010-9384-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
Abstract
The testis-specific gene Jingwei (jgw) is a newly evolved short-chain dehydrogenase/reductase in Drosophila. Preliminary substrate screening indicated that JGW prefers long-chain primary alcohols as substrates, including several exotic alcohols such as farnesol and geraniol. Using steady-state kinetics analyses and molecular docking, we not only confirmed JGW's substrate specificity, but also demonstrated that the new enzymatic activities of JGW evolved extensively after exon-shuffling from a preexisting enzyme. Analysis of JGW orthologs in sister species shows that subsequent evolutionary changes following the birth of JGW altered substrate specificities and enzyme stabilities. Our results lend support to a general mechanism for the evolution of a new enzyme, in which catalytic chemistry evolves first followed by diversification of substrate utilization.
Collapse
|
21
|
Glasner ME, Gerlt JA, Babbitt PC. Mechanisms of protein evolution and their application to protein engineering. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2010; 75:193-239, xii-xiii. [PMID: 17124868 DOI: 10.1002/9780471224464.ch3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein engineering holds great promise for the development of new biosensors, diagnostics, therapeutics, and agents for bioremediation. Despite some remarkable successes in experimental and computational protein design, engineered proteins rarely achieve the efficiency or specificity of natural enzymes. Current protein design methods utilize evolutionary concepts, including mutation, recombination, and selection, but the inability to fully recapitulate the success of natural evolution suggests that some evolutionary principles have not been fully exploited. One aspect of protein engineering that has received little attention is how to select the most promising proteins to serve as templates, or scaffolds, for engineering. Two evolutionary concepts that could provide a rational basis for template selection are the conservation of catalytic mechanisms and functional promiscuity. Knowledge of the catalytic motifs responsible for conserved aspects of catalysis in mechanistically diverse superfamilies could be used to identify promising templates for protein engineering. Second, protein evolution often proceeds through promiscuous intermediates, suggesting that templates which are naturally promiscuous for a target reaction could enhance protein engineering strategies. This review explores these ideas and alternative hypotheses concerning protein evolution and engineering. Future research will determine if application of these principles will lead to a protein engineering methodology governed by predictable rules for designing efficient, novel catalysts.
Collapse
Affiliation(s)
- Margaret E Glasner
- Department of Biopharmaceutical Sciences, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
22
|
Almonacid DE, Yera ER, Mitchell JBO, Babbitt PC. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function. PLoS Comput Biol 2010; 6:e1000700. [PMID: 20300652 PMCID: PMC2837397 DOI: 10.1371/journal.pcbi.1000700] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/02/2010] [Indexed: 11/19/2022] Open
Abstract
Functionally analogous enzymes are those that catalyze similar reactions on similar substrates but do not share common ancestry, providing a window on the different structural strategies nature has used to evolve required catalysts. Identification and use of this information to improve reaction classification and computational annotation of enzymes newly discovered in the genome projects would benefit from systematic determination of reaction similarities. Here, we quantified similarity in bond changes for overall reactions and catalytic mechanisms for 95 pairs of functionally analogous enzymes (non-homologous enzymes with identical first three numbers of their EC codes) from the MACiE database. Similarity of overall reactions was computed by comparing the sets of bond changes in the transformations from substrates to products. For similarity of mechanisms, sets of bond changes occurring in each mechanistic step were compared; these similarities were then used to guide global and local alignments of mechanistic steps. Using this metric, only 44% of pairs of functionally analogous enzymes in the dataset had significantly similar overall reactions. For these enzymes, convergence to the same mechanism occurred in 33% of cases, with most pairs having at least one identical mechanistic step. Using our metric, overall reaction similarity serves as an upper bound for mechanistic similarity in functional analogs. For example, the four carbon-oxygen lyases acting on phosphates (EC 4.2.3) show neither significant overall reaction similarity nor significant mechanistic similarity. By contrast, the three carboxylic-ester hydrolases (EC 3.1.1) catalyze overall reactions with identical bond changes and have converged to almost identical mechanisms. The large proportion of enzyme pairs that do not show significant overall reaction similarity (56%) suggests that at least for the functionally analogous enzymes studied here, more stringent criteria could be used to refine definitions of EC sub-subclasses for improved discrimination in their classification of enzyme reactions. The results also indicate that mechanistic convergence of reaction steps is widespread, suggesting that quantitative measurement of mechanistic similarity can inform approaches for functional annotation.
Collapse
Affiliation(s)
- Daniel E. Almonacid
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| | - Emmanuel R. Yera
- Biological and Medical Informatics Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - John B. O. Mitchell
- Centre for Biomolecular Sciences, University of St Andrews, St Andrews, United Kingdom
| | - Patricia C. Babbitt
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, United States of America
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
23
|
Aaron JA, Lin X, Cane DE, Christianson DW. Structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates. Biochemistry 2010; 49:1787-97. [PMID: 20131801 PMCID: PMC2840623 DOI: 10.1021/bi902088z] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The X-ray crystal structure of recombinant epi-isozizaene synthase (EIZS), a sesquiterpene cyclase from Streptomyces coelicolor A3(2), has been determined at 1.60 A resolution. Specifically, the structure of wild-type EIZS is that of its closed conformation in complex with three Mg(2+) ions, inorganic pyrophosphate (PP(i)), and the benzyltriethylammonium cation (BTAC). Additionally, the structure of D99N EIZS has been determined in an open, ligand-free conformation at 1.90 A resolution. Comparison of these two structures provides the first view of conformational changes required for substrate binding and catalysis in a bacterial terpenoid cyclase. Moreover, the binding interactions of BTAC may mimic those of a carbocation intermediate in catalysis. Accordingly, the aromatic rings of F95, F96, and F198 appear to be well-oriented to stabilize carbocation intermediates in the cyclization cascade through cation-pi interactions. Mutagenesis of aromatic residues in the enzyme active site results in the production of alternative sesquiterpene product arrays due to altered modes of stabilization of carbocation intermediates as well as altered templates for the cyclization of farnesyl diphosphate. Accordingly, the 1.64 A resolution crystal structure of F198A EIZS in a complex with three Mg(2+) ions, PP(i), and BTAC reveals an alternative binding orientation of BTAC; alternative binding orientations of a carbocation intermediate could lead to the formation of alternative products. Finally, the crystal structure of wild-type EIZS in a complex with four Hg(2+) ions has been determined at 1.90 A resolution, showing that metal binding triggers a significant conformational change of helix G to cap the active site.
Collapse
Affiliation(s)
- Julie A. Aaron
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323
| | - Xin Lin
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108
| | - David E. Cane
- Department of Chemistry, Box H, Brown University, Providence, RI 02912-9108,To whom correspondence should be addressed. D.W.C.: telephone: (215) 898-5714; fax: (215) 573-2201; . D.E.C.: telephone: (401) 863-3588; fax: (401) 863-9368;
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323,To whom correspondence should be addressed. D.W.C.: telephone: (215) 898-5714; fax: (215) 573-2201; . D.E.C.: telephone: (401) 863-3588; fax: (401) 863-9368;
| |
Collapse
|
24
|
Simmons CR, Stomel JM, McConnell MD, Smith DA, Watkins JL, Allen JP, Chaput JC. A synthetic protein selected for ligand binding affinity mediates ATP hydrolysis. ACS Chem Biol 2009; 4:649-58. [PMID: 19522480 DOI: 10.1021/cb900109w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How primitive enzymes emerged from a primordial pool remains a fundamental unanswered question with important practical implications in synthetic biology. Here we show that a de novo evolved ATP binding protein, selected solely on the basis of its ability to bind ATP, mediates the regiospecific hydrolysis of ATP to ADP when crystallized with 1 equiv of ATP. Structural insights into this reaction were obtained by growing protein crystals under saturating ATP conditions. The resulting crystal structure refined to 1.8 A resolution reveals that this man-made protein binds ATP in an unusual bent conformation that is metal-independent and held in place by a key bridging water molecule. Removal of this interaction using a null mutant results in a variant that binds ATP in a normal linear geometry and is incapable of ATP hydrolysis. Biochemical analysis, including high-resolution mass spectrometry performed on dissolved protein crystals, confirms that the reaction is accelerated in the crystalline environment. This observation suggests that proteins with weak chemical reactivity can emerge from high affinity ligand binding sites and that constrained ligand-binding geometries could have helped to facilitate the emergence of early protein enzymes.
Collapse
Affiliation(s)
- Chad R. Simmons
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| | - Joshua M. Stomel
- Center for BioOptical Nanotechnology, The Biodesign Institute
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-5201
| | - Michael D. McConnell
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| | - Daniel A. Smith
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| | - Jennifer L. Watkins
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| | | | - John C. Chaput
- Center for BioOptical Nanotechnology, The Biodesign Institute
- Department of Chemistry and Biochemistry
| |
Collapse
|
25
|
Topal KG, Atilgan C, Demir AS, Aviyente V. Understanding the mode of action of ThDP in benzoylformate decarboxylase. Biopolymers 2009; 93:32-46. [PMID: 19688812 DOI: 10.1002/bip.21291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanism of all elementary steps involved in the catalytic cycle of benzoylformate decarboxylase (BFD, E.C. 4.1.1.7) to generate the acyloin linkage is investigated by extensive molecular dynamics simulations. Models involving different charge states of amino acids and/or mutants of critical residues were constructed to understand the involvement of the catalytically active residues and the reactivity differences between different substrates in this reaction. Our calculations confirm that H70, S26, and H281 are catalytically active amino acids. H281 functions as a base to accept H(donor) in the first nucleophilic attack and as an acid in the second, to donate the proton back to O(acceptor). S26 assists H281 in deprotonation of the donor aldehyde and protonation of the acceptor aldehyde. In both the first and second nucleophilic attacks, H70 interacts with O(aldehyde) and aligns it toward the nucleophilic center. H70 has been found to have an electrostatic effect on the approaching aldehyde whose absence would block the initiation of the reaction. The reactivity difference between benzaldehyde (BA) and acetaldehyde (AA) is mainly explained by the steric interactions of the acceptor aldehyde with the surrounding amino acids in the active center of the enzyme.
Collapse
|
26
|
Yep A, McLeish MJ. Engineering the Substrate Binding Site of Benzoylformate Decarboxylase. Biochemistry 2009; 48:8387-95. [DOI: 10.1021/bi9008402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alejandra Yep
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael J. McLeish
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
- Department of Chemistry and Chemical Biology, IUPUI, Indianapolis, Indiana 46202
| |
Collapse
|
27
|
Gunawardana D, Likic VA, Gayler KR. A comprehensive bioinformatics analysis of the Nudix superfamily in Arabidopsis thaliana. Comp Funct Genomics 2009; 2009:820381. [PMID: 19590748 PMCID: PMC2707057 DOI: 10.1155/2009/820381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 04/16/2009] [Indexed: 11/17/2022] Open
Abstract
Nudix enzymes are a superfamily with a conserved common reaction mechanism that provides the capacity for the hydrolysis of a broad spectrum of metabolites. We used hidden Markov models based on Nudix sequences from the PFAM and PROSITE databases to identify Nudix hydrolases encoded by the Arabidopsis genome. 25 Nudix hydrolases were identified and classified into 11 individual families by pairwise sequence alignments. Intron phases were strikingly conserved in each family. Phylogenetic analysis showed that all multimember families formed monophyletic clusters. Conserved familial sequence motifs were identified with the MEME motif analysis algorithm. One motif (motif 4) was found in three diverse families. All proteins containing motif 4 demonstrated a degree of preference for substrates containing an ADP moiety. We conclude that HMM model-based genome scanning and MEME motif analysis, respectively, can significantly improve the identification and assignment of function of new members of this mechanistically-diverse protein superfamily.
Collapse
Affiliation(s)
- D. Gunawardana
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
- School of Biological Sciences, University of Sydney, New South Wales 2006, Australia
| | - V. A. Likic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - K. R. Gayler
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
28
|
Wang PF, Yep A, Kenyon GL, McLeish MJ. Using directed evolution to probe the substrate specificity of mandelamide hydrolase. Protein Eng Des Sel 2008; 22:103-10. [DOI: 10.1093/protein/gzn073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Brown S, Babbitt P. Using the Structure-function Linkage Database to characterize functional domains in enzymes. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2.10. [PMID: 18428763 DOI: 10.1002/0471250953.bi0210s13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of newly sequenced enzymes and to correct misannotated functional assignments for enzymes currently in public databases. It is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases.
Collapse
Affiliation(s)
- Shoshana Brown
- University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
30
|
Yeung CK, Yep A, Kenyon GL, McLeish MJ. Physical, kinetic and spectrophotometric studies of a NAD(P)-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1248-55. [PMID: 18498778 DOI: 10.1016/j.bbapap.2008.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 11/24/2022]
Abstract
The mandelate pathway of Pseudomonas putida ATCC 12633 comprises five enzymes and catalyzes the conversion of R- and S-mandelamide to benzoic acid which subsequently enters the beta-ketoadipate pathway. Although the first four enzymes have been extensively characterized the terminal enzyme, a NAD(P)+-dependent benzaldehyde dehydrogenase (BADH), remains largely undescribed. Here we report that BADH is a dimer in solution, and that DTT is necessary both to maintain the activity of BADH and to prevent oligimerization of the enzyme. Site-directed mutagenesis confirms that Cys249 is the catalytic cysteine and identifies Cys140 as the cysteine likely to be involved in inter-monomer disulfide formation. BADH can utilize a range of aromatic substrates and will also operate efficiently with cyclohexanal as well as medium-chain aliphatic aldehydes. The logV and logV/K pH-rate profiles for benzaldehyde with either NAD+ or NADP+ as the coenzyme are both bell-shaped. The pKa values on the ascending limb range from 6.2 to 7.1 while those on the descending limb range from 9.6 to 9.9. A spectrophotometric approach was used to show that the pKa of Cys249 was 8.4, i.e., Cys249 is not responsible for the pKas observed in the pH-rate profiles.
Collapse
Affiliation(s)
- Catherine K Yeung
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
31
|
Kensche PR, van Noort V, Dutilh BE, Huynen MA. Practical and theoretical advances in predicting the function of a protein by its phylogenetic distribution. J R Soc Interface 2008; 5:151-70. [PMID: 17535793 PMCID: PMC2405902 DOI: 10.1098/rsif.2007.1047] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 05/05/2007] [Accepted: 05/05/2007] [Indexed: 11/12/2022] Open
Abstract
The gap between the amount of genome information released by genome sequencing projects and our knowledge about the proteins' functions is rapidly increasing. To fill this gap, various 'genomic-context' methods have been proposed that exploit sequenced genomes to predict the functions of the encoded proteins. One class of methods, phylogenetic profiling, predicts protein function by correlating the phylogenetic distribution of genes with that of other genes or phenotypic characteristics. The functions of a number of proteins, including ones of medical relevance, have thus been predicted and subsequently confirmed experimentally. Additionally, various approaches to measure the similarity of phylogenetic profiles and to account for the phylogenetic bias in the data have been proposed. We review the successful applications of phylogenetic profiling and analyse the performance of various profile similarity measures with a set of one microsporidial and 25 fungal genomes. In the fungi, phylogenetic profiling yields high-confidence predictions for the highest and only the highest scoring gene pairs illustrating both the power and the limitations of the approach. Both practical examples and theoretical considerations suggest that in order to get a reliable and specific picture of a protein's function, results from phylogenetic profiling have to be combined with other sources of evidence.
Collapse
Affiliation(s)
- Philip R. Kensche
- Centre for Molecular and Biomolecular Informatics/Nijmegen, Centre for Molecular Life Sciences, Radboud University Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Vera van Noort
- European Molecular Biology Laboratory, Meyerhofstrasse 169117 Heidelberg, Germany
| | - Bas E. Dutilh
- Centre for Molecular and Biomolecular Informatics/Nijmegen, Centre for Molecular Life Sciences, Radboud University Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Centre for Molecular and Biomolecular Informatics/Nijmegen, Centre for Molecular Life Sciences, Radboud University Medical CentrePO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
32
|
Vedula LS, Zhao Y, Coates RM, Koyama T, Cane DE, Christianson DW. Exploring biosynthetic diversity with trichodiene synthase. Arch Biochem Biophys 2007; 466:260-6. [PMID: 17678871 PMCID: PMC2036078 DOI: 10.1016/j.abb.2007.06.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 06/14/2007] [Accepted: 06/15/2007] [Indexed: 11/30/2022]
Abstract
Trichodiene synthase is a terpenoid cyclase that catalyzes the cyclization of farnesyl diphosphate (FPP) to form the bicyclic sesquiterpene hydrocarbon trichodiene (89%), at least five sesquiterpene side products (11%), and inorganic pyrophosphate (PP(i)). Incubation of trichodiene synthase with 2-fluorofarnesyl diphosphate or 4-methylfarnesyl diphosphate similarly yields sesquiterpene mixtures despite the electronic effects or steric bulk introduced by substrate derivatization. The versatility of the enzyme is also demonstrated in the 2.85A resolution X-ray crystal structure of the complex with Mg(2+) (3)-PP(i) and the benzyl triethylammonium cation, which is a bulkier mimic of the bisabolyl carbocation intermediate in catalysis. Taken together, these findings show that the active site of trichodiene synthase is sufficiently flexible to accommodate bulkier and electronically-diverse substrates and intermediates, which could indicate additional potential for the biosynthetic utility of this terpenoid cyclase.
Collapse
Affiliation(s)
- L Sangeetha Vedula
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kuznetsova E, Proudfoot M, Gonzalez CF, Brown G, Omelchenko MV, Borozan I, Carmel L, Wolf YI, Mori H, Savchenko AV, Arrowsmith CH, Koonin EV, Edwards AM, Yakunin AF. Genome-wide analysis of substrate specificities of the Escherichia coli haloacid dehalogenase-like phosphatase family. J Biol Chem 2006; 281:36149-61. [PMID: 16990279 DOI: 10.1074/jbc.m605449200] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haloacid dehalogenase (HAD)-like hydrolases are a vast superfamily of largely uncharacterized enzymes, with a few members shown to possess phosphatase, beta-phosphoglucomutase, phosphonatase, and dehalogenase activities. Using a representative set of 80 phosphorylated substrates, we characterized the substrate specificities of 23 soluble HADs encoded in the Escherichia coli genome. We identified small molecule phosphatase activity in 21 HADs and beta-phosphoglucomutase activity in one protein. The E. coli HAD phosphatases show high catalytic efficiency and affinity to a wide range of phosphorylated metabolites that are intermediates of various metabolic reactions. Rather than following the classical "one enzyme-one substrate" model, most of the E. coli HADs show remarkably broad and overlapping substrate spectra. At least 12 reactions catalyzed by HADs currently have no EC numbers assigned in Enzyme Nomenclature. Surprisingly, most HADs hydrolyzed small phosphodonors (acetyl phosphate, carbamoyl phosphate, and phosphoramidate), which also serve as substrates for autophosphorylation of the receiver domains of the two-component signal transduction systems. The physiological relevance of the phosphatase activity with the preferred substrate was validated in vivo for one of the HADs, YniC. Many of the secondary activities of HADs might have no immediate physiological function but could comprise a reservoir for evolution of novel phosphatases.
Collapse
Affiliation(s)
- Ekaterina Kuznetsova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109-0606, USA.
| |
Collapse
|
35
|
Brown SD, Gerlt JA, Seffernick JL, Babbitt PC. A gold standard set of mechanistically diverse enzyme superfamilies. Genome Biol 2006; 7:R8. [PMID: 16507141 PMCID: PMC1431709 DOI: 10.1186/gb-2006-7-1-r8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 10/20/2005] [Accepted: 12/21/2005] [Indexed: 11/10/2022] Open
Abstract
A gold standard set of enzyme superfamilies, clustered according to sequence, structure and functional criteria, is presented. Superfamily and family analyses provide an effective tool for the functional classification of proteins, but must be automated for use on large datasets. We describe a 'gold standard' set of enzyme superfamilies, clustered according to specific sequence, structure, and functional criteria, for use in the validation of family and superfamily clustering methods. The gold standard set represents four fold classes and differing clustering difficulties, and includes five superfamilies, 91 families, 4,887 sequences and 282 structures.
Collapse
Affiliation(s)
- Shoshana D Brown
- Department of Biopharmaceutical Sciences, University of California, 1700 4th Street, San Francisco, San Francisco, CA 94143-2550, USA
| | - John A Gerlt
- Department of Biochemistry, University of Illinois, Roger Adams Laboratory, 600 S Mathews Avenue, Urbana, IL 61801, USA
| | - Jennifer L Seffernick
- Department of Biochemistry, Molecular Biology, and Biophysics, Biological Process Technology Institute, and Center for Microbial and Plant Genomics, University of Minnesota, St Paul, MN 55108, USA
| | - Patricia C Babbitt
- Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, 1700 4th Street, San Francisco, San Francisco, CA 94143-2550, USA
| |
Collapse
|
36
|
Huang CY, Yang YS. Discovery of a novel N-iminylamidase activity: substrate specificity, chemicoselectivity and catalytic mechanism. Protein Expr Purif 2005; 40:203-11. [PMID: 15721790 DOI: 10.1016/j.pep.2004.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 12/06/2004] [Indexed: 10/26/2022]
Abstract
Enzymatic hydrolysis of the N-iminylamide was investigated in this study. An enzyme possessing N-iminylamidase activity from pig liver was purified to electrophoretic homogeneity. This enzyme was also active, however, with imides and appears to be identical to pig liver imidase. The identification was confirmed by copurification of enzyme activities and by specificities of typical substrates of mammalian imidase, such as phthalimide, dihydrouracil, and maleimide. The hydrolysis of 3-iminoisoindolinone was further analyzed by HPLC, (13)C NMR spectrometry, and LC-MS measurements to determine its chemicoselectivity. All data indicated that this enzyme chemicoselectively catalyzed the hydrolysis of the N-iminylamide to produce the compound bearing the diamine and carboxylate group. The pH profiles of this enzyme suggest that one of the protons of 3-iminoisoindolinone was important to promote the ring-opening process of this substrate. These results constituted a first study on the enzymatic hydrolysis of compounds bearing the N-iminylamide functional group.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- Institute of Biochemical Engineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, ROC
| | | |
Collapse
|
37
|
Kenyon GL. How I Became a Biochemist. IUBMB Life 2005; 57:375-8. [PMID: 16036623 DOI: 10.1080/15216540500091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- George L Kenyon
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
38
|
Zientz E, Dandekar T, Gross R. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 2005; 68:745-70. [PMID: 15590782 PMCID: PMC539007 DOI: 10.1128/mmbr.68.4.745-770.2004] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mutualistic associations of obligate intracellular bacteria and insects have attracted much interest in the past few years due to the evolutionary consequences for their genome structure. However, much less attention has been paid to the metabolic ramifications for these endosymbiotic microorganisms, which have to compete with but also to adapt to another metabolism--that of the host cell. This review attempts to provide insights into the complex physiological interactions and the evolution of metabolic pathways of several mutualistic bacteria of aphids, ants, and tsetse flies and their insect hosts.
Collapse
Affiliation(s)
- Evelyn Zientz
- Lehrstuhl für Mikrobiologie, Biozentrum der Universität Würzburg, Theodor-Boveri-Institut, Am Hubland, D-97074 Würzburg, Germany
| | | | | |
Collapse
|
39
|
Matsuda K, Nishioka T, Kinoshita K, Kawabata T, Go N. Finding evolutionary relations beyond superfamilies: fold-based superfamilies. Protein Sci 2004; 12:2239-51. [PMID: 14500881 PMCID: PMC2366925 DOI: 10.1110/ps.0383603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Superfamily classifications are based variably on similarity of sequences, global folds, local structures, or functions. We have examined the possibility of defining superfamilies purely from the viewpoint of the global fold/function relationship. For this purpose, we first classified protein domains according to the beta-sheet topology. We then introduced the concept of kinship relations among the classified beta-sheet topology by assuming that the major elementary event leading to creation of a new beta-sheet topology is either an addition or deletion of one beta-strand at the edge of an existing beta-sheet during the molecular evolution. Based on this kinship relation, a network of protein domains was constructed so that the distance between a pair of domains represents the number of evolutionary events that lead one from the other domain. We then mapped on it all known domains with a specific core chemical function (here taken, as an example, that involving ATP or its analogs). Careful analyses revealed that the domains are found distributed on the network as >20 mutually disjointed clusters. The proteins in each cluster are defined to form a fold-based superfamily. The results indicate that >20 ATP-binding protein superfamilies have been invented independently in the process of molecular evolution, and the conservative evolutionary diffusion of global folds and functions is the origin of the relationship between them.
Collapse
Affiliation(s)
- Keiko Matsuda
- Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
We show that three-dimensional signatures consisting of only a few functionally important residues can be diagnostic of membership in superfamilies of enzymes. Using the enolase superfamily as a model system, we demonstrate that such a signature, or template, can identify superfamily members in structural databases with high sensitivity and specificity. This is remarkable because superfamilies can be highly diverse, with members catalyzing many different overall reactions; the unifying principle can be a conserved partial reaction or chemical capability. Our definition of a superfamily thus hinges on the disposition of residues involved in a conserved function, rather than on fold similarity alone. A clear advantage of basing structure searches on such active site templates rather than on fold similarity is the specificity with which superfamilies with distinct functional characteristics can be identified within a large set of proteins with the same fold, such as the (beta/alpha)8 barrels. Preliminary results are presented for an additional group of enzymes with a different fold, the haloacid dehalogenase superfamily, suggesting that this approach may be generally useful for assigning reading frames of unknown function to specific superfamilies and thereby allowing inference of some of their functional properties.
Collapse
Affiliation(s)
- Elaine C Meng
- Department of Pharmaceutical Chemistry, University of California, Genentech Hall, 600 Sixteenth Street, San Francisco, CA 94143-2240, USA
| | | | | |
Collapse
|
41
|
Light S, Kraulis P. Network analysis of metabolic enzyme evolution in Escherichia coli. BMC Bioinformatics 2004; 5:15. [PMID: 15113413 PMCID: PMC394313 DOI: 10.1186/1471-2105-5-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 02/18/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E. coli viewed as a single network using EcoCyc. RESULTS Sequence comparison between all enzyme pairs was performed and the minimal path length (MPL) between all enzyme pairs was determined. We find a strong over-representation of homologous enzymes at MPL 1. We show that the functionally similar and functionally undetermined enzyme pairs are responsible for most of the over-representation of homologous enzyme pairs at MPL 1. CONCLUSIONS The retrograde evolution model predicts that homologous enzymes pairs are at short metabolic distances from each other. In general agreement with previous studies we find that homologous enzymes occur close to each other in the network more often than expected by chance, which lends some support to the retrograde evolution model. However, we show that the homologous enzyme pairs which may have evolved through retrograde evolution, namely the pairs that are functionally dissimilar, show a weaker over-representation at MPL 1 than the functionally similar enzyme pairs. Our study indicates that, while the retrograde evolution model may have played a small part, the patchwork evolution model is the predominant process of metabolic enzyme evolution.
Collapse
Affiliation(s)
- Sara Light
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, Stockholm SE-10691, Sweden
| | - Per Kraulis
- Stockholm Bioinformatics Center, Department of Biochemistry and Biophysics, Stockholm Center for Physics, Astronomy and Biotechnology, Stockholm University, Stockholm SE-10691, Sweden
| |
Collapse
|
42
|
Abstract
Innovative and important aspects of laser scanning confocal fluorescence imaging (LSCFI) are presented here as a general overview. We have described and discussed the technology of the procedure in some detail. We also report some of our original work with transmembranous uptake of 5S gamma-globulin on living human leukocytes as an example of one specific application of LSCFI. These original data and results are presented, as well as citing other uses and applications, to show the power of LSCFI technique. The article will hopefully be useful for those not familiar with the methodology and utility of laser scanning confocal fluorescence microscopy. Applications of LSCFI are very diverse, and there are new applications of this technology constantly being developed. Interest is growing in LSCFI, particularly in the pharmacologic and therapeutic areas, as demonstrated in this article.
Collapse
Affiliation(s)
- Zeno Földes-Papp
- Clinical Immunology and Jean Dausset Laboratory, Graz University M.S. and Hospital, Auenbruggerplatz 8, A-8036, Graz, LKH, Austria
| | | | | |
Collapse
|
43
|
Cunchillos C, Lecointre G. Evolution of amino acid metabolism inferred through cladistic analysis. J Biol Chem 2003; 278:47960-70. [PMID: 12949083 DOI: 10.1074/jbc.m213028200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.
Collapse
Affiliation(s)
- Chomin Cunchillos
- Institut Charles Darwin International, BP 70, 93230 Romainville, France
| | | |
Collapse
|
44
|
Bartlett GJ, Borkakoti N, Thornton JM. Catalysing new reactions during evolution: economy of residues and mechanism. J Mol Biol 2003; 331:829-60. [PMID: 12909013 DOI: 10.1016/s0022-2836(03)00734-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diversity of function in some enzyme superfamilies shows that during evolution, enzymes have evolved to catalyse different reactions on the same structure scaffold. In this analysis, we examine in detail how enzymes can modify their chemistry, through a comparison of the catalytic residues and mechanisms in 27 pairs of homologous enzymes of totally different functions. We find that evolution is very economical. Enzymes retain structurally conserved residues to aid catalysis, including residues that bind catalytic metal ions and modulate cofactor chemistry. We examine the conservation of residue type and residue function in these structurally conserved residue pairs. Additionally, enzymes often retain common mechanistic steps catalyzed by structurally conserved residues. We have examined these steps in the context of their overall reactions.
Collapse
Affiliation(s)
- Gail J Bartlett
- Department of Biochemistry and Molecular Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
45
|
Abstract
The evolution of enzymes and pathways is under debate. Recent studies show that recruitment of single enzymes from different pathways could be the driving force for pathway evolution. Other mechanisms of evolution, such as pathway duplication, enzyme specialization, de novo invention of pathways or retro-evolution of pathways, appear to be less abundant. Twenty percent of enzyme superfamilies are quite variable, not only in changing reaction chemistry or metabolite type but in changing both at the same time. These variable superfamilies account for nearly half of all known reactions. The most frequently occurring metabolites provide a helping hand for such changes because they can be accommodated by many enzyme superfamilies. Thus, a picture is emerging in which new pathways are evolving from central metabolites by preference, thereby keeping the overall topology of the metabolic network.
Collapse
Affiliation(s)
- Steffen Schmidt
- European Molecular Biology Laboratory Heidelberg, Postfach 102209, Germany
| | | | | | | |
Collapse
|
46
|
McLeish MJ, Kneen MM, Gopalakrishna KN, Koo CW, Babbitt PC, Gerlt JA, Kenyon GL. Identification and characterization of a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633. J Bacteriol 2003; 185:2451-6. [PMID: 12670968 PMCID: PMC152609 DOI: 10.1128/jb.185.8.2451-2456.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enzymes of the mandelate metabolic pathway permit Pseudomonas putida ATCC 12633 to utilize either or both enantiomers of mandelate as the sole carbon source. The genes encoding the mandelate pathway were found to lie on a single 10.5-kb restriction fragment. Part of that fragment was shown to contain the genes coding for mandelate racemase, mandelate dehydrogenase, and benzoylformate decarboxylase arranged in an operon. Here we report the sequencing of the remainder of the restriction fragment, which revealed three further open reading frames, denoted mdlX, mdlY, and mdlD. All were transcribed in the opposite direction from the genes of the mdlABC operon. Sequence alignments suggested that the open reading frames encoded a regulatory protein (mdlX), a member of the amidase signature family (mdlY), and an NAD(P)(+)-dependent dehydrogenase (mdlD). The mdlY and mdlD genes were isolated and expressed in Escherichia coli, and the purified gene products were characterized as a mandelamide hydrolase and an NAD(P)(+)-dependent benzaldehyde dehydrogenase, respectively.
Collapse
Affiliation(s)
- Michael J McLeish
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Todd AE, Orengo CA, Thornton JM. Sequence and structural differences between enzyme and nonenzyme homologs. Structure 2002; 10:1435-51. [PMID: 12377129 DOI: 10.1016/s0969-2126(02)00861-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To improve our understanding of the evolution of novel functions, we performed a sequence, structural, and functional analysis of homologous enzymes and nonenzymes of known three-dimensional structure. In most examples identified, the nonenzyme is derived from an ancestral catalytic precursor (as opposed to the reverse evolutionary scenario, nonenzyme to enzyme), and the active site pocket has been disrupted in some way, owing to the substitution of critical catalytic residues and/or steric interactions that impede substrate binding and catalysis. Pairwise sequence identity is typically insignificant, and almost one-half of the enzyme and nonenzyme pairs do not share any similarity in function. Heterooligomeric enzymes comprising homologous subunits in which one chain is catalytically inactive and enzyme polypeptides that contain internal catalytic and noncatalytic duplications of an ancient enzyme domain are also discussed.
Collapse
Affiliation(s)
- Annabel E Todd
- Biochemistry and Molecular Biology Department, University College London, United Kingdom
| | | | | |
Collapse
|
48
|
Abstract
The expectation is that any similarity in reaction chemistry shared by enzyme homologues is mediated by common functional groups conserved through evolution. However, detailed enzyme studies have revealed the flexibility of many active sites, in that different functional groups, unconserved with respect to position in the primary sequence, mediate the same mechanistic role. Nevertheless, the catalytic atoms might be spatially equivalent. More rarely, the active sites have completely different locations in the protein scaffold. This variability could result from: (1) the hopping of functional groups from one position to another to optimize catalysis; (2) the independent specialization of a low-activity primordial enzyme in different phylogenetic lineages; (3) functional convergence after evolutionary divergence; or (4) circular permutation events.
Collapse
Affiliation(s)
- Annabel E Todd
- Biochemistry and Molecular Biology Department, University College London, Gower Street, London, UK WC1E 6BT
| | | | | |
Collapse
|
49
|
Abstract
Several models have been proposed to explain the origin and evolution of enzymes in metabolic pathways. Initially, the retro-evolution model proposed that, as enzymes at the end of pathways depleted their substrates in the primordial soup, there was a pressure for earlier enzymes in pathways to be created, using the later ones as initial template, in order to replenish the pools of depleted metabolites. Later, the recruitment model proposed that initial templates from other pathways could be used as long as those enzymes were similar in chemistry or substrate specificity. These two models have dominated recent studies of enzyme evolution. These studies are constrained by either the small scale of the study or the artificial restrictions imposed by pathway definitions. Here, a network approach is used to study enzyme evolution in fully sequenced genomes, thus removing both constraints. We find that homologous pairs of enzymes are roughly twice as likely to have evolved from enzymes that are less than three steps away from each other in the reaction network than pairs of non-homologous enzymes. These results, together with the conservation of the type of chemical reaction catalyzed by evolutionarily related enzymes, suggest that functional blocks of similar chemistry have evolved within metabolic networks. One possible explanation for these observations is that this local evolution phenomenon is likely to cause less global physiological disruptions in metabolism than evolution of enzymes from other enzymes that are distant from them in the metabolic network.
Collapse
Affiliation(s)
- Rui Alves
- Department of Biological Sciences, Structural Bioinformatics Group, Biochemistry Building, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK
| | | | | |
Collapse
|
50
|
Maithal K, Ravindra G, Nagaraj G, Singh SK, Balaram H, Balaram P. Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability. Protein Eng Des Sel 2002; 15:575-84. [PMID: 12200540 DOI: 10.1093/protein/15.7.575] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A mutation at the dimer interface of Plasmodium falciparum triosephosphate isomerase (PfTIM) was created by mutating a tyrosine residue at position 74, at the subunit interface, to glycine. Tyr74 is a critical residue, forming a part of an aromatic cluster at the interface. The resultant mutant, Y74G, was found to have considerably reduced stability compared with the wild-type protein (TIMWT). The mutant was found to be much less stable to denaturing agents such as urea and guanidinium chloride. Fluorescence and circular dichroism studies revealed that the Y74G mutant and TIMWT have similar spectroscopic properties, suggestive of similar folded structures. Further, the Y74G mutant also exhibited a concentration-dependent loss of enzymatic activity over the range 0.1-10 microM. In contrast, the wild-type enzyme did not show a concentration dependence of activity in this range. Fluorescence quenching of intrinsic tryptophan emission was much more efficient in case of Y74G than TIMWT, suggestive of greater exposure of Trp11, which lies adjacent to the dimer interface. Analytical gel filtration studies revealed that in Y74G, monomeric and dimeric species are in dynamic equilibrium, with the former predominating at low protein concentration. Spectroscopic studies established that the monomeric form of the mutant is largely folded. Low concentrations of urea also drive the equilibrium towards the monomeric form. These studies suggest that the replacement of tyrosine with a small residue at the interface of triosephosphate isomerase weakens the subunit-subunit interactions, giving rise to structured, but enzymatically inactive, monomers at low protein concentration.
Collapse
Affiliation(s)
- Kapil Maithal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | |
Collapse
|