1
|
Zhang Z, Li W, Chang D, Wei Z, Wang E, Yu J, Xu Y, Que Y, Chen Y, Fan C, Ma B, Zhou Y, Huan Z, Yang C, Guo F, Chang J. A combination therapy for androgenic alopecia based on quercetin and zinc/copper dual-doped mesoporous silica nanocomposite microneedle patch. Bioact Mater 2022; 24:81-95. [PMID: 36582348 PMCID: PMC9772573 DOI: 10.1016/j.bioactmat.2022.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
A nanocomposite microneedle (ZCQ/MN) patch containing copper/zinc dual-doped mesoporous silica nanoparticles loaded with quercetin (ZCQ) was developed as a combination therapy for androgenic alopecia (AGA). The degradable microneedle gradually dissolves after penetration into the skin and releases the ZCQ nanoparticles. ZCQ nanoparticles release quercetin (Qu), copper (Cu2+) and zinc ions (Zn2+) subcutaneously to synergistically promote hair follicle regeneration. The mechanism of promoting hair follicle regeneration mainly includes the regulation of the main pathophysiological phenomena of AGA such as inhibition of dihydrotestosterone, inhibition of inflammation, promotion of angiogenesis and activation of hair follicle stem cells by the combination of Cu2+ and Zn2+ ions and Qu. This study demonstrates that the systematic intervention targeting different pathophysiological links of AGA by the combination of organic drug and bioactive metal ions is an effective treatment strategy for hair loss, which provides a theoretical basis for development of biomaterial based anti-hair loss therapy.
Collapse
Affiliation(s)
- Zhaowenbin Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200025, PR China
| | - Di Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Fudan University, Shanghai, 200433, PR China
| | - Ziqin Wei
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Endian Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing Yu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuze Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yumei Que
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Yanxin Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Chen Fan
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Bing Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanling Zhou
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhiguang Huan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chen Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Corresponding author.
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200025, PR China,Corresponding author.
| | - Jiang Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China,Corresponding author. State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| |
Collapse
|
2
|
Stéphan E, Dousset M, Foy N, Jaouen G. Access to new Steroids via a (1,2) Wittig Rearrangement. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.3184/030823402103170547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Novel steroids are obtained by reaction of 9,11-dehydro-dibenzylestradiol and dibenzylestradiol with phenyllithium in THF at room temperature.
Collapse
Affiliation(s)
- Elie Stéphan
- Laboratoire de chimie organométallique – Ecole Nationale Supérieure de Chimie et CNRS, 11, rue Pierre et Marie Curie, 75 005 Paris, France
| | - Magali Dousset
- Laboratoire de chimie organométallique – Ecole Nationale Supérieure de Chimie et CNRS, 11, rue Pierre et Marie Curie, 75 005 Paris, France
| | - Nicolas Foy
- Laboratoire de chimie organométallique – Ecole Nationale Supérieure de Chimie et CNRS, 11, rue Pierre et Marie Curie, 75 005 Paris, France
| | - Gérard Jaouen
- Laboratoire de chimie organométallique – Ecole Nationale Supérieure de Chimie et CNRS, 11, rue Pierre et Marie Curie, 75 005 Paris, France
| |
Collapse
|