1
|
Kniess T, Zessin J, Mäding P, Kuchar M, Kiss O, Kopka K. Synthesis of [ 18F]FMISO, a hypoxia-specific imaging probe for PET, an overview from a radiochemist's perspective. EJNMMI Radiopharm Chem 2023; 8:5. [PMID: 36897480 PMCID: PMC10006378 DOI: 10.1186/s41181-023-00190-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND [18F]fluoromisonidazole ([18F]FMISO, 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole) is a commonly used radiotracer for imaging hypoxic conditions in cells. Since hypoxia is prevalent in solid tumors, [18F]FMISO is in clinical application for decades to explore oxygen demand in cancer cells and the resulting impact on radiotherapy and chemotherapy. RESULTS Since the introduction of [18F]FMISO as positron emission tomography imaging agent in 1986, a variety of radiosynthesis procedures for the production of this hypoxia tracer has been developed. This paper gives a brief overview on [18F]FMISO radiosyntheses published so far from its introduction until now. From a radiopharmaceutical chemist's perspective, different precursors, radiolabeling approaches and purification methods are discussed as well as used automated radiosynthesizers, including cassette-based and microfluidic systems. CONCLUSION In a GMP compliant radiosynthesis using original cassettes for FASTlab we produced [18F]FMISO in 49% radiochemical yield within 48 min with radiochemical purities > 99% and molar activities > 500 GBq/µmol. In addition, we report an easy and efficient radiosynthesis of [18F]FMISO, based on in-house prepared FASTlab cassettes, providing the radiotracer for research and preclinical purposes in good radiochemical yields (39%), high radiochemical purities (> 99%) and high molar activity (> 500 GBq/µmol) in a well-priced option.
Collapse
Affiliation(s)
- Torsten Kniess
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Jörg Zessin
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Peter Mäding
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Manuela Kuchar
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Oliver Kiss
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.,National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
2
|
Ohkubo T, Kurihara Y, Ogawa M, Nengaki N, Fujinaga M, Mori W, Kumata K, Hanyu M, Furutsuka K, Hashimoto H, Kawamura K, Zhang MR. Automated radiosynthesis of two 18F-labeled tracers containing 3-fluoro-2-hydroxypropyl moiety, [ 18F]FMISO and [ 18F]PM-PBB3, via [ 18F]epifluorohydrin. EJNMMI Radiopharm Chem 2021; 6:23. [PMID: 34245396 PMCID: PMC8272768 DOI: 10.1186/s41181-021-00138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Background [18F]Fluoromisonidazole ([18F]FMISO) and 1-[18F]fluoro-3-((2-((1E,3E)-4-(6-(methylamino)pyridine-3-yl)buta-1,3-dien-1-yl)benzo[d]thiazol-6-yl)oxy)propan-2-ol ([18F]PM-PBB3 or [18F]APN-1607) are clinically used radiotracers for imaging hypoxia and tau pathology, respectively. Both radiotracers were produced by direct 18F-fluorination using the corresponding tosylate precursors 1 or 2 and [18F]F−, followed by the removal of protecting groups. In this study, we synthesized [18F]FMISO and [18F]PM-PBB3 by 18F-fluoroalkylation using [18F]epifluorohydrin ([18F]5) for clinical applications. Results First, [18F]5 was synthesized by the reaction of 1,2-epoxypropyl tosylate (8) with [18F]F− and was purified by distillation. Subsequently, [18F]5 was reacted with 2-nitroimidazole (6) or PBB3 (7) as a precursor for 18F-labeling, and each reaction mixture was purified by preparative high-performance liquid chromatography and formulated to obtain the [18F]FMISO or [18F]PM-PBB3 injection. All synthetic sequences were performed using an automated 18F-labeling synthesizer. The obtained [18F]FMISO showed sufficient radioactivity (0.83 ± 0.20 GBq at the end of synthesis (EOS); n = 8) with appropriate radiochemical yield based on [18F]F− (26 ± 7.5 % at EOS, decay-corrected; n = 8). The obtained [18F]PM-PBB3 also showed sufficient radioactivity (0.79 ± 0.10 GBq at EOS; n = 11) with appropriate radiochemical yield based on [18F]F− (16 ± 3.2 % at EOS, decay-corrected; n = 11). Conclusions Both [18F]FMISO and [18F]PM-PBB3 injections were successfully synthesized with sufficient radioactivity by 18F-fluoroalkylation using [18F]5. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00138-9.
Collapse
Affiliation(s)
- Takayuki Ohkubo
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan.,SHI Accelerator Service Ltd, 141-0032, Tokyo, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan.,SHI Accelerator Service Ltd, 141-0032, Tokyo, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan.,SHI Accelerator Service Ltd, 141-0032, Tokyo, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan.,SHI Accelerator Service Ltd, 141-0032, Tokyo, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan
| | | | - Hiroki Hashimoto
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan.
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, 263-8555, Chiba, Japan
| |
Collapse
|
3
|
Fujinaga M, Ohkubo T, Yamasaki T, Zhang Y, Mori W, Hanyu M, Kumata K, Hatori A, Xie L, Nengaki N, Zhang MR. Automated Synthesis of (rac)-, (R)-, and (S)-[ 18 F]Epifluorohydrin and Their Application for Developing PET Radiotracers Containing a 3-[ 18 F]Fluoro-2-hydroxypropyl Moiety. ChemMedChem 2018; 13:1723-1731. [PMID: 30043406 DOI: 10.1002/cmdc.201800359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Indexed: 01/05/2023]
Abstract
To introduce the 3-[18 F]fluoro-2-hydroxypropyl moiety into positron emission tomography (PET) radiotracers, we performed automated synthesis of (rac)-, (R)-, and (S)-[18 F]epifluorohydrin ([18 F]1) by nucleophilic displacement of (rac)-, (R)-, or (S)-glycidyl tosylate with 18 F- and purification by distillation. The ring-opening reaction of (R)- or (S)-[18 F]1 with phenol precursors gave enantioenriched [18 F]fluoroalkylated products without racemisation. We then synthesised (rac)-, (R)-, and (S)- 2-{5-[4-(3-[18 F]fluoro-2-hydroxypropoxy)phenyl]-2-oxobenzo[d]oxazol-3(2H)-yl}-N-methyl-N-phenylacetamide ([18 F]6) as novel radiotracers for the PET imaging of translocator protein (18 kDa) and showed that (R)- and (S)-[18 F]6 had different radioactivity uptake in mouse bone and liver. Thus, (rac)-, (R)-, and (S)-[18 F]1 are effective radiolabelling reagents and can be used to develop PET radiotracers by examining the effects of chirality on their in vitro binding affinities and in vivo behaviour.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Takayuki Ohkubo
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.,SHI Accelerator Service Co. Ltd., Tokyo, 141-0032, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masayuki Hanyu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Nobuki Nengaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.,SHI Accelerator Service Co. Ltd., Tokyo, 141-0032, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
4
|
Antuganov DO, Ryzhkova DV, Zykov MP. Methods for synthesis of [18F]fluoromisonidazole, a radiopharmaceutical for imaging of hypoxic foci. RADIOCHEMISTRY 2015. [DOI: 10.1134/s1066362215060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Belanger AP, Pandey MK, DeGrado TR. Microwave-assisted radiosynthesis of [18F]fluorinated fatty acid analogs. Nucl Med Biol 2010; 38:435-41. [PMID: 21492792 DOI: 10.1016/j.nucmedbio.2010.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/25/2022]
Abstract
UNLABELLED Microwave reactors remain largely underutilized in the field of positron emission tomography (PET) chemistry. This is particularly unfortunate since microwave synthesis elegantly addresses two of the most critical issues of PET radiochemistry with short-lived radionuclides: reaction rate and side-product formation. In this study, we investigate the efficiency of synthesis of terminally [(18)F]fluorinated fatty acid analogs using a commercial microwave reactor in comparison with conventional heating (CH). METHODS The labeling precursors were methyl esters of terminally substituted alkyl bromides and iodides. Duration and temperatures of the [(18)F]fluorination reaction were varied. Chemical and radiochemical purities, and radiochemical yields were investigated for conventional (CH) and microwave-assisted (MW) radiosyntheses. RESULTS The results demonstrate that microwave heating enhanced [(18)F]fluoride incorporation to >95% (up to 55% improvement), while reducing reaction times to 2 min (∼ 10-fold reduction) or temperatures to 55-60 °C (20 °C reduction). Overall decay-corrected radiochemical yields of purified [(18)F]fluoro fatty acids were higher (MW = 49.0 ± 4.5%, CH = 23.6 ± 3.5%, P < .05) with microwave heating and side-products were notably fewer. CONCLUSION For routine synthesis of [(18)F]fluoro fatty acid analogs, microwave heating is faster, milder, cleaner, less variable and higher yielding than CH and therefore the preferred reaction method.
Collapse
Affiliation(s)
- Anthony P Belanger
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
6
|
Fully automated radiosynthesis of [18F]Fluoromisonidazole with single neutral alumina column purification: optimization of reaction parameters. J Radioanal Nucl Chem 2010. [DOI: 10.1007/s10967-010-0644-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Dence CS, Ponde DE, Welch MJ, Lewis JS. Autoradiographic and small-animal PET comparisons between (18)F-FMISO, (18)F-FDG, (18)F-FLT and the hypoxic selective (64)Cu-ATSM in a rodent model of cancer. Nucl Med Biol 2008; 35:713-20. [PMID: 18678357 DOI: 10.1016/j.nucmedbio.2008.06.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/02/2008] [Accepted: 06/05/2008] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Copper(II)-diacetyl-bis(N(4)-methylthiosemicarbazone), or Cu-ATSM, a hypoxia imaging agent, has been shown to be predictive of response to traditional cancer therapies in patients with a wide range of tumors. It is known that the environment of the tumor results in a myriad of physiological consequences, including hypoxia, alterations in metabolism and proliferation. In an effort to better characterize the relationships between Cu-ATSM and other prominent radiopharmaceuticals, this current study was undertaken to compare the regional distribution of (64)Cu-ATSM with [(18)F]fluoromisonidazole ((18)F-FMISO), [(18)F]fluoro-2-deoxy-d-glucose ((18)F-FDG) and [(18)F]fluorothymidine ((18)F-FLT) in 9L tumors. METHODS Taking advantage of the different half-life of (18)F (t(1/2)=110 min) in comparison to (64)Cu (t(1/2)=12.7 h), we undertook a dual-tracer autoradiography study in 9L tumors. Four groups were examined: (a) (18)F-FMISO, 2 h postinjection (p.i.) and (64)Cu-ATSM, 10 min p.i.; (b) (18)F-FMISO, 2 h p.i. and (64)Cu-ATSM, 24 h p.i.; (c) (18)F-FDG, 1 h p.i. and (64)Cu-ATSM, 10 min p.i.; and (d) (18)F-FLT, 1 h p.i. and (64)Cu-ATSM, 10 min p.i. Small-animal PET imaging was performed in 9L tumor-bearing rats with imaging on concurrent days comparing (64)Cu-ATSM with (18)F-FMISO and (18)F-FLT. RESULTS It was shown that the regional distribution of (18)F-FMISO and (64)Cu-ATSM showed an excellent correlation when the (64)Cu-ATSM had been allowed to distribute for either 10 min (R(2)=.84) or 24 h (R(2)=.86). The regional comparisons between (64)Cu-ATSM (10 min) and (18)F-FDG (1 h) resulted in a very poor correlation (R(2)=.08) between the regional uptake of the two agents. The comparison between (18)F-FLT and (64)Cu-ATSM showed a strong relationship (R(2)=.83) between the two tracers. The small-animal PET images for the distribution comparisons between (64)Cu-ATSM and (18)F-FMISO and (18)F-FLT were in agreement with the data generated from the autoradiography studies. CONCLUSIONS The data show that it is important to remember that a number of different metabolic situations can exist when considering the relationship between regions of high glucose uptake, proliferation and hypoxia.
Collapse
Affiliation(s)
- Carmen S Dence
- Mallinckrodt Institute of Radiology, The Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
8
|
El Ashry E, Ramadan E, Kassem A, Hagar M. Microwave Irradiation for Accelerating Organic Reactions. Part I: Three-, Four- and Five-Membered Heterocycles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2005. [DOI: 10.1016/s0065-2725(04)88001-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
|
10
|
Abstract
9-(4-[18F] Fluoro-3-hydroxymethylbutyl) guanine ([18F] FHBG), an imaging agent for gene therapy using PET, was prepared in a one-pot, two-step synthesis. Microwave (MW) mediated nucleophilic fluorination of N2, monomethoxytrityl-9-[4-(tosyl)-3-monomethoxytrityl-methylbutyl] guanine using no-carrier-added [18F] fluoride, followed by deprotection with hydrochloric acid and HPLC purification, gave [18F] FHBG. The radiochemical yield (decay corrected) was 12+/-5% (n = 35), the synthesis time was 55-60 min, and the radiochemical purity was >99%. The compound was used for lung imaging and was injected into Sprague-Dawley rats previously infected with the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene. MicroPET imaging showed accumulation confined to the lungs.
Collapse
Affiliation(s)
- Datta E Ponde
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway, MSt. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
11
|
Stone-Elander S, Elander N. Microwave applications in radiolabelling with short-lived positron-emitting radionuclides. J Labelled Comp Radiopharm 2002. [DOI: 10.1002/jlcr.593] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Patt M, Kuntzsch M, Machulla HJ. Preparation of [18F]fluoromisonidazole by nucleophilic substitution on THP-protected precursor: Yield dependence on reaction parameters. J Radioanal Nucl Chem 1999. [DOI: 10.1007/bf02349874] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Tada M, Iwata R, Sugiyama H, Sato K, Kubota K, Kubota R, Takahashi H, Fukuda H, Ido T. A concise one-pot synthesis of [18F]fluoromisonidazole from (2R)-(−)-glycidyl tosylate. J Labelled Comp Radiopharm 1998. [DOI: 10.1002/(sici)1099-1344(199608)38:8<771::aid-jlcr893>3.0.co;2-a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Strategies for reducing isotopic dilution in the synthesis of 18F-labeled polyfluorinated ethyl groups. Appl Radiat Isot 1996. [DOI: 10.1016/0969-8043(95)00321-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|