1
|
Almog M, Nissan M, Koifman I, Wollman Y, Rochkind S. On-Site Laser Photobiomodulation Treatment of Crushed Muscle Due to Prolonged Pressure in Rats. Lasers Surg Med 2021; 53:1258-1265. [PMID: 34101204 DOI: 10.1002/lsm.23417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 04/06/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES Crush injuries and prolonged pressure on muscles lead to bruises and sprains and, in most of the cases, cause distraction of the muscle and release of particles into the blood stream, causing renal and systemic complications in severe cases. Laser photobiomodulation treatment (i.e., laser phototherapy) is a method suggested to decrease the pressure damage in the first 24-48 hours after muscle injury, allowing a faster and more complete physical rehabilitation. We studied the efficacy of non-invasive laser photobiomodulation treatment as an on-site treatment for crush-injured gastrocnemius muscles, developing a moderate muscle crush injury model and aiming at decreasing damage extent while regaining physical competence faster. STUDY DESIGN/MATERIALS AND METHODS Muscle crush injury was performed on 30 female Wistar rats using direct pressure for 10 minutes on the gastrocnemius muscle in both left and right hindlimbs. Immediately after the injury, only the left hindlimb were irradiated for 16 minutes (with 780 nm laser with a power of 250 mW, the energy at the target was 240 J, and the fluence was 1019 J/cm2 ) for 1, 3, or 7 consecutive days, and sacrificed accordingly. During the follow-up period, 1, 3, or 7 days, both gastrocnemius muscles (of the treated and untreated hindlimbs) were evaluated for electrophysiology and functionality. RESULTS The laser photobiomodulation treatment showed a significant electrophysiological and functional recovery of the gastrocnemius muscle during the first 3 days after injury, in comparison with the untreated hindlimb. CONCLUSIONS These preliminary results are promising, showing a significant effect of the laser photobiomodulation treatment during the first 3 days after the induction of the muscle crush injury, which is the most critical period in the clinical aspect. These findings suggest a therapeutic approach, which may help restore the muscle after crush injury.
Collapse
Affiliation(s)
- Mara Almog
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel
| | - Moshe Nissan
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel
| | - Igal Koifman
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel
| | - Yoram Wollman
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel
| | - Shimon Rochkind
- Research Center for Nerve Reconstruction, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, 6423906, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
A transient protective effect of low-level laser irradiation against disuse-induced atrophy of rats. Lasers Med Sci 2019; 34:1829-1839. [PMID: 30949786 DOI: 10.1007/s10103-019-02778-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
Abstract
Satellite cells, a population of skeletal muscular stem cells, are generally recognized as the main and, possibly, the sole source of postnatal muscle regeneration. Previous studies have revealed the potential of low-level laser (LLL) irradiation in promoting satellite cell proliferation, which, thereby, boosts the recovery of skeletal muscle from atrophy. The purpose of this study is to investigate the beneficial effect of LLL on disuse-induced atrophy. The optimal irradiation condition of LLL (808 nm) enhancing the proliferation of Pax7+ve cells, isolated from tibialis anterior (TA) muscle, was examined and applied on TA muscle of disuse-induced atrophy model of the rats accordingly. Healthy rats were used as the control. On one hand, transiently, LLL was able to postpone the progression of atrophy for 1 week through a reduction of apoptosis in Pax7-veMyoD+ve (myocyte) population. Simultaneously, a significant enhancement was observed in Pax7+veMyoD+ve population; however, most of the increased cells underwent apoptosis since the second week, which suggested an impaired maturation of the population. On the other hand, in normal control rats with LLL irradiation, a significant increase in Pax7+veMyoD+ve cells and a significant decrease of apoptosis were observed. As a result, a strengthened muscle contraction was observed. Our data showed the capability of LLL in postponing the progression of disuse-induced atrophy for the first time. Furthermore, the result of normal rats with LLL irradiation showed the effectiveness of LLL to strengthen muscle contraction in healthy control.
Collapse
|
3
|
Mandelbaum-Livnat MM, Almog M, Nissan M, Loeb E, Shapira Y, Rochkind S. Photobiomodulation Triple Treatment in Peripheral Nerve Injury: Nerve and Muscle Response. Photomed Laser Surg 2016; 34:638-645. [DOI: 10.1089/pho.2016.4095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Mira M. Mandelbaum-Livnat
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Mara Almog
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Nissan
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | - Yuval Shapira
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Shimon Rochkind
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Rochkind S, Geuna S, Shainberg A. Phototherapy and nerve injury: focus on muscle response. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 109:99-109. [PMID: 24093608 DOI: 10.1016/b978-0-12-420045-6.00004-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Preservation of biochemical processes in muscles is a major challenge in patients with severe peripheral nerve injury. In this chapter, we address the effects of laser irradiation and biochemical transformation in muscle, using in vitro and in vivo experimental models. The authors attempt to explain the possible mechanism of laser phototherapy applied on skeletal muscle on the basis of literature review and new results. A detailed knowledge of the evolution of endplates acetylcholine receptors and creatine kinase activity following laser irradiation can help to understand the therapeutic effect of laser phototherapy on muscle. This study showed that the laser phototherapy increases biochemical activity in intact muscle and thus could have direct therapeutic applications on muscle, especially during progressive atrophy resulting from peripheral nerve injury.
Collapse
Affiliation(s)
- Shimon Rochkind
- Faculty of Life Science, Bar-Ilan University, Ramat-Gan, Israel; Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.
| | | | | |
Collapse
|
5
|
Plavnik LM, De Crosa ME, Malberti AI. Effect of Low-Power Radiation (Helium/Neon) upon Submandibulary Glands. ACTA ACUST UNITED AC 2003; 21:219-25. [PMID: 13678459 DOI: 10.1089/104454703768247792] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The aim of this work was to study the effect of low-power laser radiation on guinea pig salivary glands. BACKGROUND DATA Low-power laser radiation changes some cellular functions. The effect on salivary glands has not been sufficiently studied. MATERIALS AND METHODS One hundred and forty-four male guinea pigs (150 +/- 30 g body weight) were used. The animals were divided into two groups: control group (fed animals and those undergoing 2, 4, 8, 10, and 12 h of fasting) and experimental group (irradiated). Both the right and left submandibular glands were later irradiated with helium-neon laser at 7-mW power, with a 0.75-mm spot, under continuous pulse for 2 min in a one-session exposure; a 11.2 J/cm(2) energy density was applied. Then, the irradiated animals were fed, or underwent 2, 4, 8, 10 and 12 h of fasting. Samples of submandibular glands were taken with a punch (5 mm diameter) and were used for optic and transmission electron microscopy studies. RESULTS The structural observations showed that the irradiation effect was progressive; and showed a trophic stimulant effect at 2 h following irradiation, with vasodilatation, vascular congestion, perivascular infiltrate, and a necrotic picture of glandular parenchyma at longer times. The ultrastructural observations showed alterations of rough endoplasmic reticulum. CONCLUSION We propose that low-power laser radiation with the doses applied in this study disturbs protein synthesis and secretion of guinea pig submandibulary glands.
Collapse
Affiliation(s)
- Luis M Plavnik
- Department of Oral Biology (Histology), Faculty of Dentistry, National University of Cordoba, Cordoba, Argentina
| | | | | |
Collapse
|
6
|
Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S. Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 2000; 22:97-102. [PMID: 9484702 DOI: 10.1002/(sici)1096-9101(1998)22:2<97::aid-lsm5>3.0.co;2-r] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Low-power laser irradiation (LPLI) has been found to have a positive effect on bone fracture healing in animal models, based on morphogenic, biochemical, roentgenographic, and electron microscopic measurements. We investigated the effect of LPLI on bone fracture healing in rats using biomechanical methods. STUDY DESIGN/MATERIALS AND METHODS Two groups of male Wistar rats, divided in a randomized block design in a blinded fashion, each consisting of 25 animals, were subjected to anesthesia and tibial bone fracture with internal fixation. The first group was treated with LPLI (HeNe laser 632.8 nm, 35 mW), applied transcutaneously over 30 minutes to the area of the fracture daily for 14 days. The second group served as a control. After 4 weeks, the tibia was removed and tested at tension up to failure (by a Lloyd LR 50K testing apparatus, U.K.) in 16 rats from group I and 15 from group II. The maximal load at failure, the structural stiffness of the tibia (callus stiffness), and the extension maximal load were measured. RESULTS The maximal load at failure and the structural stiffness of the tibia were found to be elevated significantly in the irradiated group (P = .014 and P = .0023, respectively), whereas the extension maximal load was reduced (P = .015). In addition, gross non-union was found in four fractures in the control group, compared to none in the irradiated group. CONCLUSION These results suggest that LPLI treatment may play a role in enhancing bone healing.
Collapse
Affiliation(s)
- E J Luger
- Department of Orthopedic Surgery B, Tel Aviv Sourasky Medical Center, Israel
| | | | | | | | | |
Collapse
|
7
|
Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O, Irinitchev A. Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:372-80. [PMID: 9990289 DOI: 10.1016/s0167-4889(98)00147-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low-energy laser (He-Ne) irradiation was found to promote skeletal muscle regeneration in vivo. In this study, its effect on the proliferation and differentiation of satellite cells in vitro was evaluated. Primary rat satellite cells were irradiated for various time periods immediately after preparation, and thymidine incorporation was determined after 2 days in culture. Laser irradiation affected thymidine incorporation in a bell-shaped manner, with a peak at 3 s of irradiation. Three seconds of irradiation caused an induction of cell-cycle regulatory proteins: cyclin D1, cyclin E and cyclin A in an established line of mouse satellite cells, pmi28, and proliferating cell nuclear antigen (PCNA) in primary rat satellite cells. The induction of cyclins by laser irradiation was compatible with their induction by serum refeeding of the cells. Laser irradiation effect on cell proliferation was dependent on the rat's age. At 3 weeks of age, thymidine incorporation in the irradiated cells was more than twofold higher than that in the controls, while at 6 weeks of age this difference had almost disappeared. Myosin heavy chain (MHC) protein levels were twofold lower in the irradiated than in the control cells, whereas the proliferation of the irradiated cells was twofold higher. Fusion percentage was lower in the irradiated compared to non-irradiated cells. In light of these data, the promoting effect of laser irradiation on skeletal muscle regeneration in vivo may be due to its effect on the activation of early cell-cycle regulatory genes in satellite cells, leading to increased proliferation and to a delay in cell differentiation.
Collapse
Affiliation(s)
- N Ben-Dov
- Department of Animal Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
8
|
Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S. Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 1998. [DOI: 10.1002/(sici)1096-9101(1998)22:2%3c97::aid-lsm5%3e3.0.co;2-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Luger EJ, Wollman Y, Rochkind S, Dekel S, Ouaknine GE, Chernihovsky T, Iaina A. THE EFFECT OF LOW LEVEL LASER IRRADIATION ON BONE CELL CULTURE. Laser Ther 1998. [DOI: 10.5978/islsm.10.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Vacca RA, Marra E, Passarella S, Petragallo VA, Greco M. Increase in cytosolic and mitochondrial protein synthesis in rat hepatocytes irradiated in vitro by He-Ne laser. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1996; 34:197-202. [PMID: 8810537 DOI: 10.1016/1011-1344(95)07280-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to gain an insight into the mechanism of cell photostimulation by laser light, protein synthesis was measured in hepatocytes irradiated with a low-power, continuous-wave He-Ne laser (fluence, 0.24 J cm(-2); fluence rate, 7 and 12 mW cm(-2)). As a result of irradiation, the rate and amount of 35S-methionine incorporated into newly synthesized proteins increased, as demonstrated by gel electrophoresis and quantitative analysis of labelled protein bands. The stimulation of protein synthesis was fluence dependent, with a maximum stimulation at 0.24 J cm(-2) for both fluence rates (12 and 7 mW cm(-2)). Both cytosolic and mitochondrial protein synthesis increased as a result of irradiation, as demonstrated by the measurement of hepatocytes previously treated with chloramphenicol and cycloheximide respectively. An initial investigation showed that stimulation of protein synthesis also occurred in hepatocytes irradiated with a non-coherent radiation source (fluence, 0.24 J cm(-2)).
Collapse
Affiliation(s)
- R A Vacca
- Centro di Studio sui Mitocondri e Metabolismo Energetico, C.N.R., Bari, Italy
| | | | | | | | | |
Collapse
|
11
|
Abstract
The surgical, ophthalmological, and dermatological applications of high power lasers are well known and easily understood. What is neither as well known nor as easily understood is that lasers at powers that are orders of magnitude smaller have also been used in the laboratory and clinic for nearly 30 years to modulate cell function, lessen pain, and accelerate healing of soft tissue injuries. This article analyzes the rationale of this approach, examines the utility of laser therapy in its most common clinical applications, reviews and synthesizes the findings, and concludes that although laboratory findings seem authentic, clinical utility remains unestablished.
Collapse
Affiliation(s)
- J R Basford
- Department of Physical Medicine and Rehabilitation, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| |
Collapse
|