1
|
Hunter CS, Stein R. Characterization of an apparently novel β-cell line-enriched 80-88 kDa transcriptional activator of the MafA and Pdx1 genes. J Biol Chem 2012; 288:3795-803. [PMID: 23269676 DOI: 10.1074/jbc.m112.434282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MafA and Pdx1 represent critical transcriptional regulators required for the maintenance of pancreatic islet β-cell function. The in vivo β-cell-enriched expression pattern of these genes is principally directed by islet transcription factors binding within conserved Region 3 (base pairs (bp) -8118/-7750) of MafA and Area II (bp -2153/-1923) of the Pdx1 gene. Comprehensive mutational analysis of conserved MafA Region 3 revealed two new β-cell line-specific cis-activation elements, termed Site 4 (bp -7997 to -7988) and Site 12 (bp -7835 to -7826). Gel mobility and antibody super-shift analysis identified Pdx1 as the Site 4 binding factor, while an 80-88 kilodalton (kDa) β-cell line-enriched protein complex bound Site 12 and similar aligned nucleotides within Pdx1 Area II. The 80-88 kDa activator was also found in adult mouse islet extract. Strikingly, the molecular weight, DNA binding, and antibody recognition properties of this activator were unique when compared with all other key islet transcription factors tested, including Prox1 (83 kDa), Hnf1α (67 kDa), FoxA2 (48 kDa), MafA (46 kDa), Isl1 (44 kDa), Pdx1 (42 kDa), and Nkx2.2 (30 kDa). Collectively, these data define an apparently novel MafA Region 3 and Pdx1 Area II activator contributing to expression in β-cells.
Collapse
Affiliation(s)
- Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
2
|
Stein R. Insulin Gene Transcription: Factors Involved in Cell Type–Specific and Glucose‐Regulated Expression in Islet β Cells are Also Essential During Pancreatic Development. Compr Physiol 2011. [DOI: 10.1002/cphy.cp070202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Petersen HV, Jensen JN, Stein R, Serup P. Glucose induced MAPK signalling influences NeuroD1-mediated activation and nuclear localization. FEBS Lett 2002; 528:241-5. [PMID: 12297313 DOI: 10.1016/s0014-5793(02)03318-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The helix-loop-helix transcription factor NeuroD1 (also known as Beta2) is involved in beta-cell survival during development and insulin gene transcription in adults. Here we show NeuroD1 is primarily cytoplasmic at non-stimulating glucose concentrations (i.e. 3 mM) in MIN6 beta-cells and nuclear under stimulating conditions (i.e. 20 mM). Quantification revealed that NeuroD1 was in 40-45% of the nuclei at 3 mM and 80-90% at 20 mM. Treatment with the MEK inhibitor PD98059 or substitution of a serine for an alanine at a potential mitogen-activated protein kinase phosphorylation site (S274) in NeuroD1 significantly increased the cytoplasmic level at 20 mM glucose. The rise in NeuroD1-mediated transcription in response to glucose also correlated with the change in sub-cellular localization, a response attenuated by PD98059. The data strongly suggest that glucose-stimulation of the MEK-ERK signalling pathway influences NeuroD1 activity at least partially through effects on sub-cellular localization.
Collapse
Affiliation(s)
- Helle V Petersen
- Hagedorn Research Institute, Niels Steensensvej 6, DK-2820 Gentofte, Denmark.
| | | | | | | |
Collapse
|
4
|
Abstract
Insulin is expressed exclusively in the adult beta-cells of the islets of Langerhans. Pancreatic Duodenum Homeobox-1 (PDX-1) is a major regulator of transcription in these cells. It transactivates the insulin gene by binding to a specific DNA motif in its promoter region. Glucose, the main physiological regulator of insulin secretion, also regulates insulin gene transcription through PDX-1. While acute exposure to high glucose concentrations causes an increase in PDX-1 binding, and consequently in insulin mRNA levels, chronic hyperglycemia (toxic to the beta-cell) leads to a decrease in PDX-1 and insulin levels. PDX-1 is absolutely required for pancreas development. In view of the selective expression in adult beta-cells, pancreatic agenesis in both the pdx-1 null mouse and a human carrying a homozygous mutation of PDX-1 was an unexpected and remarkable finding. The homozygous clinical phenotype was neonatal diabetes mellitus (DM) and exocrine insufficiency. Heterozygosity for PDX-1 mutations was found in some individuals with a newly characterized subtype of maturity-onset diabetes of the young (MODY4) and in others with type 2 DM. This review underlines the unique role of PDX-1 in maintaining adult beta-cell-specific functions in normal and disease-related states.
Collapse
Affiliation(s)
- Danielle Melloul
- Department of Endocrinology, Hadassah University Hospital, General Health Services, Jerusalem, Israel.
| | | | | |
Collapse
|
5
|
Harrington RH, Sharma A. Transcription factors recognizing overlapping C1-A2 binding sites positively regulate insulin gene expression. J Biol Chem 2001; 276:104-13. [PMID: 11024035 DOI: 10.1074/jbc.m008415200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors binding the insulin enhancer region, RIPE3b, mediate beta-cell type-specific and glucose-responsive expression of the insulin gene. Earlier studies demonstrate that activator present in the beta-cell-specific RIPE3b1-binding complex is critical for these actions. The DNA binding activity of the RIPE3b1 activator is induced in response to glucose stimulation and is inhibited under glucotoxic conditions. The C1 element within the RIPE3b region has been implicated as the binding site for RIPE3b1 activator. The RIPE3b region also contains an additional element, A2, which shares homology with the A elements in the insulin enhancer. Transcription factors (PDX-1 and HNF-1 alpha) binding to A elements are critical regulators of insulin gene expression and/or pancreatic development. Hence, to understand the roles of C1 and A2 elements in regulating insulin gene expression, we have systematically mutated the RIPE3b region and analyzed the effect of these mutations on gene expression. Our results demonstrate that both C1 and A2 elements together constitute the binding site for the RIPE3b1 activator. In addition to C1-A2 (RIPE3b) binding complexes, three binding complexes that specifically recognize A2 elements are found in nuclear extracts from insulinoma cell lines; the A2.2 complex is detected only in insulin-producing cell lines. Furthermore, two base pairs in the A2 element were critical for binding of both RIPE3b1 and A2.2 activators. Transient transfection results indicate that both C1-A2 and A2-specific binding activators cooperatively activate insulin gene expression. In addition, RIPE3b1- and A2-specific activators respond differently to glucose, suggesting that their overlapping binding specificity and functional cooperation may play an important role in regulating insulin gene expression.
Collapse
Affiliation(s)
- R H Harrington
- Section of Islet Transplantation & Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
6
|
Zhao L, Cissell MA, Henderson E, Colbran R, Stein R. The RIPE3b1 activator of the insulin gene is composed of a protein(s) of approximately 43 kDa, whose DNA binding activity is inhibited by protein phosphatase treatment. J Biol Chem 2000; 275:10532-7. [PMID: 10744746 DOI: 10.1074/jbc.275.14.10532] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-stimulated and pancreatic islet beta cell-specific expression of the insulin gene is mediated in part by the C1 DNA-element binding complex, termed RIPE3b1. In this report, we define the molecular weight range of the protein(s) that compose this beta cell-enriched activator complex and show that protein phosphatase treatment inhibits RIPE3b1 DNA binding activity. Fractionation of beta cell nuclear extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that RIPE3b1 binding was mediated by a protein(s) within the 37-49-kDa ranges. Direct analysis of the proteins within the RIPE3b1 complex by ultraviolet light cross-linking analysis identified three binding species of approximately 51, 45, and 38 kDa. Incubating beta cell nuclear extracts with either calf alkaline phosphatase or a rat brain phosphatase preparation dramatically reduced RIPE3b1 DNA complex formation. Phosphatase inhibition of RIPE3b1 binding was prevented by sodium pyrophosphate, a general phosphatase inhibitor. We discuss how changes in the phosphorylation status of the RIPE3b1 activator may influence its DNA binding activity.
Collapse
Affiliation(s)
- L Zhao
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
7
|
Sayo Y, Hosokawa H, Imachi H, Murao K, Sato M, Wong NC, Ishida T, Takahara J. Transforming growth factor beta induction of insulin gene expression is mediated by pancreatic and duodenal homeobox gene-1 in rat insulinoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:971-8. [PMID: 10672004 DOI: 10.1046/j.1432-1327.2000.01080.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although transforming growth factor-beta (TGF-beta) stimulates pancreatic islet cells to synthesize and secret insulin, the mechanism underlying this effect is not known. To investigate this question, we examined the insulin promoter activity focusing on a transcription factor, pancreatic and duodenal homeobox gene-1 (PDX-1) that binds to the A3 element of the rat insulin promoter. Studies performed using the rat insulinoma cell line, INS-1 showed that TGF-beta stimulation of endogenous insulin mRNA expression correlated with increased activity of a reporter construct containing the insulin promoter. A potential mechanism for this increase arose from, electrophoretic mobility shift assay showing that the nuclear extract from TGF-beta treated cells contained higher levels of A3 binding activity. Western blot analysis confirmed that PDX-1 was increased in the nuclear extract from INS-1 cells treated with TGF-beta. As expected, a mutant insulin promoter that lacked the PDX-1 binding site was not stimulated by TGF-beta. In summary, the results of these studies show that TGF-beta stimulates the transcription of insulin gene and this action is mediated by the transcription factor, PDX-1.
Collapse
Affiliation(s)
- Y Sayo
- First Department of Internal Medicine, Kagawa Medical University, Kagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shushan EB, Cerasi E, Melloul D. Regulation of the insulin gene by glucose: stimulation of trans-activation potency of human PDX-1 N-terminal domain. DNA Cell Biol 1999; 18:471-9. [PMID: 10390156 DOI: 10.1089/104454999315196] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The beta cells in pancreatic islets of Langerhans increase insulin gene transcription in response to glucose. The pancreatic and duodenal homeobox-1 (PDX-1) plays a major role in glucose-induced insulin transcription. We studied the functional regions of the human PDX-1 protein fused to the DNA-binding domain of the transcription factor Gal4. The results indicate that the N-terminal domain of the hPDX-1, required for transactivation (amino acids 1-120) in transfected betaTC6 and HeLa cells, is also regulated by extracellular glucose concentrations in transfected rat islets. Deletion analyses have led to the mapping of two regions within the N terminus that are essential for its trans-activation properties. One sequence spans amino acids 97-120 in transfected islet and HeLa cells or amino acids 77-120 in betaTC6 cells; the other includes the highly conserved B box (amino acids 31-41). We thus present evidence of a glucose effect on hPDX-1 trans-activation activity, in addition to the previously described regulatory effect on its DNA-binding activity.
Collapse
Affiliation(s)
- E B Shushan
- Department of Endocrinology & Metabolism, Hebrew University, Hadassah Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
9
|
Leibiger B, Moede T, Schwarz T, Brown GR, Köhler M, Leibiger IB, Berggren PO. Short-term regulation of insulin gene transcription by glucose. Proc Natl Acad Sci U S A 1998; 95:9307-12. [PMID: 9689076 PMCID: PMC21334 DOI: 10.1073/pnas.95.16.9307] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Whereas short-term regulation of insulin biosynthesis at the level of translation is well accepted, glucose-dependent transcriptional control is still believed to be a long-term effect occurring after more than 2 hr of glucose stimulation. Because pancreatic beta cells are exposed to elevated glucose levels for minutes rather than hours after food uptake, we hypothesized the existence of a short-term transcriptional control. By studying the dynamics of newly synthesized (prepro)insulin RNA and by employing on-line monitoring of gene expression in single, insulin-producing cells, we were able to provide convincing evidence that insulin gene transcription indeed is affected by glucose within minutes. Exposure of insulinoma cells and isolated pancreatic islets to elevated glucose for only 15 min resulted in a 2- to 5-fold elevation in (prepro)insulin mRNA levels within 60-90 min. Similarly, insulin promoter-driven green fluorescent protein expression in single insulin-producing cells was significantly enhanced after transient glucose stimulation. Thus, short-term signaling, such as that involved in insulin secretion, also may regulate insulin gene transcription.
Collapse
Affiliation(s)
- B Leibiger
- The Rolf Luft Center for Diabetes Research, Department of Molecular Medicine, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
10
|
Petersen HV, Peshavaria M, Pedersen AA, Philippe J, Stein R, Madsen OD, Serup P. Glucose stimulates the activation domain potential of the PDX-1 homeodomain transcription factor. FEBS Lett 1998; 431:362-6. [PMID: 9714543 DOI: 10.1016/s0014-5793(98)00776-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucose-stimulated expression of the insulin gene in beta cells is mediated by the PDX-1 transcription factor. In this report, we show that stimulation results from effects on activation and DNA-binding potential. Thus, glucose specifically stimulated expression in MIN6 beta cells from chimeras of PDX-1 and the GAL4 DNA-binding domain which spanned the N-terminal PDX-1 activation domain located between amino acids 1 to 79. GAL4:PDX activity was induced over physiological glucose concentrations and was also regulated by effectors of this response. The level of endogenous PDX-1 binding and phosphorylation were also induced under these conditions. We discuss how changes in PDX-1 phosphorylation may influence activity in glucose-treated beta cells.
Collapse
|
11
|
Leibiger IB, Leibiger B, Moede T, Berggren PO. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell 1998; 1:933-8. [PMID: 9660977 DOI: 10.1016/s1097-2765(00)80093-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The control of glucose homeostasis by insulin requires, in addition to the glucose-induced insulin release, a highly dynamic control of insulin biosynthesis. Although elevated glucose concentrations have been shown to trigger insulin biosynthesis at the levels of transcription and translation, the molecular mechanisms underlying the immediate transcriptional control are poorly understood. By investigating signal transduction pathways involved in the "glucose-dependent" transcriptional control, thereby analyzing endogenous (prepro)insulin mRNA levels and monitoring on-line insulin promoter-driven GFP expression, we provide, for the first time, evidence that physiologically stimulated insulin secretion from the pancreatic beta cell promotes insulin biosynthesis by enhancing insulin gene transcription in an autocrine manner. We show that secreted insulin acts via beta-cell insulin receptors and up-regulates insulin gene transcription by signaling through the IRS-2/PI-3 kinase/p70 s6k and CaM kinase pathways.
Collapse
Affiliation(s)
- I B Leibiger
- Department of Molecular Medicine, Rolf Luft Center for Diabetes Research, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
12
|
Qiu Y, Sharma A, Stein R. p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol Cell Biol 1998; 18:2957-64. [PMID: 9566915 PMCID: PMC110675 DOI: 10.1128/mcb.18.5.2957] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
Pancreatic beta-cell-type-specific and glucose-inducible transcription of the insulin gene is mediated by the basic helix-loop-helix factors that bind to and activate expression from an E-box element within its enhancer. The E-box activator is a heteromeric complex composed of a beta-cell-enriched factor, BETA2/NeuroD, and ubiquitously distributed proteins encoded by the E2A and HEB genes. Previously, we demonstrated that the adenovirus type 5 E1A proteins repressed stimulation by the E-box activator in beta cells. In this study, our objective was to determine how E1A repressed activator function. The results indicate that E1A reduces activation by binding to and sequestering the p300 cellular coactivator protein. Thus, we show that expression of p300 in beta cells can relieve inhibition by E1A, as well as potentiate activation by the endogenous insulin E-box transcription factors. p300 stimulated activation from GAL4 (amino acids 1 to 147) fusion constructs of either BETA2/NeuroD or the E2A-encoded E47 protein. The sequences spanning the activation domains of BETA2/NeuroD (amino acids 156 to 355) and E47 (amino acids 1 to 99 and 325 to 432) were required for this response. The same region of BETA2/NeuroD was shown to be important for binding to p300 in vitro. The sequences of p300 involved in E47 and BETA2/NeuroD association resided between amino acids 1 and 1257 and 1945 and 2377, respectively. A mutation in p300 that abolished binding to BETA2/NeuroD also destroyed the ability of p300 to activate insulin E-box-directed transcription in beta cells. Our results indicate that physical and functional interactions between p300 and the E-box activator factors play an important role in insulin gene transcription.
Collapse
Affiliation(s)
- Y Qiu
- Department of Molecular Physiology and Biophysics, Vanderbilt Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
13
|
Sharma A, Henderson E, Gamer L, Zhuang Y, Stein R. Analysis of the role of E2A-encoded proteins in insulin gene transcription. Mol Endocrinol 1997; 11:1608-17. [PMID: 9328343 DOI: 10.1210/mend.11.11.0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pancreatic beta-cell type-specific transcription of the insulin gene is mediated, in part, by factors in the basic helix-loop-helix (bHLH) family that act on a site within the insulin enhancer, termed the E1-box. Expression from this element is regulated by a heteromeric protein complex containing ubiquitous (i.e. the E2A- and HEB-encoded proteins) and islet-enriched members of the bHLH family. Recent studies indicate that the E2A- and HEB-encoded proteins contain a transactivation domain, termed AD2, that functions more efficiently in transfected beta-cell lines. In the present report, we extend this observation by demonstrating that expression of full-length E2A proteins (E47, E12, and E2/5) activates insulin E element-directed transcription in a beta-cell line-selective manner. Stimulation required functional interactions with other key insulin gene transcription factors, including its islet bHLH partner as well as those that act on the RIPE3b1 and RIPE3a2 elements of the insulin gene enhancer. The conserved AD2 domain in the E2A proteins was essential in this process. The effect of the E2A- and HEB-encoded proteins on insulin gene expression was also analyzed in mice lacking a functional E2A or HEB gene. There was no apparent difference in insulin production between wild type, heterozygote, and homozygous mutant E2A or HEB mice. These results suggest that neither the E2A- or HEB-encoded proteins are essential for insulin transcription and that one factor can substitute for the other to impart normal insulin E1 activator function in mutant animals.
Collapse
Affiliation(s)
- A Sharma
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
14
|
Carty MD, Lillquist JS, Peshavaria M, Stein R, Soeller WC. Identification of cis- and trans-active factors regulating human islet amyloid polypeptide gene expression in pancreatic beta-cells. J Biol Chem 1997; 272:11986-93. [PMID: 9115263 DOI: 10.1074/jbc.272.18.11986] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Islet amyloid polypeptide is expressed almost exclusively in pancreatic beta- and delta-cells. Here we report that beta cell-specific expression of the human islet amyloid polypeptide gene is principally regulated by promoter proximal sequences. The sequences that control tissue-specific expression were mapped between nucleotides -2798 and +450 of the human islet amyloid polypeptide (IAPP) gene using transgenic mice. To localize the cis-acting elements involved in this response, we examined the effects of mutations within these sequences using transfected islet amyloid polypeptide promoter expression constructs in pancreatic beta cell lines. The sequences between -222 and +450 bp were found to be necessary for beta cell-specific expression. Linker-scanning mutations of the 5'-promoter proximal region defined several key distinct control elements, including a negative-acting element at -111/-102 base pairs (bp), positive-acting elements like the basic helix-loop-helix-like binding site at -138/-131 bp, and the three A/T-rich, homeobox-like sites at -172/-163, -154/-142, and -91/-84 bp. Mutations within any one of these elements eliminated transcriptional expression by the promoter. Gel mobility shift assays revealed that the PDX-1 homeobox factor, which is required for insulin gene transcription in beta cells, interacted specifically at the -154/-142- and -91/-84-bp sites. Since PDX-1 is highly enriched in beta and delta cells, these results suggest that this factor plays a principal role in defining islet beta cell- and delta cell-specific expression of the IAPP gene.
Collapse
Affiliation(s)
- M D Carty
- Department of Molecular Sciences, Central Research Division, Pfizer, Inc., Groton, Connecticut 06340, USA
| | | | | | | | | |
Collapse
|
15
|
Stoffers DA, Thomas MK, Habener JF. Homeodomain protein IDX-1: a master regulator of pancreas development and insulin gene expression. Trends Endocrinol Metab 1997; 8:145-51. [PMID: 18406800 DOI: 10.1016/s1043-2760(97)00008-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The homeodomain protein IDX-1 appears to be a "master regulator" of pancreas development and beta-cell differentiation and function. In murine gene inactivation models and in a human subject with a homozygous mutation of the IDX-1 gene, the pancreas fails to develop. In the adult endocrine pancreas, IDX-1 is primarily expressed in beta cells, where it is a key factor in the upregulation of insulin gene transcription and appears to have a role in the regulation of the somatostatin, glucokinase, glucose transporter-2, and islet amyloid polypeptide genes. Recent studies also suggest a role for IDX-1 in the neogenesis and proliferation of beta cells. The observed functions of IDX-1 and its downregulation in parallel with insulin in glucose-toxicity models implicate IDX-1 as a potential factor contributing to the pathogenesis of diabetes mellitus. Future directions include the use of conditional gene inactivation to determine more precisely the role of IDX-1 throughout endocrine pancreas differentiation and the exploration of IDX-1 as a potential target for gene therapy of diabetes mellitus.
Collapse
Affiliation(s)
- D A Stoffers
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02114, USA
| | | | | |
Collapse
|
16
|
Marshak S, Totary H, Cerasi E, Melloul D. Purification of the beta-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc Natl Acad Sci U S A 1996; 93:15057-62. [PMID: 8986763 PMCID: PMC26355 DOI: 10.1073/pnas.93.26.15057] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The beta cell-specific glucose-sensitive factor (GSF), which binds the A3 motif of the rat I and human insulin promoters, is modulated by extracellular glucose. A single mutation in the GSF binding site of the human insulin promoter abolishes the stimulation by high glucose only in normal islets, supporting the suggested physiological role of GSF in the glucose-regulated expression of the insulin gene. GSF binding activity was observed in all insulin-producing cells. We have therefore purified this activity from the rat insulinoma RIN and found that a single polypeptide of 45 kDa was responsible for DNA binding. Its amino acid sequence, determined by microsequencing, provided direct evidence that GSF corresponds to insulin promoter factor 1 (IPF-1; also known as PDX-1) and that, in addition to its essential roles in development and differentiation of pancreatic islets and in beta cell-specific gene expression, it functions as mediator of the glucose effect on insulin gene transcription in differentiated beta cells. The human cDNA coding for GSF/IPF-1 has been cloned, its cell and tissue distribution is described. Its expression in the glucagon-producing cell line alpha TC1 transactivates the wild-type human insulin promoter more efficiently than the mutated construct. It is demonstrated that high levels of ectopic GSF/IPF-1 inhibit the expression of the human insulin gene in normal islets, but not in transformed beta TC1 cells. These results suggest the existence of a control mechanism, such as requirement for a coactivator of GSF/IPF-1, which may be present in limiting amounts in normal as opposed to transformed beta cells.
Collapse
Affiliation(s)
- S Marshak
- Department of Endocrinology and Metabolism, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
17
|
Madsen OD, Jensen J, Blume N, Petersen HV, Lund K, Karlsen C, Andersen FG, Jensen PB, Larsson LI, Serup P. Pancreatic development and maturation of the islet B cell. Studies of pluripotent islet cultures. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:435-45. [PMID: 9022666 DOI: 10.1111/j.1432-1033.1996.435rr.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pancreas organogenesis is a highly regulated process, in which two anlage evaginate from the primitive gut. They later fuse, and, under the influence of the surrounding mesenchyme, the mature organ develops, being mainly composed of ductal, exocrine and endocrine compartments. Early buds are characterized by a branching morphogenesis of the ductal epithelium from which endocrine and exocrine precursor cells bud to eventually form the two other compartments. The three compartments are thought to be of common endodermal origin; in contrast to earlier hypotheses, which suggested that the endocrine compartment was of neuroectodermal origin. It is thus generally believed that the pancreatic endocrine-lineage possesses the ability to mature along a differentiation pathway that shares many characteristics with those of neuronal differentiation. During recent years, studies of insulin-gene regulation and, in particular, the tissue-specific transcriptional control of insulin-gene activity have provided information on pancreas development in general. The present review summarizes these findings, with a special focus on our own studies on pluripotent endocrine cultures of rat pancreas.
Collapse
Affiliation(s)
- O D Madsen
- Hagedorn Research Institute, Gentofte, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Damert A, Leibiger B, Leibiger IB. Dual function of the intron of the rat insulin I gene in regulation of gene expression. Diabetologia 1996; 39:1165-72. [PMID: 8897003 DOI: 10.1007/bf02658502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since the short intron in the 5'-untranslated region (5'-UTR) has been preserved during duplication of the insulin genes in rodents we postulated a possible involvement of these sequences in the regulation of gene expression. To examine this hypothesis we fused nested 5'-deletion fragments of the rat insulin I (rins1) promoter and sequences of the 5'-UTR up to nucleotide +170 with the reporter gene chloramphenicol acetyltransferase (CAT) and generated two series of expression constructs differing by the presence or absence of the intron (rins11VS). Transient expression of these chimeric genes in HIT M2.2.2 cells revealed a four-fold higher CAT expression in the presence of rins1IVS. Comparison of the CAT transcript quantities generated by both counterparts showed only a 1.7-fold difference in the total nuclear RNA fraction, but a four-fold difference in the fraction of nuclear polyadenylated RNA. Further analysis of cytoplasmic RNA excluded nuclear-cytoplasmic transport, RNA stability, and efficiency of translation as targets of the rins1IVS-mediated effect. The higher rate in polyadenylated CAT transcripts generated by rins1IVS-containing vectors suggests a possible coupling between splicing and polyadenylation. Transient expression studies using chimeras containing mutations or deletions between nucleotides -87 and +110 showed a reduction of expression by 30%. These data suggest a dual function of the rins1 intron on transcription initiation and transcript maturation.
Collapse
Affiliation(s)
- A Damert
- Institute of Biochemistry, School of Medicine, E,-M.-Arndt University, Greifswald, Germany
| | | | | |
Collapse
|
19
|
Nielsen FC, Pedersen K, Hansen TV, Rourke IJ, Rehfeld JF. Transcriptional regulation of the human cholecystokinin gene: composite action of upstream stimulatory factor, Sp1, and members of the CREB/ATF-AP-1 family of transcription factors. DNA Cell Biol 1996; 15:53-63. [PMID: 8561897 DOI: 10.1089/dna.1996.15.53] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have examined cis-elements and trans-acting factors that regulate transcription of the human cholecystokinin (CCK) gene. Transient expression of CCK promoter deletion constructs in human SK-N-MC neuroblastoma cells depicted positive cis-elements between the positions -100 to -92, -84 to -74, and -58 to -37, 5' to the transcription initiation site. Correspondingly, DNase I protection analysis showed that transacting factors bound to elements within these regions. The sequences encompass a putative basic helix-loop-helix leucine zipper (bHLH-ZIP) element, an Sp1 element, and a combined cAMP- and TPA-responsive element (CRE/TRE) at positions -97 to -92, -39 to -34, and -80 to -73, respectively. Mobility and supershift assays demonstrated that upstream stimulatory factor (USF) and Sp1 bind to the former elements and competition experiments confirmed that CREB/ATF and AP-1 bind to the CRE/TRE element. Mutation of the bHLH-ZIP and CRE/TRE elements decreased the activity of the promoter by 65% and 42%, respectively. The activity of the promoter was increased six- and two-fold after stimulation with forskolin and TPA, respectively. Stimulation was eliminated after mutation of the CRE/TRE element. Co-transfection experiments with pRSV-c-jun, pSV-fos, and pRC-RSV-CREB constructs showed that jun, CREB, and AP-1 stimulate transcription. We conclude that USF, Sp1, and members of the CREB/ATF and AP-1 family of transcription factors are the major determinants of CCK gene transcription.
Collapse
Affiliation(s)
- F C Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
20
|
Leibiger IB, Schwarz T, Leibiger B, Walther R. Functional analysis of a newly identified TAAT-box of the rat insulin-II gene promoter. FEBS Lett 1995; 362:210-4. [PMID: 7720874 DOI: 10.1016/0014-5793(95)00243-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transcriptional regulation of insulin gene expression is achieved by an interplay of tissue-specific and ubiquitous cis- and trans-acting elements. E-box like motifs and TAAT-motifs were shown to play a crucial role in initiating insulin gene transcription. Studying the AT-rich region of the rat insulin-II promoter between nucleotides -212 and -196, we observed a base difference at -211, an adenosine instead of a cytidine, compared to the previously reported sequence (EMBL Accession No. J00748). Sequence analysis of promoter fragments from different rat strains showed that adenosine at position -211 represents the wild type (EMBL Accession No. X82162). This base exchange leads to the formation of an additional TAAT-motif, i.e. TAAT3, at the complementary DNA strand directly upstream of the previously studied TAAT2 motif, formerly named CT-2. Here we show that the newly identified motif TAAT3 is involved in (i) transcriptional control in vivo, (ii) in vitro DNA/protein interactions, and that (iii) TAAT1, TAAT2 and TAAT3 are binding sites for the homeodomain-containing factor IPF-1.
Collapse
Affiliation(s)
- I B Leibiger
- Institut für Biochemie, Medizinische Fakultät, Ernst-Moritz-Arndt Universität, Greifswald, Germany
| | | | | | | |
Collapse
|
21
|
Melloul D, Cerasi E. Transcription of the insulin gene: towards defining the glucose-sensitive cis-element and trans-acting factors. Diabetologia 1994; 37 Suppl 2:S3-10. [PMID: 7821736 DOI: 10.1007/bf00400820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous work has shown that the sequence -196 to -247 of the rat insulin I gene mediates the stimulatory effect of glucose in fetal islets. We have used adult rat and human islets to delineate the glucose-sensitive cis-element to the sequence -193 to -227. In electrophoretic mobility shift assays, a 22 bp nucleotide corresponding to the sequence -206 to -227 bound all the nuclear proteins that could be bound by the entire minienhancer sequence -196 to -247. The rat insulin I sequence -206 to -227 formed three major complexes; in contrast, the corresponding human insulin sequence formed one single band with human and rat islet nuclear extracts, corresponding to the complex C1 of the rat insulin gene. Incubation of islets with varying glucose levels resulted in a dose-dependent increase in the intensity of the C1 band, while the other nuclear complexes formed with the insulin sequence, or the AP1 and SP1 binding activities used as control, were glucose insensitive. This is thus the first demonstration of a physiologic glucose-sensitive trans-acting factor for the insulin gene, whose further study may markedly enhance our understanding of the regulation of insulin biosynthesis in normal and diabetic beta cells. Furthermore, once cloned, the introduction of this glucose sensitive factor may enable the construction of truly physiologic artificial beta cells.
Collapse
Affiliation(s)
- D Melloul
- Department of Endocrinology and Metabolism, Hebrew University Hadassah Medical Center, Jerusalem, Israel
| | | |
Collapse
|
22
|
Rommel C, Leibiger IB, Leibiger B, Walther R. CT-boxes are involved in control of the rat insulin II gene expression. FEBS Lett 1994; 345:17-22. [PMID: 8194592 DOI: 10.1016/0014-5793(94)00430-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Expression of the rat insulin II gene is controlled mainly at the level of transcription initiation by multiple factors binding to specific cis-acting DNA-elements in the regulatory region. We have shown that two elements (CT-motifs) located between nucleotides -83 and -76 (CT-1) and -204 and -197 (CT-2) are involved in transcriptional regulation in the insulin-producing cell line HIT M2.2.2. Transient expression analysis of 5'-deletion as well as block replacement mutants revealed that CT-1 and CT-2 are mutational sensitive. Gel mobility shift assays showed that both motifs bind similar nuclear factors. Our results suggest the involvement of a third CT-motif located directly upstream of CT-2 on the complementary strand.
Collapse
Affiliation(s)
- C Rommel
- Institut für Biochemie, Medizinische Fakultät, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | | | | | | |
Collapse
|
23
|
Stein R, Henderson E, Cordle SR. Analysis of an insulin gene transcription control element. Positive and negative regulation appears to be mediated by different element sequences. FEBS Lett 1994; 338:187-90. [PMID: 8307179 DOI: 10.1016/0014-5793(94)80362-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pancreatic beta-cell-type-specific transcription of the insulin gene is controlled by cis-acting sequence elements lying within its enhancer region. An essential element required for expression is the insulin control element (ICE). The activity of this element is regulated by both positive- and negative-acting transcription factors. In this study, we have identified the nucleotide sequences within the ICE that are required for repression in noninsulin producing cells. Our results indicate that the cis-acting sequences involved in negative control are distinct from those required in activating expression in beta cells.
Collapse
Affiliation(s)
- R Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232
| | | | | |
Collapse
|