1
|
Adejumo IO. Hypothetical proteins of chicken-isolated Limosilactobacillus reuteri subjected to in silico analyses induce IL-2 and IL-10. GENES & NUTRITION 2024; 19:21. [PMID: 39425027 PMCID: PMC11490116 DOI: 10.1186/s12263-024-00755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
Lactic acid bacteria (LAB) probiotics are health-promoting but their characteristics, safety profile and functional mechanisms are not fully understood. Hence, this study aimed to characterize some hypothetical proteins of the chicken-isolated Limosilactobacillus reuteri genome and unravel their IL-2 and IL-10-inducing potential to understand mechanisms of their immunological functionality for sustainable applications. The selected proteins were subjected to in silico analyses for transmembrane topology, sub-cellular localization, IL-2 and IL-10-inducing ability and IL-2 and IL-10 gene expression across various conditions. IL-2 and IL-10-inducing mutants were statistically analyzed using a one-way analysis of variance of a general linear model of SAS and statistical significance was set at p < 0.05. The analyzed proteins are stable under a wide temperature range. All the hypothetical proteins are IL-2 and IL-10-inducing but QHPv.2.12, QHPv.2.13 and QHPv.2.15 are non-immunogenic. The evaluated mutants are IL-2 and IL-10-inducers but QHPv.2.13 and QHPv.2.15 are not immunogenic. This study sheds light on understanding the functional mechanisms of chicken-isolated L. reuteri and suggests it or its proteins as potent candidates for feed additive and therapeutic purposes.
Collapse
|
2
|
Yang CF, Pu Y, Li L, Guo MG, Feng ZW. Inflammatory cytokines and carpal tunnel syndrome: A causal relationship revealed. Cytokine 2024; 184:156777. [PMID: 39395310 DOI: 10.1016/j.cyto.2024.156777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/24/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVES Carpal tunnel syndrome (CTS) and certain inflammatory cytokines have been linked in observational studies; however, the exact causative linkages remain unknown. The purpose of this study is to investigate any possible link between the onset of CTS and 91 inflammatory cytokines. METHODS A two-sample bidirectional Mendelian randomization (MR) approach was used in this investigation. 91 circulating inflammatory cytokines' genetic variants were retrieved from the European ancestry genome-wide association study (GWAS) database. From germline GWAS, summary data for 24,766 CTS patients and 360,538 controls were gathered. The instrumental variables were single nucleotide polymorphisms (SNPs) that were highly correlated with the 91 inflammatory cytokines. The random-effects inverse-variance weighted (IVW) approach was employed in the primary analysis, and multiple comparisons were subjected to the Bonferroni correction. Sensitivity analysis was performed to evaluate the validity of the causal relationship. RESULTS Our findings showed a negative correlation between CCL19, FGF-19, IL-5, TGF-alpha, TRAIL, and the risk of CTS. Specifically, CCL19 (odds ratio [OR]: 0.944, 95 % confidence interval [CI]: 0.894-0.996, p = 0.0349), FGF-19 (OR: 0.940, 95 % CI: 0.894-0.987, p = 0.0133), IL-5 (OR: 0.936, 95 % CI: 0.885-0.990, p = 0.0212), TGF-alpha (OR: 0.902, 95 % CI: 0.838-0.970, p = 0.0057), and TRAIL (OR: 0.926, 95 % CI: 0.881-0.974, p = 0.0026) were inversely related to CTS risk. Conversely, CCL20, IL-2RB, and IL-6 were positively associated with an increased risk of CTS. Specifically, CCL20 (OR: 1.072, 95 % CI: 1.005-1.142, p = 0.0334), IL-2RB (OR: 1.067, 95 % CI: 1.001-1.137, p = 0.0463), and IL-6 (OR: 1.088, 95 % CI: 1.005-1.177, p = 0.0365) were positively correlated with CTS risk. Reverse Mendelian randomization analyses indicated no evidence of a reverse causal relationship between CTS and inflammatory cytokines. CONCLUSION According to this study, there is a causal link between CTS and certain inflammatory cytokines, which suggests that these cytokines may be important in the pathophysiology of CTS. To confirm these results and investigate the specific function of these cytokines in the beginning and development of CTS, more investigation is necessary.
Collapse
Affiliation(s)
- Chen-Fei Yang
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - Ying Pu
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - Li Li
- School of Nursing, North Sichuan Medical College, Nanchong, China
| | - Ming-Gang Guo
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China.
| | - Zhi-Wei Feng
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
3
|
Katsuyama E, Humbel M, Suarez-Fueyo A, Satyam A, Yoshida N, Kyttaris VC, Tsokos MG, Tsokos GC. CD38 in SLE CD4 T cells promotes Ca 2+ flux and suppresses interleukin-2 production by enhancing the expression of GM2 on the surface membrane. Nat Commun 2024; 15:8304. [PMID: 39333474 PMCID: PMC11436706 DOI: 10.1038/s41467-024-52617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
CD38 has emerged as a potential therapeutic target for patients with systemic lupus erythematosus (SLE) but it is not known whether CD38 alters CD4+ T cell function. Using primary human T cells and CD38-sufficient and CD38-deficient Jurkat T cells, we demonstrate that CD38 shifts the T cell lipid profile of gangliosides from GM3 to GM2 by upregulating B4GALNT1 in a Sirtuin 1-dependent manner. Enhanced expression of GM2 causes ER stress by enhancing Ca2+ flux through the PLCγ1-IP3 pathway. Interestingly, correction of the calcium overload by an IP3 receptor inhibitor, but not by a store-operated calcium entry (SOCE) inhibitor, improves IL-2 production by CD4+ T cells in SLE. This study demonstrates that CD38 affects calcium homeostasis in CD4+ T cells by controlling cell membrane lipid composition that results in suppressed IL-2 production. CD38 inhibition with biologics or small drugs should be expected to benefit patients with SLE.
Collapse
Affiliation(s)
- Eri Katsuyama
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Morgane Humbel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Abel Suarez-Fueyo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Vasileios C Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
4
|
Scholand KK, Galletti J, Haap W, Santos-Ferreira T, Ullmer C, de Paiva CS. Inhibition of Cathepsin S in Autoimmune CD25KO Mouse Improves Sjögren Disease-Like Lacrimal Gland Pathology. Invest Ophthalmol Vis Sci 2024; 65:26. [PMID: 39017634 PMCID: PMC11262477 DOI: 10.1167/iovs.65.8.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Purpose CD25KO mice are a model of Sjögren disease (SjD) driven by autoreactive T cells. Cathepsin S (CTSS) is a protease crucial for major histocompatibility complex class II presentation that primes T cells. We investigated if a diet containing CTSS inhibitor would improve autoimmune signs in CD25KO mice. Methods Four-week female CD25KO mice were randomly chosen to receive chow containing a CTSS inhibitor (R05461111, 262.5 mg/kg chow) or standard chow for 4 weeks. Cornea sensitivity was measured. Inflammatory score was assessed in lacrimal gland (LG) histologic sections. Flow cytometry of LG and ocular draining lymph nodes (dLNs) investigated expression of Th1 and Th17 cells. Expression of inflammatory, T- and B-cell, and apoptotic markers in the LG were assessed with quantitative PCR. The life span of mice receiving CTSS inhibitor or standard chow was compared. CD4+ T cells from both groups were isolated from spleens and adoptively transferred into RAG1KO female recipients. Results Mice receiving CTSS inhibitor had better cornea sensitivity and improved LG inflammatory scores. There was a significant decrease in the frequency of CD4+ immune cells and a significant increase in the frequency of CD8+ immune cells in the dLNs of CTSS inhibitor mice. There was a significant decrease in Th1 and Th17 cells in CTSS inhibitor mice in both LGs and dLNs. Ifng, Ciita, and Casp8 mRNA in CTSS inhibitor mice decreased. Mice that received the CTSS inhibitor lived 30% longer. Adoptive transfer recipients with CTSS inhibitor-treated CD4+ T cells had improved cornea sensitivity and lower inflammation scores. Conclusions Inhibiting CTSS could be a potential venue for the treatment of SjD in the eye and LG.
Collapse
Affiliation(s)
- Kaitlin K. Scholand
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| | | | - Wolfgang Haap
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tiago Santos-Ferreira
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cintia S. de Paiva
- Ocular Surface Center, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
- Department of BioSciences, Rice University, Houston, Texas, United States
| |
Collapse
|
5
|
Zhou L, Velegraki M, Wang Y, Mandula JK, Chang Y, Liu W, Song NJ, Kwon H, Xiao T, Bolyard C, Hong F, Xin G, Ma Q, Rubinstein MP, Wen H, Li Z. Spatial and functional targeting of intratumoral Tregs reverses CD8+ T cell exhaustion and promotes cancer immunotherapy. J Clin Invest 2024; 134:e180080. [PMID: 38787791 PMCID: PMC11245154 DOI: 10.1172/jci180080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Intratumoral Tregs are key mediators of cancer immunotherapy resistance, including anti-programmed cell death (ligand) 1 [anti-PD-(L)1] immune checkpoint blockade (ICB). The mechanisms driving Treg infiltration into the tumor microenvironment (TME) and the consequence on CD8+ T cell exhaustion remain elusive. Here, we report that heat shock protein gp96 (also known as GRP94) was indispensable for Treg tumor infiltration, primarily through the roles of gp96 in chaperoning integrins. Among various gp96-dependent integrins, we found that only LFA-1 (αL integrin), and not αV, CD103 (αE), or β7 integrin, was required for Treg tumor homing. Loss of Treg infiltration into the TME by genetic deletion of gp96/LFA-1 potently induced rejection of tumors in multiple ICB-resistant murine cancer models in a CD8+ T cell-dependent manner, without loss of self-tolerance. Moreover, gp96 deletion impeded Treg activation primarily by suppressing IL-2/STAT5 signaling, which also contributed to tumor regression. By competing for intratumoral IL-2, Tregs prevented the activation of CD8+ tumor-infiltrating lymphocytes, drove thymocyte selection-associated high mobility group box protein (TOX) induction, and induced bona fide CD8+ T cell exhaustion. By contrast, Treg ablation led to striking CD8+ T cell activation without TOX induction, demonstrating clear uncoupling of the 2 processes. Our study reveals that the gp96/LFA-1 axis plays a fundamental role in Treg biology and suggests that Treg-specific gp96/LFA-1 targeting represents a valuable strategy for cancer immunotherapy without inflicting autoinflammatory conditions.
Collapse
Affiliation(s)
- Lei Zhou
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Maria Velegraki
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
| | - Yi Wang
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Molecular, Cellular and Developmental Biology Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - J K Mandula
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Biomedical Informatics
| | - Weiwei Liu
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Molecular, Cellular and Developmental Biology Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - No-Joon Song
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
| | - Hyunwoo Kwon
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Molecular, Cellular and Developmental Biology Graduate Program, Ohio State University, Columbus, Ohio, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
| | - Feng Hong
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, USA
| | - Qin Ma
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Biomedical Informatics
| | - Mark P. Rubinstein
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Haitao Wen
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology (PIIO), The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute (OSUCCC), Columbus, Ohio, USA
- Division of Medical Oncology, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, USA
| |
Collapse
|
6
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2Rα KO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. Front Immunol 2024; 15:1369818. [PMID: 38812502 PMCID: PMC11133634 DOI: 10.3389/fimmu.2024.1369818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction IL-2Rα knock out (KO) mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα KO mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα KO to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα KO vascular smooth muscle cells had detectable IL-2Rα. Methods We used multiple gene and protein-based methods to determine why IL-2Rα KO vascular smooth muscle cells exhibited IL-2Rα protein. These methods included: genomic sequencing, assessing cells and tissues for evidence of maternal microchimerism, and determining the half-life of IL-2Rα protein. Results Our studies demonstrated the following: (1) in addition to the cell surface, IL-2Rα is localized to the nucleus; (2) the genetic deletion of IL-2Rα is intact in IL-2Rα KO mice; (3) both IL-2Rα KO and WT tissues show evidence of maternal microchimerism, the likely source of IL-2Rα (4) IL-2Rα is transmitted between cells; (5) IL-2Rα has a long half-life; and (6) nuclear IL-2Rα contributes to the regulation of cell proliferation and size. Conclusion Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
Affiliation(s)
- Victoria A. Wong
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kristie N. Dinh
- Fertility Wellness Institute of Ohio West Chester Township, OH, United States
| | - Guangchun Chen
- Genomics and Microarray Core Facility, University of Texas Southwestern Medical Center Dallas, TX, United States
| | - Lucile E. Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Medical Education, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
7
|
Ono M, Satou Y. Spectrum of Treg and self-reactive T cells: single cell perspectives from old friend HTLV-1. DISCOVERY IMMUNOLOGY 2024; 3:kyae006. [PMID: 38863793 PMCID: PMC11165433 DOI: 10.1093/discim/kyae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the 'self-reactivity' of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic T cell receptor (TCR)-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus type 1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single-cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Wang L, Maharjan CK, Borcherding N, Master RP, Mo J, Tithi TI, Kim MC, Carelock ME, Master AP, Gibson-Corley KN, Kolb RH, Smith KA, Zhang W. Epithelial IL-2 is critical for NK cell-mediated cancer immunosurveillance in mammary glands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591178. [PMID: 38712046 PMCID: PMC11071474 DOI: 10.1101/2024.04.25.591178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.
Collapse
|
9
|
Hindmarch DC, Malashanka S, Shows DM, Clarke AS, Lord JD. Janus Kinase Inhibitors Differentially Inhibit Specific Cytokine Signals in the Mesenteric Lymph Node Cells of Inflammatory Bowel Disease Patients. J Crohns Colitis 2024; 18:628-637. [PMID: 37855324 DOI: 10.1093/ecco-jcc/jjad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Janus kinase [JAK] inhibitors [JAKinibs] are effective small molecule therapies for treating Crohn's disease [CD] and ulcerative colitis [UC], collectively known as inflammatory bowel disease [IBD]. By preventing JAKs from phosphorylating signal transducer and activator of transcription proteins, JAKinibs disrupt cytokine signalling pathways that promote inflammation. Despite considerable overlap in the JAKs they target, first- and second-generation JAKinibs display different clinical efficacies in CD and UC. METHODS We conducted a comparative phosflow study of four JAKinibs [filgotinib, upadacitinib, tofacitinib, and deucravacitinib] to observe subtle mechanistic differences that may dictate their clinical behaviour. Resected mesenteric lymph node [MLN] cells from 19 patients [9 CD, 10 UC] were analysed by flow cytometry in the presence or absence of different cytokine stimuli and titrated JAKinibs. RESULTS We found a higher potency of the JAK 1/3-preferential inhibitor, tofacitinib, for JAK 3-dependent cytokine signalling pathways in comparison to filgotinib, but a higher potency of the JAK 1-preferential inhibitors, filgotinib and upadacitinib, for JAK 3-independent cytokine signalling pathways. Deucravacitinib, a TYK2-preferential inhibitor, demonstrated a much narrower selectivity by inhibiting only IL-10 and IFN-β pathways, albeit more potently than the other JAKinibs. Additionally, we found some differences in the sensitivity of immune cells from CD versus UC, and patients with versus without a CD-associated NOD2 polymorphism, to phosphorylate signal transducer and activator of transcriptions in response to specific cytokine stimulation. CONCLUSIONS Despite their similarities, differences exist in the relative potencies of different JAKinibs against distinct cytokine families, to explain their clinical efficacy.
Collapse
Affiliation(s)
- Duncan C Hindmarch
- Benaroya Research Institute, Translation Research Division, Seattle, WA, USA
| | - Sofya Malashanka
- Virginia Mason Medical Center, Gastroenterology Division, Internal Medicine Department, Seattle, WA, USA
| | - Donna M Shows
- Benaroya Research Institute, Translation Research Division, Seattle, WA, USA
| | | | - James D Lord
- Benaroya Research Institute, Translation Research Division, Seattle, WA, USA
- Virginia Mason Medical Center, Gastroenterology Division, Internal Medicine Department, Seattle, WA, USA
| |
Collapse
|
10
|
Shouse AN, LaPorte KM, Malek TR. Interleukin-2 signaling in the regulation of T cell biology in autoimmunity and cancer. Immunity 2024; 57:414-428. [PMID: 38479359 PMCID: PMC11126276 DOI: 10.1016/j.immuni.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 05/26/2024]
Abstract
Interleukin-2 (IL-2) is a critical cytokine for T cell peripheral tolerance and immunity. Here, we review how IL-2 interaction with the high-affinity IL-2 receptor (IL-2R) supports the development and homeostasis of regulatory T cells and contributes to the differentiation of helper, cytotoxic, and memory T cells. A critical element for each T cell population is the expression of CD25 (Il2rα), which heightens the receptor affinity for IL-2. Signaling through the high-affinity IL-2R also reinvigorates CD8+ exhausted T (Tex) cells in response to checkpoint blockade. We consider the molecular underpinnings reflecting how IL-2R signaling impacts these various T cell subsets and the implications for enhancing IL-2-dependent immunotherapy of autoimmunity, other inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Acacia N Shouse
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
11
|
Lin Y, Wang X, Qin Y, Wang C, Zhou T, Zhang L, Su L, Ren W, Liao C. A single-agent fusion of human IL-2 and anti-IL-2 antibody that selectively expands regulatory T cells. Commun Biol 2024; 7:299. [PMID: 38461332 PMCID: PMC10925001 DOI: 10.1038/s42003-024-05987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
The occurrence of many autoimmune diseases takes root on the disrupted balance among Treg cells, Teff cells, etc. Low-dose interleukin-2 (IL-2) cytokine demonstrates promising clinical efficacy in the expansion of Treg cells and the treatment of autoimmune diseases. However, its clinical application is hindered by the small therapeutic index and short half-life. Previous studies have shown that non-covalent complex of human IL-2 and anti-IL-2 antibody biases cytokine activity towards Treg cells and extends IL-2's half-life. The clinical translation of such complex is non-trivial. In this study, we discover an anti-human IL-2 antibody and engineer a covalently-linked single-agent fusion of human IL-2 and its antibody that selectively expands Treg cells and exhibits superior disease control activity in animal models of ulcerative colitis and systemic lupus erythematosus, with proper safety profile and good developability. These studies pave the road for its clinical development in diverse autoimmune diseases.
Collapse
Affiliation(s)
- Yuan Lin
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Xue Wang
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Yuhao Qin
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Chengpan Wang
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Tang Zhou
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Long Zhang
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Lu Su
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Wenming Ren
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China
| | - Cheng Liao
- Shanghai Shengdi Pharmaceutical Co. Ltd, Shanghai, 200100, China.
- Jiangsu Hengrui Pharmaceutical Co. Ltd, Lianyungang, 222000, China.
| |
Collapse
|
12
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Lokau J, Petasch LM, Garbers C. The soluble IL-2 receptor α/CD25 as a modulator of IL-2 function. Immunology 2024; 171:377-387. [PMID: 38037265 DOI: 10.1111/imm.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The pleiotropic cytokine interleukin-2 (IL-2) is an integral regulator of healthy and pathological immune responses, with the most important role in regulating the homeostasis of regulatory T cells. IL-2 signalling involves three distinct receptors: The IL-2 receptor α (IL-2Rα/CD25), IL-2Rβ, and IL-2Rγ/γc . While IL-2Rβ and γc are essential for signal transduction, IL-2Rα regulates the affinity of the receptor complex towards IL-2. A soluble form of the IL-2Rα (sIL-2Rα) is present in the blood of healthy individuals and increased under various pathological conditions. Although it is known that the sIL-2Rα retains its ability to bind IL-2, it is not fully understood how this molecule affects IL-2 function and thus immune responses. Here, we summarize the current knowledge on the generation and function of the sIL-2Rα. We describe the molecular mechanisms leading to sIL-2Rα generation and discuss the different IL-2 modulating functions that have been attributed to the sIL-2Rα. Finally, we describe attempts to utilize the sIL-2Rα as a therapeutic tool.
Collapse
Affiliation(s)
- Juliane Lokau
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Lynn M Petasch
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Christoph Garbers
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2RαKO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565571. [PMID: 37961725 PMCID: PMC10635137 DOI: 10.1101/2023.11.03.565571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
IL-2Rα KO mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα knock out (KO) mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα knock mice to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα knock out vascular smooth muscle cells had detectable IL-2Rα. Further studies suggested that the source of IL-2Rα protein was likely maternal heterozygous cells present in KO offspring due to maternal microchimerism. Because the KO was generated by using a neomycin resistance gene insert, we treated cells with G418 and were able to eliminate the majority of IL-2Rα expressing cells. This elimination revealed that IL-2Rα KO vascular smooth muscle cells exhibited increased proliferation, decreased size, and hypodiploid DNA content when compared to wildtype cells. Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
|
15
|
Zhang H, Wu J, Li N, Wu R, Chen W. Microbial influence on triggering and treatment of host cancer: An intestinal barrier perspective. Biochim Biophys Acta Rev Cancer 2023; 1878:188989. [PMID: 37742727 DOI: 10.1016/j.bbcan.2023.188989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Inflammatory bowel disease (IBD) is associated with complex complications that may lead to tumors. However, research on the mechanisms underlying susceptibility to chronic immune diseases and cancer pathogenesis triggered by the inflammatory environment remains limited. An imbalance in the host gut microbiota often accompanies intestinal inflammation. The delayed recovery of the dysregulated intestinal microbiota may exacerbate systemic inflammatory responses, multiorgan pathology, and metabolic disorders. This delay may also facilitate bacterial translocation. This review examined the relationship between gut barrier disruption and unbalanced microbial translocation and their impact on the brain, liver, and lungs. We also explored their potential roles in tumor initiation. Notably, the role of the intestinal microbiota in the development of inflammation is linked to the immune surveillance function of the small intestine and the repair status of the intestinal barrier. Moreover, adherence to a partially anti-inflammatory diet can aid in preventing the malignant transformation of inflammation by repairing the intestinal barrier and significantly reducing inflammation. In conclusion, enhancing intestinal barrier function may be a novel strategy for preventing and treating chronic malignancies in the intestine and other body areas.
Collapse
Affiliation(s)
- Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Engineering Research Center of Food Fermentation Technology, Shenyang 110161, PR China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Liaoning 110866, PR China
| | - Na Li
- Children's Neurorehabilitation Laboratory, Shenyang Children's Hospital, Shenyang, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China; Engineering Research Center of Food Fermentation Technology, Shenyang 110161, PR China.
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
16
|
Pehlivan S, Aytac HM, Nursal AF, Tuncel FC, Pehlivan M. IL2RA rs2104286 and IL2 rs2069762 polymorphisms may be associated with bipolar disorder and its clinical findings. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:441-452. [PMID: 37843874 DOI: 10.1080/15257770.2023.2266820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Study results supported that immuno-inflammatory pathways in the brain and environment contribute to the etiopathogenesis of bipolar disorder (BD), a chronic affective disease. Our study aimed to assess the relationship between BD risk and interleukin 2 (IL2) and interleukin 2 receptor subunit alpha (IL2RA) variants in a Turkish population. Genomic DNA from 86 diagnosed BD patients and 100 healthy blood donors was extracted. IL2RA rs2104286, IL2 rs2069762, and IL2 rs2069763 variants were genotyped using the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) method. It was compared to the relationship between the genotype distributions of these variants and clinical characteristics. Results were evaluated statistically. A statistically significant difference in the genotype distribution of the IL2RA rs2104286 variant was found between patients and controls. There was no GG genotype in the patient group. The IL2RA rs2104286 AA genotype was more common in the patient group than the controls, and the AG genotype was higher in the controls compared to the patients (p = 0.001, p = 0.001, respectively). The IL2 rs2069762 and IL2 rs2069763 genotype distributions did not differ between the patient and control groups (p > 0.05). We found that the clinical global impression severity (CGI-S) score was higher in those with IL2 rs2069762 TG and GG genotypes. In this study, we showed for the first time that the genotype distribution of IL2RA rs2104286 and IL2 rs2069762 is associated with BD susceptibility and CGI-S score in a Turkish population.
Collapse
Affiliation(s)
- Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Hasan Mervan Aytac
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Fatima Ceren Tuncel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
17
|
Lykhopiy V, Malviya V, Humblet-Baron S, Schlenner SM. "IL-2 immunotherapy for targeting regulatory T cells in autoimmunity". Genes Immun 2023; 24:248-262. [PMID: 37741949 PMCID: PMC10575774 DOI: 10.1038/s41435-023-00221-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
FOXP3+ regulatory T cells (Treg) are indispensable for immune homoeostasis and for the prevention of autoimmune diseases. Interleukin-2 (IL-2) signalling is critical in all aspects of Treg biology. Consequences of defective IL-2 signalling are insufficient numbers or dysfunction of Treg and hence autoimmune disorders in human and mouse. The restoration and maintenance of immune homoeostasis remain central therapeutic aims in the field of autoimmunity. Historically, broadly immunosuppressive drugs with serious side-effects have been used for the treatment of autoimmune diseases or prevention of organ-transplant rejection. More recently, ex vivo expanded or in vivo stimulated Treg have been shown to induce effective tolerance in clinical trials supporting the clinical benefit of targeting natural immunosuppressive mechanisms. Given the central role of exogenous IL-2 in Treg homoeostasis, a new and promising focus in drug development are IL-2-based approaches for in vivo targeted expansion of Treg or for enhancement of their suppressive activity. In this review, we summarise the role of IL-2 in Treg biology and consequences of dysfunctional IL-2 signalling pathways. We then examine evidence of efficacy of IL-2-based biological drugs targeting Treg with specific focus on therapeutic candidates in clinical trials and discuss their limitations.
Collapse
Affiliation(s)
- Valentina Lykhopiy
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- argenx BV, Industriepark Zwijnaarde 7, 9052, Ghent, Belgium
| | - Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Xie Y, Jin C, Sang H, Liu W, Wang J. Ivermectin Protects Against Experimental Autoimmune Encephalomyelitis in Mice by Modulating the Th17/Treg Balance Involved in the IL-2/STAT5 Pathway. Inflammation 2023; 46:1626-1638. [PMID: 37227550 PMCID: PMC10209955 DOI: 10.1007/s10753-023-01829-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Multiple sclerosis (MS), a T-cell-mediated autoimmune disease that affects the central nervous system (CNS), is characterized by white matter demyelination, axon destruction, and oligodendrocyte degeneration. Ivermectin, an anti-parasitic drug, has anti-inflammatory, anti-tumor, and antiviral properties. However, to date, there are no in-depth studies on the effect of ivermectin on the function effector of T cells in murine experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Here, we conducted in vitro experiments and found that ivermectin inhibited the proliferation of total T cells (CD3+) and their subsets (CD4+ and CD8+ T cells) as well as T cells secreting the pro-inflammatory cytokines IFN-γ and IL-17A; ivermectin also increased IL-2 production and IL-2Rα (CD25) expression, which was accompanied by an increase in the frequency of CD4+CD25+Foxp3+ regulatory T cells (Treg). Importantly, ivermectin administration reduced the clinical symptoms of EAE mice by preventing the infiltration of inflammatory cells into the CNS. Additional mechanisms showed that ivermectin promoted Treg cells while inhibiting pro-inflammatory Th1 and Th17 cells and their IFN-γ and IL-17 secretion; ivermectin also upregulated IL-2 production from MOG35-55-stimulated peripheral lymphocytes. Finally, ivermectin decreased IFN-γ and IL-17A production and increased IL-2 level, CD25 expression, and STAT5 phosphorylation in the CNS. These results reveal a previously unknown etiopathophysiological mechanism by which ivermectin attenuates the pathogenesis of EAE, indicating that it may be a promising option for T-cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Yu Xie
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Hongzhen Sang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China.
| |
Collapse
|
19
|
Abu-Romman A, Scholand KK, Pal-Ghosh S, Yu Z, Kelagere Y, Yazdanpanah G, Kao WWY, Coulson-Thomas VJ, Stepp MA, de Paiva CS. Conditional deletion of CD25 in the corneal epithelium reveals sex differences in barrier disruption. Ocul Surf 2023; 30:57-72. [PMID: 37516317 PMCID: PMC10812880 DOI: 10.1016/j.jtos.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
PURPOSE IL-2 promotes activation, clonal expansion, and deletion of T cells. IL-2 signals through its heterotrimeric receptor (IL-2R) consisting of the CD25, CD122 and CD132 chains. CD25 knockout (KO) mice develop Sjögren Syndrome-like disease. This study investigates whether corneal CD25/IL-2 signaling is critical for ocular health. METHODS Eyes from C57BL/6 mice were collected and prepared for immunostaining or in-situ hybridization. Bulk RNA sequencing was performed on the corneal epithelium from wild-type and CD25KO mice. We generated a conditional corneal-specific deletion of CD25 in the corneal epithelium (CD25Δ/ΔCEpi). Corneal barrier function was evaluated based on the uptake of a fluorescent dye. Mice were subjected to unilateral corneal debridement, followed by epithelial closure over time. RESULTS In C57BL/6 mice, CD25 mRNA was expressed in ocular tissues. Protein expression of CD25, CD122, and CD132 was confirmed in the corneal epithelium. Delayed corneal re-epithelization was seen in female but not male CD25KO mice. There were 771 differentially expressed genes in the corneal epithelium of CD25KO compared to wild-type mice. While barrier function is disrupted in CD25Δ/ΔCEpi mice, re-epithelialization rates are not delayed. CONCLUSIONS All three chains of the IL-2R are expressed in the corneal epithelium. Our results indicate for the first time, deleting CD25 systemically in all tissues in the mouse and deleting CD25 locally in just the corneal epithelium compromises corneal epithelial barrier function, leading to dry eye disease in female mice. Future studies are needed to delineate the pathways used by IL-2 signaling to influence cornea homeostasis.
Collapse
Affiliation(s)
- Anmar Abu-Romman
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Kaitlin K Scholand
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| | - Sonali Pal-Ghosh
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Zhiyuan Yu
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Yashaswini Kelagere
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Ghasem Yazdanpanah
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States.
| | - Winston W-Y Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, United States.
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States; Department of Ophthalmology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| | - Cintia S de Paiva
- Ocular Surface Center, Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, United States; Department of Biosciences, Rice University, Houston, TX, United States.
| |
Collapse
|
20
|
Inaba A, Tuong ZK, Zhao TX, Stewart AP, Mathews R, Truman L, Sriranjan R, Kennet J, Saeb-Parsy K, Wicker L, Waldron-Lynch F, Cheriyan J, Todd JA, Mallat Z, Clatworthy MR. Low-dose IL-2 enhances the generation of IL-10-producing immunoregulatory B cells. Nat Commun 2023; 14:2071. [PMID: 37045832 PMCID: PMC10097719 DOI: 10.1038/s41467-023-37424-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Dysfunction of interleukin-10 producing regulatory B cells has been associated with the pathogenesis of autoimmune diseases, but whether regulatory B cells can be therapeutically induced in humans is currently unknown. Here we demonstrate that a subset of activated B cells expresses CD25, and the addition of low-dose recombinant IL-2 to in vitro stimulated peripheral blood and splenic human B cells augments IL-10 secretion. Administration of low dose IL-2, aldesleukin, to patients increases IL-10-producing B cells. Single-cell RNA sequencing of circulating immune cells isolated from low dose IL2-treated patients reveals an increase in plasmablast and plasma cell populations that are enriched for a regulatory B cell gene signature. The transcriptional repressor BACH2 is significantly down-regulated in plasma cells from IL-2-treated patients, BACH2 binds to the IL-10 gene promoter, and Bach2 depletion or genetic deficiency increases B cell IL-10, implicating BACH2 suppression as an important mechanism by which IL-2 may promote an immunoregulatory phenotype in B cells.
Collapse
Affiliation(s)
- Akimichi Inaba
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Tian X Zhao
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Andrew P Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Rebeccah Mathews
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Lucy Truman
- Ear, Nose Throat Department, West Suffolk Hospital, Bury St Edmunds, UK
| | - Rouchelle Sriranjan
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jane Kennet
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Linda Wicker
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Frank Waldron-Lynch
- Novartis Institutes for BioMedical Research, Autoimmunity Transplantation Inflammation, Basel, Switzerland
| | - Joseph Cheriyan
- Division of Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, Cambridge, UK
| | - John A Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
- Universite de Paris and INSERM, Paris, France
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
21
|
Harris F, Berdugo YA, Tree T. IL-2-based approaches to Treg enhancement. Clin Exp Immunol 2023; 211:149-163. [PMID: 36399073 PMCID: PMC10019135 DOI: 10.1093/cei/uxac105] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immune homeostasis is heavily dependent on the action of regulatory T cells (Tregs) which act to suppress the activation of many immune cell types including autoreactive conventional T cells. A body of evidence has shown that Tregs are intrinsically defective in many common autoimmune diseases, and gene polymorphisms which increase the susceptibility of autoimmune disease development have implicated the interleukin-2 (IL-2) signaling pathway as a key dysregulated mechanism. IL-2 is essential for Treg function and survival, and Tregs are highly sensitive to low levels of this cytokine in their environment. This review will revisit the rationale behind using low-dose IL-2 as a therapy to treat autoimmune diseases and evaluate the outcomes of trials to date. Furthermore, novel engineered IL-2 therapies with increased Treg specificity have shown promise in pre-clinical studies and human clinical trials for some agents have begun. Future studies will determine whether low-dose IL-2 or engineered IL-2 therapies can change the course of autoimmune and inflammatory diseases in patients.
Collapse
Affiliation(s)
- Ffion Harris
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Yoana Arroyo Berdugo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Timothy Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| |
Collapse
|
22
|
Lee J, Robinson ME, Sun R, Kume K, Ma N, Cosgun KN, Chan LN, Leveille E, Geng H, Vykunta VS, Shy BR, Marson A, Katz S, Chen J, Paietta E, Meffre E, Vaidehi N, Müschen M. Dynamic phosphatase-recruitment controls B-cell selection and oncogenic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532151. [PMID: 36993276 PMCID: PMC10054997 DOI: 10.1101/2023.03.13.532151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Initiation of B-cell receptor (BCR) 1 signaling, and subsequent antigen-encounter in germinal centers 2,3 represent milestones of B-lymphocyte development that are both marked by sharp increases of CD25 surface-expression. Oncogenic signaling in B-cell leukemia (B-ALL) 4 and lymphoma 5 also induced CD25-surface expression. While CD25 is known as an IL2-receptor chain on T- and NK-cells 6-9 , the significance of its expression on B-cells was unclear. Our experiments based on genetic mouse models and engineered patient-derived xenografts revealed that, rather than functioning as an IL2-receptor chain, CD25 expressed on B-cells assembled an inhibitory complex including PKCδ and SHIP1 and SHP1 phosphatases for feedback control of BCR-signaling or its oncogenic mimics. Recapitulating phenotypes of genetic ablation of PKCδ 10 - 12 , SHIP1 13,14 and SHP1 14, 15,16 , conditional CD25-deletion decimated early B-cell subsets but expanded mature B-cell populations and induced autoimmunity. In B-cell malignancies arising from early (B-ALL) and late (lymphoma) stages of B-cell development, CD25-loss induced cell death in the former and accelerated proliferation in the latter. Clinical outcome annotations mirrored opposite effects of CD25-deletion: high CD25 expression levels predicted poor clinical outcomes for patients with B-ALL, in contrast to favorable outcomes for lymphoma-patients. Biochemical and interactome studies revealed a critical role of CD25 in BCR-feedback regulation: BCR-signaling induced PKCδ-mediated phosphorylation of CD25 on its cytoplasmic tail (S 268 ). Genetic rescue experiments identified CD25-S 268 tail-phosphorylation as central structural requirement to recruit SHIP1 and SHP1 phosphatases to curb BCR-signaling. A single point mutation CD25 S268A abolished recruitment and activation of SHIP1 and SHP1 to limit duration and strength of BCR-signaling. Loss of phosphatase-function, autonomous BCR-signaling and Ca 2+ -oscillations induced anergy and negative selection during early B-cell development, as opposed to excessive proliferation and autoantibody production in mature B-cells. These findings highlight the previously unrecognized role of CD25 in assembling inhibitory phosphatases to control oncogenic signaling in B-cell malignancies and negative selection to prevent autoimmune disease.
Collapse
|
23
|
Armstrong H, Rahbari M, Park H, Sharon D, Thiesen A, Hotte N, Sun N, Syed H, Abofayed H, Wang W, Madsen K, Wine E, Mason A. Mouse mammary tumor virus is implicated in severity of colitis and dysbiosis in the IL-10 -/- mouse model of inflammatory bowel disease. MICROBIOME 2023; 11:39. [PMID: 36869359 PMCID: PMC9983191 DOI: 10.1186/s40168-023-01483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Following viral infection, genetically manipulated mice lacking immunoregulatory function may develop colitis and dysbiosis in a strain-specific fashion that serves as a model for inflammatory bowel disease (IBD). We found that one such model of spontaneous colitis, the interleukin (IL)-10 knockout (IL-10-/-) model derived from the SvEv mouse, had evidence of increased Mouse mammary tumor virus (MMTV) viral RNA expression compared to the SvEv wild type. MMTV is endemic in several mouse strains as an endogenously encoded Betaretrovirus that is passaged as an exogenous agent in breast milk. As MMTV requires a viral superantigen to replicate in the gut-associated lymphoid tissue prior to the development of systemic infection, we evaluated whether MMTV may contribute to the development of colitis in the IL-10-/- model. RESULTS Viral preparations extracted from IL-10-/- weanling stomachs revealed augmented MMTV load compared to the SvEv wild type. Illumina sequencing of the viral genome revealed that the two largest contigs shared 96.4-97.3% identity with the mtv-1 endogenous loci and the MMTV(HeJ) exogenous virus from the C3H mouse. The MMTV sag gene cloned from IL-10-/- spleen encoded the MTV-9 superantigen that preferentially activates T-cell receptor Vβ-12 subsets, which were expanded in the IL-10-/- versus the SvEv colon. Evidence of MMTV cellular immune responses to MMTV Gag peptides was observed in the IL-10-/- splenocytes with amplified interferon-γ production versus the SvEv wild type. To address the hypothesis that MMTV may contribute to colitis, we used HIV reverse transcriptase inhibitors, tenofovir and emtricitabine, and the HIV protease inhibitor, lopinavir boosted with ritonavir, for 12-week treatment versus placebo. The combination antiretroviral therapy with known activity against MMTV was associated with reduced colonic MMTV RNA and improved histological score in IL-10-/- mice, as well as diminished secretion of pro-inflammatory cytokines and modulation of the microbiome associated with colitis. CONCLUSIONS This study suggests that immunogenetically manipulated mice with deletion of IL-10 may have reduced capacity to contain MMTV infection in a mouse-strain-specific manner, and the antiviral inflammatory responses may contribute to the complexity of IBD with the development of colitis and dysbiosis. Video Abstract.
Collapse
Affiliation(s)
- Heather Armstrong
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Mandana Rahbari
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | - David Sharon
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Naomi Hotte
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Ning Sun
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Canada
| | - Hussain Syed
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Canada
| | - Hiatem Abofayed
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Canada
| | - Weiwei Wang
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Karen Madsen
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Eytan Wine
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada
- Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Andrew Mason
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Canada.
- Department of Medicine, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute for Virology, University of Alberta, Edmonton, Canada.
- Division of Gastroenterology, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| |
Collapse
|
24
|
Jalalvand M, Enayati S, Akhtari M, Madreseh E, Jamshidi A, Farhadi E, Mahmoudi M, Amirzargar A. Blood regulatory T cells in inflammatory bowel disease, a systematic review, and meta-analysis. Int Immunopharmacol 2023; 117:109824. [PMID: 36827916 DOI: 10.1016/j.intimp.2023.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/07/2023] [Accepted: 01/28/2023] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is an autoimmune disease involving various parts of the gastrointestinal (GI) tract, which includes Crohn's disease (CD) and ulcerative colitis (UC). Due to the contradictory results regarding the percentage of peripheral blood (PB) regulatory T cells (Tregs) in IBD patients, this meta-analysis aimed to determine the Tregs frequency in IBD patients. METHOD We searched PubMed, Web of Science, SCOPUS, and Google Scholar databases for relevant observational articles that analyzed and reported the frequency of PB Tregs in IBD patients and healthy control groups. After choosing the related articles by two reviewers, the data regarding the definition of Tregs and their frequencies in different groups were recorded. RESULT In 22 studies, the results showed a nonsignificant difference in the frequency of PB Tregs between IBD cases and control subjects (SMD: -0.27, 95 % CI: -0.78, 0.23). However, the frequency of CD4+CD25+CD127- (SMD: -0.89, 95 % CI: -1.52, -0.26) and CD4+CD25+FoxP3+ (SMD: -1.32, 95 % CI: -2.37, -0.26) Tregs were significantly lower in IBD cases, compared to healthy subjects. Also, UC cases and active IBD cases showed a significantly lower frequency of Treg cells, compared to controls and remission IBD cases, respectively (SMD: -0.68, 95 % CI: -1.24, -0.11 and SMD: -0.60, 95 % CI: -0.93, -0.27). CONCLUSION Our study highlighted a probable decrease of Tregs in IBD patients, especially the patients with active states of the disease. The decrease of Treg cells might cause an imbalance in the immune system and the over-activation of auto-immune responses against the digestive tract.
Collapse
Affiliation(s)
- Mobina Jalalvand
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Enayati
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Madreseh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Dikiy S, Rudensky AY. Principles of regulatory T cell function. Immunity 2023; 56:240-255. [PMID: 36792571 DOI: 10.1016/j.immuni.2023.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
Regulatory T (Treg) cells represent a distinct lineage of cells of the adaptive immune system indispensable for forestalling fatal autoimmune and inflammatory pathologies. The role of Treg cells as principal guardians of the immune system can be attributed to their ability to restrain all currently recognized major types of inflammatory responses through modulating the activity of a wide range of cells of the innate and adaptive immune system. This broad purview over immunity and inflammation is afforded by the multiple modes of action Treg cells exert upon their diverse molecular and cellular targets. Beyond the suppression of autoimmunity for which they were originally recognized, Treg cells have been implicated in tissue maintenance, repair, and regeneration under physiologic and pathologic conditions. Herein, we discuss the current and emerging understanding of Treg cell effector mechanisms in the context of the basic properties of Treg cells that endow them with such functional versatility.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
26
|
Research advances on targeted-Treg therapies on immune-mediated kidney diseases. Autoimmun Rev 2023; 22:103257. [PMID: 36563769 DOI: 10.1016/j.autrev.2022.103257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The primary function of regulatory T cells (Tregs) is blocking the pathogenic immunological response mediated by autoreactive cells, establishing and maintaining immune homeostasis in tissues. Kidney diseases are often caused by Immune imbalance, including alloimmune graft damage after renal transplantation, direct immune-mediated kidney diseases like membranous nephropathy (MN) and anti-glomerular basement membrane (anti-GBM) glomerulonephritis, as well as indirect immune-mediated ones like Anti-neutrophil cytoplasmic antibody-associated vasculitis (AAVs), IgA nephropathy (IgAN) and lupus nephritis (LN). Treg cells are deficient numerically and/or functionally in those kidney diseases. Targeted-Treg therapies, including adoptive Tregs transfer therapy and low-dose IL-2 therapy, have begun to thrive in treating autoimmune diseases in recent years. However, the clinical use of targeted Treg-therapies is rarely mentioned in those kidney diseases above except for kidney transplantation. This article mainly discusses the newest progressions of targeted-Treg therapies in those specific examples of immune-mediated kidney diseases. Meanwhile, we also reviewed the main factors that affect Treg development and differentiation, hoping to inspire new strategies to develop target Tregs-therapies. Lastly, we emphasize the significant impediments and prospects to the clinical translation of target-Treg therapy. We advocate for more preclinical and clinical studies on target Tregs-therapies to decipher Tregs in those diseases.
Collapse
|
27
|
Nickle RA, DeOca KB, Garcia BL, Mannie MD. Soluble CD25 imposes a low-zone IL-2 signaling environment that favors competitive outgrowth of antigen-experienced CD25 high regulatory and memory T cells. Cell Immunol 2023; 384:104664. [PMID: 36642016 PMCID: PMC10257407 DOI: 10.1016/j.cellimm.2023.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/13/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
This study focused on soluble (s)CD25-mediated regulation of IL-2 signaling in murine and human CD4+ T cells. Recombinant sCD25 reversibly sequestered IL-2 to limit acute maximal proliferative responses while preserving IL-2 bioavailability to subsequently maintain low-zone IL-2 signaling during prolonged culture. By inhibiting IL-2 signaling during acute activation, sCD25 suppressed T-cell growth and inhibited IL-2-evoked transmembrane CD25 expression, thereby resulting in lower prevalence of CD25high T cells. By inhibiting IL-2 signaling during quiescent IL-2-mediated growth, sCD25 competed with transmembrane CD25, IL2Rβγ, and IL2Rαβγ receptors for limited pools of IL-2 such that sCD25 exhibited strong or weak inhibitory efficacy in IL-2-stimulated cultures of CD25low or CD25high T cells, respectively. Preferential blocking of IL-2 signaling in CD25low but not CD25high T cells caused competitive enrichment of CD25high memory/effector and regulatory FOXP3+ subsets. In conclusion, sCD25 modulates IL-2 bioavailability to limit CD25 expression during acute activation while enhancing CD25highT-cell dominance during low-zone homeostatic IL-2-mediated expansion, thereby 'flattening' the inflammatory curve over time.
Collapse
Affiliation(s)
- Rebecca A Nickle
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
28
|
Oparaugo NC, Ouyang K, Nguyen NPN, Nelson AM, Agak GW. Human Regulatory T Cells: Understanding the Role of Tregs in Select Autoimmune Skin Diseases and Post-Transplant Nonmelanoma Skin Cancers. Int J Mol Sci 2023; 24:1527. [PMID: 36675037 PMCID: PMC9864298 DOI: 10.3390/ijms24021527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Regulatory T cells (Tregs) play an important role in maintaining immune tolerance and homeostasis by modulating how the immune system is activated. Several studies have documented the critical role of Tregs in suppressing the functions of effector T cells and antigen-presenting cells. Under certain conditions, Tregs can lose their suppressive capability, leading to a compromised immune system. For example, mutations in the Treg transcription factor, Forkhead box P3 (FOXP3), can drive the development of autoimmune diseases in multiple organs within the body. Furthermore, mutations leading to a reduction in the numbers of Tregs or a change in their function facilitate autoimmunity, whereas an overabundance can inhibit anti-tumor and anti-pathogen immunity. This review discusses the characteristics of Tregs and their mechanism of action in select autoimmune skin diseases, transplantation, and skin cancer. We also examine the potential of Tregs-based cellular therapies in autoimmunity.
Collapse
Affiliation(s)
- Nicole Chizara Oparaugo
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kelsey Ouyang
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | | | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Tauber PA, Kratzer B, Schatzlmaier P, Smole U, Köhler C, Rausch L, Kranich J, Trapin D, Neunkirchner A, Zabel M, Jutz S, Steinberger P, Gadermaier G, Brocker T, Stockinger H, Derdak S, Pickl WF. The small molecule inhibitor BX-795 uncouples IL-2 production from inhibition of Th2 inflammation and induces CD4 + T cells resembling iTreg. Front Immunol 2023; 14:1094694. [PMID: 37090735 PMCID: PMC10117943 DOI: 10.3389/fimmu.2023.1094694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Background Treg cells have been shown to be an important part of immune-homeostasis and IL-2 which is produced upon T cell receptor (TCR)-dependent activation of T lymphocytes has been demonstrated to critically participate in Treg development. Objective To evaluate small molecule inhibitors (SMI) for the identification of novel IL-2/Treg enhancing compounds. Materials and methods We used TCR-dependent and allergen-specific cytokine secretion of human and mouse T cells, next generation messenger ribonucleic acid sequencing (RNA-Seq) and two different models of allergic airway inflammation to examine lead SMI-compounds. Results We show here that the reported 3-phosphoinositide dependent kinase-1 (PDK1) SMI BX-795 increased IL-2 in culture supernatants of Jurkat E6-1 T cells, human peripheral blood mononuclear cells (hPBMC) and allergen-specific mouse T cells upon TCR-dependent and allergen-specific stimulation while concomitantly inhibiting Th2 cytokine secretion. RNA-Seq revealed that the presence of BX-795 during allergen-specific activation of T cells induces a bona fide Treg cell type highly similar to iTreg but lacking Foxp3 expression. When applied in mugwort pollen and house dust mite extract-based models of airway inflammation, BX-795 significantly inhibited Th2 inflammation including expression of Th2 signature transcription factors and cytokines and influx into the lungs of type 2-associated inflammatory cells such as eosinophils. Conclusions BX-795 potently uncouples IL-2 production from Th2 inflammation and induces Th-IL-2 cells, which highly resemble induced (i)Tregs. Thus, BX-795 may be a useful new compound for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Peter A. Tauber
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Kratzer
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Philipp Schatzlmaier
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cordula Köhler
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Rausch
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Doris Trapin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alina Neunkirchner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maja Zabel
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sabrina Jutz
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Brocker
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Hannes Stockinger
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner University of Healthcare, Krems, Austria
- *Correspondence: Winfried F. Pickl,
| |
Collapse
|
30
|
Emerging principles of cytokine pharmacology and therapeutics. Nat Rev Drug Discov 2023; 22:21-37. [PMID: 36131080 DOI: 10.1038/s41573-022-00557-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/10/2023]
Abstract
Cytokines are secreted signalling proteins that play essential roles in the initiation, maintenance and resolution of immune responses. Although the unique ability of cytokines to control immune function has garnered clinical interest in the context of cancer, autoimmunity and infectious disease, the use of cytokine-based therapeutics has been limited. This is due, in part, to the ability of cytokines to act on many cell types and impact diverse biological functions, resulting in dose-limiting toxicity or lack of efficacy. Recent studies combining structural biology, protein engineering and receptor pharmacology have unlocked new insights into the mechanisms of cytokine receptor activation, demonstrating that many aspects of cytokine function are highly tunable. Here, we discuss the pharmacological principles underlying these efforts to overcome cytokine pleiotropy and enhance the therapeutic potential of this important class of signalling molecules.
Collapse
|
31
|
Hernandez R, Põder J, LaPorte KM, Malek TR. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol 2022; 22:614-628. [PMID: 35217787 DOI: 10.1038/s41577-022-00680-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Preclinical studies of the T cell growth factor activity of IL-2 resulted in this cytokine becoming the first immunotherapy to be approved nearly 30 years ago by the US Food and Drug Administration for the treatment of cancer. Since then, we have learnt the important role of IL-2 in regulating tolerance through regulatory T cells (Treg cells) besides promoting immunity through its action on effector T cells and memory T cells. Another pivotal event in the history of IL-2 research was solving the crystal structure of IL-2 bound to its tripartite receptor, which spurred the development of cell type-selective engineered IL-2 products. These new IL-2 analogues target Treg cells to counteract the dysregulated immune system in the context of autoimmunity and inflammatory disorders or target effector T cells, memory T cells and natural killer cells to enhance their antitumour responses. IL-2 biologics have proven to be effective in preclinical studies and clinical assessment of some is now underway. These studies will soon reveal whether engineered IL-2 biologics are truly capable of harnessing the IL-2-IL-2 receptor pathway as effective monotherapies or combination therapies for autoimmunity and cancer.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Janika Põder
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
32
|
Wu CT, Chu CI, Wang FY, Yang HY, Tseng WS, Chang CR, Chang CC. A change of PD-1/PD-L1 expression on peripheral T cell subsets correlates with the different stages of Alzheimer's Disease. Cell Biosci 2022; 12:162. [PMID: 36180897 PMCID: PMC9524741 DOI: 10.1186/s13578-022-00897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background Immune checkpoints are a set of costimulatory and inhibitory molecules that maintain self-tolerance and regulate immune homeostasis. The expression of immune checkpoints on T cells in malignancy, chronic inflammation, and neurodegenerative diseases has gained increasing attention. Results To characterize immune checkpoints in neurodegenerative diseases, we aimed to examine the expression of the immune checkpoint PD-1/PD-L1 in peripheral T cells in different Alzheimer’s disease (AD) patients. To achieve this aim, sixteen AD patients and sixteen age-matched healthy volunteers were enrolled to analyze their CD3+ T cells, CD3+CD56+ (neural cell adhesion molecule, NCAM) T cells, CD4+/CD8+ T cells, and CD4+/CD8+CD25+ (interleukin-2 receptor alpha, IL-2RA) T cells in this study. The expression of PD-1 on T cells was similar between the AD patients and healthy volunteers, but increased expression of PD-L1 on CD3+CD56+ T cells (natural killer T cells, NKT-like), CD4+ T cells (helper T cells, Th), CD4+CD25+ T cells, and CD8+ T cells (cytotoxic T lymphocytes, CTL) was detected in the AD patients. In addition, we found negative correlations between the AD patients’ cognitive performance and both CD8+ T cells and CD8+CD25+ T cells. To identify CD8+ T-cell phenotypic and functional characteristic differences between the healthy volunteers and AD patients in different stages, a machine learning algorithm, t-distributed stochastic neighbor embedding (t-SNE), was implemented. Using t-SNE enabled the above high-dimensional data to be visualized and better analyzed. The t-SNE analysis demonstrated that the cellular sizes and densities of PD-1/PD-L1 on CD8+ T cells differed among the healthy, mild AD, and moderate AD subjects. Conclusions Our results suggest that changes in PD-1/PD-L1-expressing T cells in AD patients’ peripheral blood could be a potential biomarker for monitoring disease and shed light on the AD disease mechanism. Moreover, these findings indicate that PD-1/PD-L1 blockade treatment could be a novel choice to slow AD disease deterioration. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00897-1.
Collapse
|
33
|
Apert C, Galindo-Albarrán AO, Castan S, Detraves C, Michaud H, McJannett N, Haegeman B, Fillatreau S, Malissen B, Holländer G, Žuklys S, Santamaria JC, Joffre OP, Romagnoli P, van Meerwijk JPM. IL-2 and IL-15 drive intrathymic development of distinct periphery-seeding CD4+Foxp3+ regulatory T lymphocytes. Front Immunol 2022; 13:965303. [PMID: 36159793 PMCID: PMC9495261 DOI: 10.3389/fimmu.2022.965303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022] Open
Abstract
Development of Foxp3-expressing regulatory T-lymphocytes (Treg) in the thymus is controlled by signals delivered in T-cell precursors via the TCR, co-stimulatory receptors, and cytokine receptors. In absence of IL-2, IL-15 or their receptors, fewer Treg apparently develop in the thymus. However, it was recently shown that a substantial part of thymic Treg are cells that had recirculated from the periphery back to the thymus, troubling interpretation of these results. We therefore reassessed the involvement of IL-2 and IL-15 in the development of Treg, taking into account Treg-recirculation. At the age of three weeks, when in wt and IL-15-deficient (but not in IL-2-deficient) mice substantial amounts of recirculating Treg are present in the thymus, we found similarly reduced proportions of newly developed Treg in absence of IL-2 or IL-15, and in absence of both cytokines even less Treg developed. In neonates, when practically no recirculating Treg were found in the thymus, the absence of IL-2 led to substantially more reduced Treg-development than deficiency in IL-15. IL-2 but not IL-15 modulated the CD25, GITR, OX40, and CD73-phenotypes of the thymus-egress-competent and periphery-seeding Treg-population. Interestingly, IL-2 and IL-15 also modulated the TCR-repertoire expressed by developing Treg. Upon transfer into Treg-less Foxp3sf mice, newly developed Treg from IL-2- (and to a much lesser extent IL-15-) deficient mice suppressed immunopathology less efficiently than wt Treg. Taken together, our results firmly establish important non-redundant quantitative and qualitative roles for IL-2 and, to a lesser extent, IL-15 in intrathymic Treg-development.
Collapse
Affiliation(s)
- Cécile Apert
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Ariel O. Galindo-Albarrán
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
- Station d’Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Sarah Castan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Claire Detraves
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Héloise Michaud
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Nicola McJannett
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Bart Haegeman
- Station d’Ecologie Théorique et Expérimentale, CNRS, Moulis, France
| | - Simon Fillatreau
- Institut Necker Enfants Malades, Inserm U1151, CNRS UMR8253, Paris, France
- Université de Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernard Malissen
- Centre d’Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | - Georg Holländer
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Saulius Žuklys
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
| | - Jérémy C. Santamaria
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Olivier P. Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Paola Romagnoli
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
| | - Joost P. M. van Meerwijk
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291 – CNRS UMR5051 – University Toulouse III, Toulouse, France
- *Correspondence: Joost P. M. van Meerwijk,
| |
Collapse
|
34
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
35
|
Naoun AA, Raphael I, Forsthuber TG. Immunoregulation via Cell Density and Quorum Sensing-like Mechanisms: An Underexplored Emerging Field with Potential Translational Implications. Cells 2022; 11:cells11152442. [PMID: 35954285 PMCID: PMC9368058 DOI: 10.3390/cells11152442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Quorum sensing (QS) was historically described as a mechanism by which bacteria detect and optimize their population density via gene regulation based on dynamic environmental cues. Recently, it was proposed that QS or similar mechanisms may have broader applications across different species and cell types. Indeed, emerging evidence shows that the mammalian immune system can also elicit coordinated responses on a population level to regulate cell density and function, thus suggesting that QS-like mechanisms may also be a beneficial trait of the immune system. In this review, we explore and discuss potential QS-like mechanisms deployed by the immune system to coordinate cellular-level responses, such as T cell responses mediated via the common gamma chain (γc) receptor cytokines and the aryl hydrocarbon receptors (AhRs). We present evidence regarding a novel role of QS as a multifunctional mechanism coordinating CD4+ and CD8+ T cell behavior during steady state and in response to infection, inflammatory diseases, and cancer. Successful clinical therapies such as adoptive cell transfer for cancer treatment may be re-evaluated to harness the effects of the QS mechanism(s) and enhance treatment responsiveness. Moreover, we discuss how signaling threshold perturbations through QS-like mediators may result in disturbances of the complex crosstalk between immune cell populations, undesired T cell responses, and induction of autoimmune pathology. Finally, we discuss the potential therapeutic role of modulating immune-system-related QS as a promising avenue to treat human diseases.
Collapse
Affiliation(s)
- Adrian A. Naoun
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Itay Raphael
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15217, USA
- Correspondence: (I.R.); (T.G.F.)
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- Correspondence: (I.R.); (T.G.F.)
| |
Collapse
|
36
|
de Picciotto S, DeVita N, Hsiao CJ, Honan C, Tse SW, Nguyen M, Ferrari JD, Zheng W, Wipke BT, Huang E. Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat Commun 2022; 13:3866. [PMID: 35790728 PMCID: PMC9256694 DOI: 10.1038/s41467-022-31130-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Interleukin-2 (IL-2) is critical for regulatory T cell (Treg) function and homeostasis. At low doses, IL-2 can suppress immune pathologies by expanding Tregs that constitutively express the high affinity IL-2Rα subunit. However, even low dose IL-2, signaling through the IL2-Rβ/γ complex, may lead to the activation of proinflammatory, non-Treg T cells, so improving specificity toward Tregs may be desirable. Here we use messenger RNAs (mRNA) to encode a half-life-extended human IL-2 mutein (HSA-IL2m) with mutations promoting reliance on IL-2Rα. Our data show that IL-2 mutein subcutaneous delivery as lipid-encapsulated mRNA nanoparticles selectively activates and expands Tregs in mice and non-human primates, and also reduces disease severity in mouse models of acute graft versus host disease and experimental autoimmune encephalomyelitis. Single cell RNA-sequencing of mouse splenic CD4+ T cells identifies multiple Treg states with distinct response dynamics following IL-2 mutein treatment. Our results thus demonstrate the potential of mRNA-encoded HSA-IL2m immunotherapy to treat autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Zheng
- Moderna, Inc, Cambridge, MA, 02139, USA
| | | | - Eric Huang
- Moderna, Inc, Cambridge, MA, 02139, USA.
| |
Collapse
|
37
|
Li Y, Li X, Geng X, Zhao H. The IL-2A receptor pathway and its role in lymphocyte differentiation and function. Cytokine Growth Factor Rev 2022; 67:66-79. [DOI: 10.1016/j.cytogfr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
38
|
Zou J, Zhao Z, Zhang G, Zhang Q, Pyykkö I. MEFV, IRF8, ADA, PEPD, and NBAS gene variants and elevated serum cytokines in a patient with unilateral sporadic Meniere's disease and vascular congestion over the endolymphatic sac. J Otol 2022; 17:175-181. [PMID: 35847575 PMCID: PMC9270563 DOI: 10.1016/j.joto.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 10/25/2022] Open
Abstract
The etiology and underlying mechanism of Meniere's disease (MD) development are still unknown, although inflammation and autoimmunity have been implicated as underlying mechanisms. The human endolymphatic sac (ES) has been reported to have innate and adaptive immune capacity in local immune reactions. In vivo demonstration of inflammation of the ES in patients with MD is missing in the literature. We report the case of a 47-year-old female patient diagnosed with unilateral MD with genetic variants and cytokine markers indicating inflammation and vascular congestion of the ES. Endolymphatic hydrops in the right cochlea (grade 2) and vestibulum (grade 3) were detected using MRI. She carried heterozygous variants in MEFV (c.442G > C), IRF8 (c.1157G > T), ADA (c.445C > T), PEPD (c.151G > A), NBAS (c.4049T > C), CSF2RB (c.2222C > T), HPS6 (c.277G > T), IL2RB (c.1109C > T), IL12RB1 (c.1384G > T), IL17RC (c.260_271del GCAAGAGC TGGG), LIG1 (c.746G > A), RAG1 (c.650C > A), and SLX4 (c.1258G > C, c.5072A > G). In the serum, the levels of granulocyte colony-stimulating factor (G-CSF), macrophage inflammatory protein 1α, and IL7 were significantly elevated, and the level of IL2Rα was reduced. Intratympanic administration of dexamethasone temporarily alleviated her hearing loss. Her vertigo was significantly relieved but remained slight after ES administration of corticosteroids.
Collapse
Affiliation(s)
- Jing Zou
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland
| | - Zikai Zhao
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guoping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qing Zhang
- Department of Otolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Otolaryngology, School of Medicine, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
39
|
Jin D, Jiang Y, Chang L, Wei J, Sun J. New therapeutic strategies based on biasing IL-2 mutants for cancers and autoimmune diseases. Int Immunopharmacol 2022; 110:108935. [PMID: 35732097 DOI: 10.1016/j.intimp.2022.108935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/05/2022]
Abstract
Interleukin-2 (IL-2) is an immunomodulatory multifunctional cytokine. High-dose IL-2 was first approved by the U.S. Food and Drug Administration (FDA) in the 1990s for the treatment of metastatic renal cell carcinoma and metastatic melanoma. However, the short half-life of IL-2 and its toxicity caused by high-dose IL-2 limit the clinical use of IL-2. Recently, the development of cell-type-selective engineered IL-2 products become a hot research filed, mainly because IL-2 stimulates both regulatory T cells (Treg) and effector T cells (Teff) in vivo. The selective effect of IL-2 on Treg and Teff can be improved by designing biased IL-2 mutants, which showed reduced toxicity while being more effective in stimulating anti-tumor effector immunity or ameliorating autoimmune diseases. In this review we summarize the biological properties of IL-2 mutants reported so far. The design process and principle of IL-2 mutants, IL-2 mutant antibody complexes and IL-2 fusion proteins were discussed, which provided research basis for the design and application of IL-2 mutants in the future.
Collapse
Affiliation(s)
- Dongfu Jin
- Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin 300072, PRChina
| | - Yaxin Jiang
- Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin 300072, PRChina
| | - Lu Chang
- Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin 300072, PRChina
| | - Jing Wei
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PRChina.
| | - Jian Sun
- Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin 300072, PRChina; Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PRChina.
| |
Collapse
|
40
|
Meghnem D, Maillasson M, Barbieux I, Morisseau S, Keita D, Jacques Y, Quéméner A, Mortier E. Selective Targeting of IL-15Rα Is Sufficient to Reduce Inflammation. Front Immunol 2022; 13:886213. [PMID: 35592318 PMCID: PMC9110858 DOI: 10.3389/fimmu.2022.886213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Cytokines are crucial molecules for maintaining the proper functioning of the immune system. Nevertheless, a dysregulation of cytokine expression could be involved in the pathogenesis of autoimmune diseases. Interleukin (IL)-15 is a key factor for natural killer cells (NK) and CD8 T cells homeostasis, necessary to fight cancer and infections but could also be considered as a pro-inflammatory cytokine involved in autoimmune inflammatory disease, including rheumatoid arthritis, psoriasis, along with tumor necrosis factor alpha (TNF-α), IL-6, and IL-1β. The molecular mechanisms by which IL-15 exerts its inflammatory function in these diseases are still unclear. In this study, we generated an IL-15-derived molecule called NANTIL-15 (New ANTagonist of IL-15), designed to selectively inhibit the action of IL-15 through the high-affinity trimeric IL-15Rα/IL-2Rβ/γc receptor while leaving IL-15 signaling through the dimeric IL-2Rβ/γc receptor unaffected. Administrating of NANTIL-15 in healthy mice did not affect the IL-15-dependent cell populations such as NK and CD8 T cells. In contrast, we found that NANTIL-15 efficiently reduced signs of inflammation in a collagen-induced arthritis model. These observations demonstrate that the inflammatory properties of IL-15 are linked to its action through the trimeric IL-15Rα/IL-2Rβ/γc receptor, highlighting the interest of selectively targeting this receptor.
Collapse
Affiliation(s)
- Dihia Meghnem
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Mike Maillasson
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Nantes University, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, IMPACT Platform, Nantes, France
| | - Isabelle Barbieux
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Sébastien Morisseau
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Centre Hospitalo-Universitaire (CHU), Nantes Hospital, Nantes, France
| | - Dalloba Keita
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Yannick Jacques
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Agnès Quéméner
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France
| | - Erwan Mortier
- Nantes University, CNRS, Inserm, CRCI2NA, Nantes, France.,LabEX IGO, Immuno-Onco-Greffe, Nantes, France.,Nantes University, Centre Hospitalo-Universitaire (CHU) Nantes, Inserm, CNRS, SFR Bonamy, UMS BioCore, IMPACT Platform, Nantes, France
| |
Collapse
|
41
|
Tang M, Jia F, Nan F, Zuo F, Yuan Z, Zhang D. Role of Cytokines in Thymic Regulatory T Cell Generation: Overview and Updates. Front Immunol 2022; 13:883560. [PMID: 35432378 PMCID: PMC9008509 DOI: 10.3389/fimmu.2022.883560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
CD4+CD25+Foxp3+ Regulatory (Treg) T cells are mainly generated within the thymus. However, the mechanism of thymic Treg cell (tTreg cell) generation remains to be fully revealed. Although the functions of TCR/CD28 co-stimulation have been widely accepted, the functions of cytokines in the generation of tTreg cells remain highly controversial. In this review, we summarize the existing studies on cytokine regulation of tTreg cell generation. By integrating the key findings of cytokines in tTreg cell generation, we have concluded that four members of γc family cytokines (IL-2, IL-4, IL-7 and IL-15), transforming growth factor β (TGF-β), and three members of TNF superfamily cytokines (GITRL, OX40L and TNF-α) play vitally important roles in regulating tTreg cell generation. We also point out all disputed points and highlight critical scientific questions that need to be addressed in the future.
Collapse
Affiliation(s)
- Mei Tang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fuya Jia
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fang Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fengqiong Zuo
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Mu P, Huo J, Li X, Li W, Li X, Ao J, Chen X. IL-2 Signaling Couples the MAPK and mTORC1 Axes to Promote T Cell Proliferation and Differentiation in Teleosts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1616-1631. [PMID: 35321881 DOI: 10.4049/jimmunol.2100764] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
IL-2 is a pleiotropic cytokine that is critical for T cell immunity. Although the IL-2-mediated regulation of T cell immunity in mammals is relatively well understood, it remains largely unknown whether and how IL-2 regulates T cell immunity in lower vertebrates. To address this knowledge gap, we investigated the role played by IL-2 in the regulation of T cell response, as well as the associated underlying mechanisms in a teleost fish, large yellow croaker (Larimichthys crocea). We found that large yellow croaker (L. crocea) IL-2 (LcIL-2) significantly promoted T cell proliferation both in vivo and in vitro; significantly induced the differentiation of Th1, Th2, regulatory T, and cytotoxic T cells while inhibiting Th17 differentiation; and participated in the elimination of invading pathogenic bacteria. Mechanistically, the binding of LcIL-2 to its heterotrimer receptor complex (LcIL-15Rα/LcIL-2Rβ/Lcγc) triggered the conserved JAK-STAT5 pathway, which in turn regulated the expression of genes involved in T cell expansion, differentiation, and biological function. The MAPK and mammalian target of rapamycin complex 1 (mTORC1) axes, which are involved in TCR-mediated signaling, were also required for LcIL-2-mediated T cell response. Collectively, our results demonstrated that fish IL-2 plays a comprehensive regulatory role in T cell response and highlighted the complex and delicate network regulating T cell-driven immune response. We propose that T cell immunity is regulated by the interplay between TCR signaling and cytokine signaling, and that this basic strategy evolved before the emergence of the tetrapod lineage. Our findings provide valuable insights into the regulatory mechanisms underlying T cell response in teleosts.
Collapse
Affiliation(s)
- Pengfei Mu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; and
| | - Jieying Huo
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; and
| | - Xiaofeng Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wanru Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomeng Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; and
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China;
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; and
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
43
|
Abstract
Follicular helper T (TFH) cells provide help to B cells, supporting the formation of germinal centres that allow affinity maturation of antibody responses. Although usually located in secondary lymphoid organs, T cells bearing features of TFH cells can also be identified in human blood, and their frequency and phenotype are often altered in people with autoimmune diseases. In this Perspective article, I discuss the increase in circulating TFH cells seen in autoimmune settings and explore potential explanations for this phenomenon. I consider the multistep regulation of TFH cell differentiation by the CTLA4 and IL-2 pathways as well as by regulatory T cells and highlight that these same pathways are crucial for regulating autoimmune diseases. The propensity of infection to serve as a cue for TFH cell differentiation and a potential trigger for autoimmune disease development is also discussed. Overall, I postulate that alterations in pathways that regulate autoimmunity are coupled to alterations in TFH cell homeostasis, suggesting that this population may serve as a core sentinel of dysregulated immunity.
Collapse
|
44
|
Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci 2022; 16:825246. [PMID: 35356051 PMCID: PMC8959415 DOI: 10.3389/fnins.2022.825246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are cyclic patterns of physiological, behavioural and molecular events that occur over a 24-h period. They are controlled by the suprachiasmatic nucleus (SCN), the brain’s master pacemaker which governs peripheral clocks and melatonin release. While circadian systems are endogenous, there are external factors that synchronise the SCN to the ambient environment including light/dark cycles, fasting/fed state, temperature and physical activity. Circadian rhythms also provide internal temporal organisation which ensures that any internal changes that take place are centrally coordinated. Melatonin synchronises peripheral clocks to the external time and circadian rhythms are regulated by gene expression to control physiological function. Synchronisation of the circadian system with the external environment is vital for the health and survival of an organism and as circadian rhythms play a pivotal role in regulating GI physiology, disruption may lead to gastrointestinal (GI) dysfunction. Disorders of gut-brain interactions (DGBIs), also known as functional gastrointestinal disorders (FGIDs), are a group of diseases where patients experience reoccurring gastrointestinal symptoms which cannot be explained by obvious structural abnormalities and include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Food timing impacts on the production of melatonin and given the correlation between food intake and symptom onset reported by patients with DGBIs, chronodisruption may be a feature of these conditions. Recent advances in immunology implicate circadian rhythms in the regulation of immune responses, and DGBI patients report fatigue and disordered sleep, suggesting circadian disruption. Further, melatonin treatment has been demonstrated to improve symptom burden in IBS patients, however, the mechanisms underlying this efficacy are unclear. Given the influence of circadian rhythms on gastrointestinal physiology and the immune system, modulation of these rhythms may be a potential therapeutic option for reducing symptom burden in these patients.
Collapse
Affiliation(s)
- Sophie Fowler
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L. Burns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Grace L. Burns,
| |
Collapse
|
45
|
Low-dose cyclophosphamide combined with IL-2 inhibits tumor growth by decreasing regulatory T cells and increasing CD8+ T cells and natural killer cells in mice. Immunobiology 2022; 227:152212. [DOI: 10.1016/j.imbio.2022.152212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/05/2022] [Accepted: 03/26/2022] [Indexed: 11/19/2022]
|
46
|
Fooks AN, Beppu LY, Frias AB, D'Cruz LM. Adipose tissue regulatory T cells: differentiation and function. Int Rev Immunol 2022; 42:323-333. [PMID: 35212593 PMCID: PMC9402810 DOI: 10.1080/08830185.2022.2044808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
Rising obesity levels, worldwide, are resulting in substantial increases in cardiovascular disease, diabetes, kidney disease, musculoskeletal disorders, and certain cancers, and obesity-associated illnesses are estimated to cause ∼4 million deaths worldwide per year. A common theme in this disease epidemic is the chronic systemic inflammation that accompanies obesity. CD4+ Foxp3+ regulatory T cells residing in visceral adipose tissues (VAT Tregs) are a unique immune cell population that play essential functions in restricting obesity-associated systemic inflammation through regulation of adipose tissue homeostasis. The distinct transcriptional program that defines VAT Tregs has been described, but directly linking VAT Treg differentiation and function to improving insulin sensitivity has proven more complex. Here we review new findings which have clarified how VAT Tregs differentiate, and how distinct VAT Treg subsets regulate VAT homeostasis, energy expenditure, and insulin sensitivity.
Collapse
Affiliation(s)
- Allen N Fooks
- Department of Immunology, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, USA
| | - Lisa Y Beppu
- Department of Immunology, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, USA
| | - Adolfo B Frias
- Department of Immunology, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, USA
| | - Louise M D'Cruz
- Department of Immunology, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Wang H, Vilches-Moure JG, Bettinger T, Cherkaoui S, Lutz A, Paulmurugan R. Contrast Enhanced Ultrasound Molecular Imaging of Spontaneous Chronic Inflammatory Bowel Disease in an Interleukin-2 Receptor α−/− Transgenic Mouse Model Using Targeted Microbubbles. NANOMATERIALS 2022; 12:nano12020280. [PMID: 35055297 PMCID: PMC8779209 DOI: 10.3390/nano12020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory disorder with relapsing–remission cycles, which is currently diagnosed by clinical symptoms and signs, along with laboratory and imaging findings. However, such clinical findings are not parallel to the disease activity of IBD and are difficult to use in treatment monitoring. Therefore, non-invasive quantitative imaging tools are required for the multiple follow-up exams of IBD patients in order to monitor the disease activity and determine treatment regimens. In this study, we evaluated a dual P- and E-selectin-targeted microbubble (MBSelectin) in an interleukin-2 receptor α deficient (IL-2Rα−/−) spontaneous chronic IBD mouse model for assessing long-term anti-inflammatory effects with ultrasound molecular imaging (USMI). We used IL-2Rα−/− (male and female on a C57BL/6 genetic background; n = 39) and C57BL/6 wild-type (negative control; n = 6) mice for the study. USMI of the proximal, middle, and distal colon was performed with MBSelectin using a small animal scanner (Vevo 2100) up to six times in each IL-2Rα−/− mouse between 6–30 weeks of age. USMI signals were compared between IL-2Rα−/− vs. wild-type mice, and sexes in three colonic locations. Imaged colon segments were analyzed ex vivo for inflammatory changes on H&E-stained sections and for selectin expression by immunofluorescence staining. We successfully detected spontaneous chronic colitis in IL-2Rα−/− mice between 6–30 weeks (onset at 6–14 weeks) compared to wild-type mice. Both male and female IL-2Rα−/− mice were equally (p = 0.996) affected with the disease, and there was no significant (p > 0.05) difference in USMI signals of colitis between the proximal, middle, and distal colon. We observed the fluctuating USMI signals in IL-2Rα−/− mice between 6–30 weeks, which might suggest a resemblance of the remission-flare pattern of human IBD. The ex vivo H&E and immunostaining further confirmed the inflammatory changes, and the high expression of P- and E-selectin in the colon. The results of this study highlight the IL-2Rα−/− mice as a chronic colitis model and are suitable for the long-term assessment of treatment response using a dual P- and E-selectin-targeted USMI.
Collapse
Affiliation(s)
- Huaijun Wang
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (H.W.); (A.L.)
| | | | | | | | - Amelie Lutz
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (H.W.); (A.L.)
| | - Ramasamy Paulmurugan
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (H.W.); (A.L.)
- Correspondence: ; Tel.: +1-650-725-6097; Fax: +1-650-721-6921
| |
Collapse
|
48
|
Psaltis E, Zaitoun AM, Neal KR, Lobo DN. Immunohistochemical Inflammation in Histologically Normal Appendices in Patients with Right Iliac Fossa Pain. World J Surg 2021; 45:3592-3602. [PMID: 34392384 PMCID: PMC8572837 DOI: 10.1007/s00268-021-06288-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND Histologically normal appendices resected for right iliac fossa pain in children demonstrate immunohistochemical markers of inflammation. We aimed to establish if subclinical inflammation was present in histologically normal appendices resected from adults with right iliac fossa pain. METHODS Immunohistochemistry was performed on formalin-fixed paraffin-embedded appendices for tumour necrosis factor (TNF)-α, interleukin (IL)-6, IL-2R and serotonin in four groups: Group I (n = 120): uncomplicated appendicitis, Group II (n = 118): complicated appendicitis (perforation or gangrene), Group III (n = 104): histologically normal appendices resected for right iliac fossa pain and Group IV (n = 106) appendices resected at elective colectomy. Expression was quantified using the H-scoring system. RESULTS Median, interquartile range expression of TNF-α was increased in Groups I (5.9, 3.1-9.8), II (6.8, 3.6-12.1) and III (9.8, 6.2-15.2) when compared with Group IV (3.0, 1.4-4.7, p < 0.01). Epithelial expression of IL-6 in Groups II (44.0, 8.0-97.0) and III (71.0, 18.5-130.0) was increased when compared with Group IV (9.5, 1.0-60.2, p < 0.01). Expression of mucosal IL-2R in Groups I (47.4, 34.8-69.0), II (37.8, 25.4-60.4) and III (18.4, 10.1-34.7) was increased when compared with Group IV (2.8, 1.2-5.7, p < 0.01). Serotonin content in Groups I (3.0, 0-30.0) and II (0, 0-8.5) was decreased when compared with Groups III (49.7, 16.7-107.5) and IV (43.5, 9.5-115.8, p < 0.01). CONCLUSION Histologically normal appendices resected from symptomatic patients exhibited increased proinflammatory cytokine expression on immunohistochemistry suggesting the presence of an inflammatory process not detected on conventional microscopy.
Collapse
Affiliation(s)
- Emmanouil Psaltis
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Abed M Zaitoun
- Pathology, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Keith R Neal
- Public Health and Epidemiology, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Dileep N Lobo
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham, UK.
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| |
Collapse
|
49
|
Prakhar P, Alvarez-DelValle J, Keller H, Crossman A, Tai X, Park YK, Park JH. The small intestine epithelium exempts Foxp3+ Tregs from their IL-2 requirement for homeostasis and effector function. JCI Insight 2021; 6:149656. [PMID: 34747370 PMCID: PMC8663555 DOI: 10.1172/jci.insight.149656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
Foxp3+ Tregs are potent immunosuppressive CD4+ T cells that are critical to maintain immune quiescence and prevent autoimmunity. Both the generation and maintenance of Foxp3+ Tregs depend on the cytokine IL-2. Hence, the expression of the IL-2 receptor α-chain (CD25) is not only considered a specific marker, but also a nonredundant requirement for Tregs. Here, we report that Foxp3+ Tregs in the small intestine (SI) epithelium, a critical barrier tissue, are exempt from such an IL-2 requirement, since they had dramatically downregulated CD25 expression, showed minimal STAT5 phosphorylation ex vivo, and were unable to respond to IL-2 in vitro. Nonetheless, SI epithelial Tregs survived and were present at the same frequency as in other lymphoid organs, and they retained potent suppressor function that was associated with high levels of CTLA-4 expression and the production of copious amounts of IL-10. Moreover, adoptive transfer experiments of Foxp3+ Tregs revealed that such IL-2–independent survival and effector functions were imposed by the SI epithelial tissue, suggesting that tissue adaptation is a mechanism that tailors the effector function and survival requirements of Foxp3+ Tregs specific to the tissue environment.
Collapse
Affiliation(s)
- Praveen Prakhar
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Jaylene Alvarez-DelValle
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Hilary Keller
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA.,Department of Surgery, Guthrie Robert Packer Hospital, Sayre, Pennsylvania, USA
| | - Assiatu Crossman
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Xuguang Tai
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Yoo Kyoung Park
- Department of Medical Nutrition-AgeTech-Service Convergence Major, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, South Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Pusch L, Brox R, Scheuer K, Yokosawa T, Wu M, Zubiri BA, Spiecker E, Jandt KD, Fischer D, Hackstein H. Distinct endocytosis and immune activation of poly(lactic-co-glycolic) acid nanoparticles prepared by single- and double-emulsion evaporation. Nanomedicine (Lond) 2021; 16:2075-2094. [PMID: 34523349 DOI: 10.2217/nnm-2021-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: Poly(lactic-co-glycolic) acid (PLGA) nanoparticles can be prepared by emulsion-solvent-evaporation from o/w and w1/o/w2 emulsions. Aims: To elaborate similarities and differences regarding mechanical, morphological and physicochemical properties, as well as endocytosis and dose-dependent immune responses by primary human leukocytes between nanoparticles prepared by these two methods. Methods: Fluorescently labeled as well as TLR agonist (R848)-loaded PLGA nanoparticles were prepared via both single- and double-emulsion solvent evaporation. Results: Particles prepared by both methods were similar in chemical composition and surface charge but exhibited slight differences in size and morphology. Pronounced differences were found for loading, dissolution and mechanical properties. The particles were differently endocytosed by monocytes and induced qualitatively and quantitatively different immune responses. Conclusions: Variations in nanoparticle preparation can affect particle-derived immunological characteristics.
Collapse
Affiliation(s)
- Lennart Pusch
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Regine Brox
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| | - Karl Scheuer
- Department of Materials Science & Technology, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Mingjian Wu
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Erdmann Spiecker
- Institute of Micro- & Nanostructure Research (IMN) & Center for Nanoanalysis & Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 3, Erlangen, 91058, Germany
| | - Klaus D Jandt
- Department of Materials Science & Technology, Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, Jena, 07743, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, Jena, 07743, Germany
| | - Dagmar Fischer
- Friedrich-Alexander-University Erlangen-Nürnberg, Cauerstraße 4 (Haus 6), Erlangen, 91058, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine & Hemostaseology, University Hospital Erlangen, Krankenhausstraße 12, Erlangen, 91054, Germany
| |
Collapse
|