1
|
Feng X, Zhao J, Li F, Aloufi BH, Alshammari AM, Ma Y. Weighted Gene Co-expression Network Analysis Revealed That CircMARK3 Is a Potential CircRNA Affects Fat Deposition in Buffalo. Front Vet Sci 2022; 9:946447. [PMID: 35873681 PMCID: PMC9302235 DOI: 10.3389/fvets.2022.946447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Buffalo meat is increasingly widely accepted for consumption as it shares several quality attributes with cattle meat (beef). Hence, there is a huge opportunity for growth in the buffalo meat industry. However, buffalo meat has relatively low intramuscular fat (IMF) content, affecting its flavor, tenderness and juiciness. As there is a dearth of information on factors that control fat deposition, this study was undertaken to provide new candidate factor associated with buffalo fat deposition. Circular RNA (circRNA) is a novel class of non-coding RNA with a closed-loop structure, and play an important role in fat deposition. Methods In this study, weighted gene co-expression network analysis (WGCNA) was used to construct a circRNA co-expression network and revealed a candidate circRNA that may affect the IMF deposition of buffalo as determined by RT-qPCR, semiquantitative PCR and gain-of-function experiments. Results Herein, WGCNA determined that one module (turquoise module) is significantly associated with the growth and development stages of buffalo. Further analysis revealed a total of 191 overlapping circRNAs among differentially expressed (DE) circRNAs and the co-expression module. A candidate circRNA was found, 21:6969877|69753491 (circRNA_ID), with a reported involvement in lipid metabolism. This circRNA is stably expressed and originates from the MARK3 gene, hence the name circMARK3. circMARK3 is highly expressed in adipose tissue and mature adipocytes and is located in the cytoplasm. Gain-of-function experiments demonstrated that circMARK3 promoted adipogenic differentiation of buffalo adipocytes and 3T3-L1 cells by up-regulating the expression levels of adipogenic marker genes PPARG, C/EBPα and FABP4. Conclusion These results indicate that circMARK3 is a potential factor that promotes fat deposition by regulating adipocyte differentiation and adipogenesis in buffalo.
Collapse
Affiliation(s)
- Xue Feng
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Jinhui Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Fen Li
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
- *Correspondence: Yun Ma
| |
Collapse
|
2
|
Kulyté A, Lundbäck V, Lindgren CM, Luan J, Lotta LA, Langenberg C, Arner P, Strawbridge RJ, Dahlman I. Genome-wide association study of adipocyte lipolysis in the GENetics of adipocyte lipolysis (GENiAL) cohort. Mol Metab 2020; 34:85-96. [PMID: 32180562 PMCID: PMC7021539 DOI: 10.1016/j.molmet.2020.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/25/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Lipolysis, hydrolysis of triglycerides to fatty acids in adipocytes, is tightly regulated, poorly understood, and, if perturbed, can lead to metabolic diseases including obesity and type 2 diabetes. The goal of this study was to identify the genetic regulators of lipolysis and elucidate their molecular mechanisms. METHODS Adipocytes from abdominal subcutaneous adipose tissue biopsies were isolated and were incubated without (spontaneous lipolysis) or with a catecholamine (stimulated lipolysis) to analyze lipolysis. DNA was extracted and genome-wide genotyping and imputation conducted. After quality control, 939 samples with genetic and lipolysis data were available. Genome-wide association studies of spontaneous and stimulated lipolysis were conducted. Subsequent in vitro gene expression analyses were used to identify candidate genes and explore their regulation of adipose tissue biology. RESULTS One locus on chromosome 19 demonstrated genome-wide significance with spontaneous lipolysis. 60 loci showed suggestive associations with spontaneous or stimulated lipolysis, of which many influenced both traits. In the chromosome 19 locus, only HIF3A was expressed in the adipocytes and displayed genotype-dependent gene expression. HIF3A knockdown in vitro increased lipolysis and the expression of key lipolysis-regulating genes. CONCLUSIONS In conclusion, we identified a genetic regulator of spontaneous lipolysis and provided evidence of HIF3A as a novel key regulator of lipolysis in subcutaneous adipocytes as the mechanism through which the locus influences adipose tissue biology.
Collapse
Affiliation(s)
- Agné Kulyté
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Veroniqa Lundbäck
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Cecilia M Lindgren
- Big Data Institute at the Li Ka Shing Center for Health Information and Discovery, University of Oxford, Oxford, UK; Wellcome Center for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; National Institute for Health Research Oxford Biomedical Research Center, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Peter Arner
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK; Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden; Health Data Research UK, UK
| | - Ingrid Dahlman
- Lipid laboratory, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
3
|
Hagberg CE, Li Q, Kutschke M, Bhowmick D, Kiss E, Shabalina IG, Harms MJ, Shilkova O, Kozina V, Nedergaard J, Boucher J, Thorell A, Spalding KL. Flow Cytometry of Mouse and Human Adipocytes for the Analysis of Browning and Cellular Heterogeneity. Cell Rep 2019; 24:2746-2756.e5. [PMID: 30184507 PMCID: PMC6137819 DOI: 10.1016/j.celrep.2018.08.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/29/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Adipocytes, once considered simple lipid-storing cells, are rapidly emerging as complex cells with many biologically diverse functions. A powerful high-throughput method for analyzing single cells is flow cytometry. Several groups have attempted to analyze and sort freshly isolated adipocytes; however, using an adipocyte-specific reporter mouse, we demonstrate that these studies fail to detect the majority of white adipocytes. We define critical settings required for adipocyte flow cytometry and provide a rigid strategy for analyzing and sorting white and brown adipocyte populations. The applicability of our protocol is shown by sorting mouse adipocytes based on size or UCP1 expression and demonstrating that a subset of human adipocytes lacks the β2-adrenergic receptor, particularly in the insulin-resistant state. In conclusion, the present study confers key technological insights for analyzing and sorting mature adipocytes, opening up numerous downstream research applications.
Collapse
Affiliation(s)
- Carolina E Hagberg
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine, Karolinska Institutet, Stockholm 14157, Sweden.
| | - Qian Li
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine, Karolinska Institutet, Stockholm 14157, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Maria Kutschke
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine, Karolinska Institutet, Stockholm 14157, Sweden
| | - Debajit Bhowmick
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine, Karolinska Institutet, Stockholm 14157, Sweden
| | - Endre Kiss
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Matthew J Harms
- Cardiovascular, Renal, and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg 43150, Sweden
| | - Olga Shilkova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Viviana Kozina
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Jeremie Boucher
- Cardiovascular, Renal, and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg 43150, Sweden; The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg 41345, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 41345, Sweden
| | - Anders Thorell
- Karolinska Institutet, Department of Clinical Science, Danderyds Hospital, Stockholm 18288, Sweden; Department of Surgery, Ersta Hospital, Stockholm 11691, Sweden
| | - Kirsty L Spalding
- Karolinska Institutet/AstraZeneca Integrated Cardio Metabolic Centre (KI/AZ ICMC), Department of Medicine, Karolinska Institutet, Stockholm 14157, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
4
|
Liu Z, Wang Z, Hao C, Tian Y, Fu J. Effects of ADIPOQ polymorphisms on PCOS risk: a meta-analysis. Reprod Biol Endocrinol 2018; 16:120. [PMID: 30509295 PMCID: PMC6278103 DOI: 10.1186/s12958-018-0439-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/13/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Whether adiponectin (ADIPOQ) polymorphisms are associated with the risk of polycystic ovary syndrome (PCOS) remain controversial. Therefore, we performed this study to better explore correlations between ADIPOQ polymorphisms and PCOS risk. METHODS Literature retrieve was conducted in PubMed, Medline and Embase. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. RESULTS Eighteen studies were enrolled for analyses. Pooled overall analyses showed that rs1501299 polymorphism was significantly associated with PCOS risk (recessive model: p = 0.02, OR = 0.77, 95%CI 0.62-0.95; allele model: p = 0.001, OR = 1.15, 95%CI 1.06-1.26). Further subgroup analyses according to ethnicity of participants revealed that rs1501299 and rs2241766 polymorphisms were both significantly correlated with PCOS risk in Caucasians. In addition, rs1501299 polymorphism was also significantly correlated with PCOS risk in East Asians. CONCLUSIONS Our findings indicated that rs1501299 and rs2241766 polymorphisms might serve as genetic biomarkers of PCOS in certain ethnicities.
Collapse
Affiliation(s)
- Zhengling Liu
- Department of gynaecology, Linyi Central Hospital, No.17 Jiankang Road of Yishui county, Linyi, 276400 Shandong China
| | - Zengyan Wang
- Department of gynaecology, Linyi Central Hospital, No.17 Jiankang Road of Yishui county, Linyi, 276400 Shandong China
| | - Changhong Hao
- Department of gynaecology, Linyi Central Hospital, No.17 Jiankang Road of Yishui county, Linyi, 276400 Shandong China
| | - Yonghui Tian
- Department of gynaecology, Linyi Central Hospital, No.17 Jiankang Road of Yishui county, Linyi, 276400 Shandong China
| | - Jingjing Fu
- Department of gynaecology, Linyi Central Hospital, No.17 Jiankang Road of Yishui county, Linyi, 276400 Shandong China
| |
Collapse
|
5
|
Parada R, Malewski T, Jaszczak K, Kawka M. Alternative Transcription of Peroxisome Proliferator-Activated Receptor Gamma in the Liver Is Associated with Fatness of Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- R Parada
- Polish Academy of Sciences, Poland
| | | | | | - M Kawka
- Polish Academy of Sciences, Poland
| |
Collapse
|
6
|
Genetic, dietary, and non-dietary risk factors of obesity among preparatory-year female students at Taibah University, Saudi Arabia. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2017. [DOI: 10.1016/j.jtusci.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ruscica M, Baragetti A, Catapano AL, Norata GD. Translating the biology of adipokines in atherosclerosis and cardiovascular diseases: Gaps and open questions. Nutr Metab Cardiovasc Dis 2017; 27:379-395. [PMID: 28237179 DOI: 10.1016/j.numecd.2016.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/10/2023]
Abstract
AIM Critically discuss the available data, to identify the current gaps and to provide key concepts that will help clinicians in translating the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases. DATA SYNTHESIS Adipose tissue is nowadays recognized as an active endocrine organ, a function related to the ability to secrete adipokines (such as leptin and adiponectin) and pro-inflammatory cytokines (tumor necrosis factor alpha and resistin). Studies in vitro and in animal models have observed that obesity status presents a chronic low-grade inflammation as the consequence of the immune cells infiltrating the adipose tissue as well as adipocytes. This inflammatory signature is often related to the presence of cardiovascular diseases, including atherosclerosis and thrombosis. These links are less clear in humans, where the role of adipokines as prognostic marker and/or player in cardiovascular diseases is not as clear as that observed in experimental models. Moreover, plasma adipokine levels might reflect a condition of adipokine-resistance in which adipokine redundancy occurs. The investigation of the cardio-metabolic phenotype of carriers of single nucleotide polymorphisms affecting the levels or function of a specific adipokine might help determine their relevance in humans. Thus, the aim of the present review is to critically discuss the available data, identify the current gaps and provide key concepts that will help clinicians translate the biology of adipokines in the context of atherosclerosis and cardio-metabolic diseases.
Collapse
Affiliation(s)
- M Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - A Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy
| | - A L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, Milan, Italy
| | - G D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; SISA Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.
| |
Collapse
|
8
|
Rohm M, Schäfer M, Laurent V, Üstünel BE, Niopek K, Algire C, Hautzinger O, Sijmonsma TP, Zota A, Medrikova D, Pellegata NS, Ryden M, Kulyte A, Dahlman I, Arner P, Petrovic N, Cannon B, Amri EZ, Kemp BE, Steinberg GR, Janovska P, Kopecky J, Wolfrum C, Blüher M, Berriel Diaz M, Herzig S. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat Med 2016; 22:1120-1130. [PMID: 27571348 DOI: 10.1038/nm.4171] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/27/2016] [Indexed: 12/17/2022]
Abstract
Cachexia represents a fatal energy-wasting syndrome in a large number of patients with cancer that mostly results in a pathological loss of skeletal muscle and adipose tissue. Here we show that tumor cell exposure and tumor growth in mice triggered a futile energy-wasting cycle in cultured white adipocytes and white adipose tissue (WAT), respectively. Although uncoupling protein 1 (Ucp1)-dependent thermogenesis was dispensable for tumor-induced body wasting, WAT from cachectic mice and tumor-cell-supernatant-treated adipocytes were consistently characterized by the simultaneous induction of both lipolytic and lipogenic pathways. Paradoxically, this was accompanied by an inactivated AMP-activated protein kinase (Ampk), which is normally activated in peripheral tissues during states of low cellular energy. Ampk inactivation correlated with its degradation and with upregulation of the Ampk-interacting protein Cidea. Therefore, we developed an Ampk-stabilizing peptide, ACIP, which was able to ameliorate WAT wasting in vitro and in vivo by shielding the Cidea-targeted interaction surface on Ampk. Thus, our data establish the Ucp1-independent remodeling of adipocyte lipid homeostasis as a key event in tumor-induced WAT wasting, and we propose the ACIP-dependent preservation of Ampk integrity in the WAT as a concept in future therapies for cachexia.
Collapse
Affiliation(s)
- Maria Rohm
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Michaela Schäfer
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Victor Laurent
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Katharina Niopek
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Carolyn Algire
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Oksana Hautzinger
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Tjeerd P Sijmonsma
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Annika Zota
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Dasa Medrikova
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalia S Pellegata
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Mikael Ryden
- Lipid Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Agné Kulyte
- Lipid Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ingrid Dahlman
- Lipid Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Peter Arner
- Lipid Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ez-Zoubir Amri
- Université Côte d'Azur, Nice, France.,Centre National de la Recherche Scientifique (CNRS), Nice, France
| | - Bruce E Kemp
- St Vincent's Institute of Medical Research, University of Melbourne, Fitzroy, Victoria, Australia.,Mary MacKillop Institute for Health, Research Australian Catholic University, Melbourne, Victoria, Australia
| | - Gregory R Steinberg
- Department of Medicine, Division of Endocrinology and Metabolism, McMaster University, Hamilton, Ontario, Canada
| | - Petra Janovska
- Department of Adipose Tissue Biology, Institute of Physiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Christian Wolfrum
- Swiss Federal Institute of Technology, Institute of Food Nutrition and Health, Schwerzenbach, Switzerland
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,Deutsches Zentrum für Diabetesforschung, Neuherberg, Germany
| |
Collapse
|
9
|
Ruan J, Zhang Y, Yuan J, Xin L, Xia J, Liu N, Mu Y, Chen Y, Yang S, Li K. A long-term high-fat, high-sucrose diet in Bama minipigs promotes lipid deposition and amyotrophy by up-regulating the myostatin pathway. Mol Cell Endocrinol 2016; 425:123-32. [PMID: 26850224 DOI: 10.1016/j.mce.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is as an important regulator of blood glucose and glycolipid metabolism and is closely related to motor ability. The underlying mechanisms by which dietary ectopic lipids in skeletal muscle prevents muscle growth remain elusive. We utilized miniature Bama swine as a model to mimic human obesity using prolonged dietary induction. After 23 months on a high-fat, high-sucrose diet, metabolic disorders were induced in the animals, which exhibited increased body weight, extensive lipid deposition in the skeletal muscle and amyotrophy. Microarray profiles demonstrated the up-regulation of genes related to fat deposition and muscle growth inhibition. We outline a clear potential pathway that in combination with increased 11β-hydroxysteroid dehydrogenase type 1, promotes expression of a major inhibitor, myostatin, by converting corticosterone to cortisol, which leads to the growth inhibition of skeletal muscle. This research provides new insights into the treatment of muscle diseases induced by obesity.
Collapse
Affiliation(s)
- Jinxue Ruan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Science, Jilin University, Changchun, 130012, PR China
| | - Yuanyuan Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jing Yuan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; College of Animal Science, Yangtz University, Jinzhou, 434023, Hubei, PR China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Jihan Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Nan Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Agricutural Genomes Institute at Shenzhen, CAAS, Shenzhen, 518120, PR China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China.
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, PR China; Agricutural Genomes Institute at Shenzhen, CAAS, Shenzhen, 518120, PR China
| |
Collapse
|
10
|
Batista ML, Henriques FS, Neves RX, Olivan MR, Matos-Neto EM, Alcântara PSM, Maximiano LF, Otoch JP, Alves MJ, Seelaender M. Cachexia-associated adipose tissue morphological rearrangement in gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle 2016; 7:37-47. [PMID: 27066317 PMCID: PMC4799865 DOI: 10.1002/jcsm.12037] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND AIMS Cachexia is a syndrome characterized by marked involuntary loss of body weight. Recently, adipose tissue (AT) wasting has been shown to occur before the appearance of other classical cachexia markers. We investigated the composition and rearrangement of the extracellular matrix, adipocyte morphology and inflammation in the subcutaneous AT (scAT) pad of gastrointestinal cancer patients. METHODS Surgical biopsies for scAT were obtained from gastrointestinal cancer patients, who were signed up into the following groups: cancer cachexia (CC, n = 11), weight-stable cancer (WSC, n = 9) and weight-stable control (non-cancer) (control, n = 7). The stable weight groups were considered as those with no important weight change during the last year and body mass index <25 kg/m(2). Subcutaneous AT fibrosis was quantified and characterized by quantitative PCR, histological analysis and immunohistochemistry. RESULTS The degree of fibrosis and the distribution and collagen types (I and III) were different in WSC and CC patients. CC patients showed more pronounced fibrosis in comparison with WSC. Infiltrating macrophages surrounding adipocytes and CD3 Ly were found in the fibrotic areas of scAT. Subcutaneous AT fibrotic areas demonstrated increased monocyte chemotactic protein 1 (MCP-1) and Cluster of Differentiation (CD)68 gene expression in cancer patients. CONCLUSIONS Our data indicate architectural modification consisting of fibrosis and inflammatory cell infiltration in scAT as induced by cachexia in gastrointestinal cancer patients. The latter was characterized by the presence of macrophages and lymphocytes, more evident in the fibrotic areas. In addition, increased MCP-1 and CD68 gene expression in scAT from cancer patients may indicate an important role of these markers in the early phases of cancer.
Collapse
Affiliation(s)
- Miguel L Batista
- Laboratory of Adipose Tissue Biology, Integrated Group of Biotechnology University of Mogi das Cruzes Mogi das Cruzes Brazil; Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Felipe S Henriques
- Laboratory of Adipose Tissue Biology, Integrated Group of Biotechnology University of Mogi das Cruzes Mogi das Cruzes Brazil
| | - Rodrigo X Neves
- Laboratory of Adipose Tissue Biology, Integrated Group of Biotechnology University of Mogi das Cruzes Mogi das Cruzes Brazil; Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Mireia R Olivan
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Emídio M Matos-Neto
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Paulo S M Alcântara
- Department of Clinical Surgery, University Hospital University of São Paulo São Paulo Brazil
| | - Linda F Maximiano
- Department of Clinical Surgery, University Hospital University of São Paulo São Paulo Brazil
| | - José P Otoch
- Department of Clinical Surgery, University Hospital University of São Paulo São Paulo Brazil
| | - Michele J Alves
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, Institute of Biomedical Sciences University of São Paulo São Paulo Brazil
| |
Collapse
|
11
|
Vázquez-Del Mercado M, Guzmán-Ornelas MO, Corona Meraz FI, Ríos-Ibarra CP, Reyes-Serratos EA, Castro-Albarran J, Ruíz-Quezada SL, Navarro-Hernández RE. The 482Ser of PPARGC1A and 12Pro of PPARG2 Alleles Are Associated with Reduction of Metabolic Risk Factors Even Obesity in a Mexican-Mestizo Population. BIOMED RESEARCH INTERNATIONAL 2015; 2015:285491. [PMID: 26185753 PMCID: PMC4491558 DOI: 10.1155/2015/285491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/19/2014] [Accepted: 11/23/2014] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the relationship between functional polymorphisms Gly482Ser in PPARGC1A and Pro12Ala in PPARG2 with the presence of obesity and metabolic risk factors. We included 375 individuals characterized as Mexican-Mestizos and classified by the body mass index (BMI). Body dimensions and distribution of body fat were measured. The HOMA-IR and adiposity indexes were calculated. Adipokines and metabolic profile quantification were performed by ELISA and routine methods. Genetic polymorphisms were determined by polymerase chain reaction restriction fragment length polymorphism analysis. A difference between obese and nonobese subjects in polymorphism PPARGC1A distribution was observed. Among obese individuals, carriers of genotype 482Gly/Gly were observed to have decreased body fat, BMI, and body fat ratio versus 482Ser/Ser carriers and increased resistin and leptin levels in carriers Gly+ phenotype versus Gly- phenotype. Subjects with PPARG2 Ala- phenotype (genotype 12Pro/Pro) showed a decreased HOMA-IR index versus individuals with Ala+ phenotype (genotypes 12Pro/Ala plus 12Ala/Ala). We propose that, in obese Mexican-Mestizos, the combination of alleles 482Ser in PPARGC1A and 12Pro in PPARG2 represents a reduced metabolic risk profile, even when the adiposity indexes are increased.
Collapse
Affiliation(s)
- Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Musculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- Servicio de Reumatología, Hospital Civil “Dr. Juan I. Menchaca”, Salvador Quevedo y Zubieta No. 750, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
| | - Milton-Omar Guzmán-Ornelas
- Instituto de Investigación en Reumatología y del Sistema Musculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- UDG-CA-701, Grupo de Investigación Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
| | - Fernanda-Isadora Corona Meraz
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- UDG-CA-701, Grupo de Investigación Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
| | - Clara-Patricia Ríos-Ibarra
- Tecnológico de Monterrey, Campus Guadalajara, Avenida General Ramón Corona No. 2514, Colonia Nuevo México, 45201 Zapopan, JAL, Mexico
| | - Eduardo-Alejandro Reyes-Serratos
- Tecnológico de Monterrey, Campus Guadalajara, Avenida General Ramón Corona No. 2514, Colonia Nuevo México, 45201 Zapopan, JAL, Mexico
| | - Jorge Castro-Albarran
- UDG-CA-701, Grupo de Investigación Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, 44430 Guadalajara, JAL, Mexico
- HMIELM, Secretaria de Salud Jalisco, Avenida Constituyentes 1075, Colonia Moderna, 44190 Guadalajara, JAL, Mexico
| | - Sandra-Luz Ruíz-Quezada
- UDG-CA-701, Grupo de Investigación Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, 44430 Guadalajara, JAL, Mexico
| | - Rosa-Elena Navarro-Hernández
- Instituto de Investigación en Reumatología y del Sistema Musculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- UDG-CA-701, Grupo de Investigación Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada No. 950, Colonia Independencia, 44340 Guadalajara, JAL, Mexico
- HMIELM, Secretaria de Salud Jalisco, Avenida Constituyentes 1075, Colonia Moderna, 44190 Guadalajara, JAL, Mexico
| |
Collapse
|
12
|
How Fatty Acids and Common Genetic Variants Together Affect the Inflammation of Adipose Tissue. CURRENT CARDIOVASCULAR RISK REPORTS 2014. [DOI: 10.1007/s12170-014-0411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Rohm M, Sommerfeld A, Strzoda D, Jones A, Sijmonsma TP, Rudofsky G, Wolfrum C, Sticht C, Gretz N, Zeyda M, Leitner L, Nawroth PP, Stulnig TM, Berriel Diaz M, Vegiopoulos A, Herzig S. Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue. Cell Metab 2013; 17:575-85. [PMID: 23499424 DOI: 10.1016/j.cmet.2013.02.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/14/2012] [Accepted: 02/05/2013] [Indexed: 11/30/2022]
Abstract
Lipid mobilization (lipolysis) in white adipose tissue (WAT) critically controls lipid turnover and adiposity in humans. While the acute regulation of lipolysis has been studied in detail, the transcriptional determinants of WAT lipolytic activity remain still largely unexplored. Here we show that the genetic inactivation of transcriptional cofactor transducin beta-like-related 1(TBLR1) blunts the lipolytic response of white adipocytes through the impairment of cAMP-dependent signal transduction. Indeed, mice lacking TBLR1 in adipocytes are defective in fasting-induced lipid mobilization and, when placed on a high-fat-diet, show aggravated adiposity, glucose intolerance, and insulin resistance. TBLR1 levels are found to increase under lipolytic conditions in WAT of both human patients and mice, correlating with serum free fatty acids (FFAs). As a critical regulator of WAT cAMP signaling and lipid mobilization, proper activity of TBLR1 in adipocytes might thus represent a critical molecular checkpoint for the prevention of metabolic dysfunction in subjects with obesity-related disorders.
Collapse
Affiliation(s)
- Maria Rohm
- Joint Division Molecular Metabolic Control, DKFZ-ZMBH Alliance and Network Aging Research, German Cancer Research Center (DKFZ) Heidelberg, Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cecil J, Dalton M, Finlayson G, Blundell J, Hetherington M, Palmer C. Obesity and eating behaviour in children and adolescents: contribution of common gene polymorphisms. Int Rev Psychiatry 2012; 24:200-10. [PMID: 22724641 DOI: 10.3109/09540261.2012.685056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of childhood obesity is increasing in many countries and confers risks for early type 2 diabetes, cardiovascular disease and metabolic syndrome. In the presence of potent 'obesogenic' environments not all children become obese, indicating the presence of susceptibility and resistance. Taking an energy balance approach, susceptibility could be mediated through a failure of appetite regulation leading to increased energy intake or via diminished energy expenditure. Evidence shows that heritability estimates for BMI and body fat are paralleled by similar coefficients for energy intake and preferences for dietary fat. Twin studies implicate weak satiety and enhanced food responsiveness as factors determining an increase in BMI. Single gene mutations, for example in the leptin receptor gene, that lead to extreme obesity appear to operate through appetite regulating mechanisms and the phenotypic response involves overconsumption and a failure to inhibit eating. Investigations of robustly characterized common gene variants of fat mass and obesity associated (FTO), peroxisome proliferator-activated receptor (PPARG) and melanocortin 4 receptor (MC4R) which contribute to variance in BMI also influence the variance in appetite factors such as measured energy intake, satiety responsiveness and the intake of palatable energy-dense food. A review of the evidence suggests that susceptibility to childhood obesity involving specific allelic variants of certain genes is mediated primarily through food consumption (appetite regulation) rather than through a decrease in activity-related energy expenditure. This conclusion has implications for early detection of susceptibility, and for prevention and management of childhood obesity.
Collapse
Affiliation(s)
- Joanne Cecil
- School of Medicine, University of St Andrews, UK.
| | | | | | | | | | | |
Collapse
|
15
|
Basaranoglu M, Basaranoglu G. Pathophysiology of insulin resistance and steatosis in patients with chronic viral hepatitis. World J Gastroenterol 2011; 17:4055-62. [PMID: 22039318 PMCID: PMC3203355 DOI: 10.3748/wjg.v17.i36.4055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis due to any cause leads to cirrhosis and end-stage liver disease. A growing body of literature has also shown that fatty liver due to overweight or obesity is a leading cause of cirrhosis. Due to the obesity epidemic, fatty liver is now a significant problem in clinical practice. Steatosis has an impact on the acceleration of liver damage in patients with chronic hepatitis due to other causes. An association between hepatitis C virus (HCV) infection, steatosis and the onset of insulin resistance has been reported. Insulin resistance is one of the leading factors for severe fibrosis in chronic HCV infections. Moreover, hyperinsulinemia has a deleterious effect on the management of chronic HCV. Response to therapy is increased by decreasing insulin resistance by weight loss or the use of thiazolidenediones or metformin. The underlying mechanisms of this complex interaction are not fully understood. A direct cytopathic effect of HCV has been suggested. The genomic structure of HCV (suggesting that some viral sequences are involved in the intracellular accumulation of triglycerides), lipid metabolism, the molecular links between the HCV core protein and lipid droplets (the core protein of HCV and its transcriptional regulatory function which induce a triglyceride accumulation in hepatocytes) and increased neolipogenesis and inhibited fatty acid degradation in mitochondria have been investigated.
Collapse
|
16
|
Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG, Bramble LA, Yang Y, Wang A, Harkema JR, Lippmann M, Rajagopalan S, Chen LC, Sun Q. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues. Part Fibre Toxicol 2011; 8:20. [PMID: 21745393 PMCID: PMC3152885 DOI: 10.1186/1743-8977-8-20] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/-) mice inhaled concentrated fine ambient PM (PM < 2.5 μm in aerodynamic diameter; PM2.5) or filtered air (FA) for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS) in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT) and brown adipose tissues (BAT), while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.
Collapse
Affiliation(s)
- Zhaobin Xu
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|