1
|
Milosevic E, Novkovic M, Cenni V, Bavelloni A, Kojic S, Jasnic J. Molecular characterization of ANKRD1 in rhabdomyosarcoma cell lines: expression, localization, and proteasomal degradation. Histochem Cell Biol 2024; 161:435-444. [PMID: 38396247 DOI: 10.1007/s00418-024-02272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in children and adolescents. Respecting the age of the patients and the tumor aggressiveness, investigation of the molecular mechanisms of RMS tumorigenesis is directed toward the identification of novel therapeutic targets. To contribute to a better understanding of the molecular pathology of RMS, we investigated ankyrin repeat domain 1 (ANKRD1), designated as a potential marker for differential diagnostics. In this study, we used three RMS cell lines (SJRH30, RD, and HS-729) to assess its expression profile, intracellular localization, and turnover. They express wild-type ANKRD1, as judged by the sequencing of the open reading frame. Each cell line expressed a different amount of ANKRD1 protein, although the transcript level was similar. According to western blot analysis, ANKRD1 protein was expressed at detectable levels in the SJRH30 and RD cells (SJRH30 > RD), but not in the HS-729, even after immunoprecipitation. Immunocytochemistry revealed nuclear and cytoplasmic localization of ANKRD1 in all examined cell lines. Moreover, the punctate pattern of ANKRD1 staining in the nuclei of RD and HS-729 cells overlapped with coilin, indicating its association with Cajal bodies. We have shown that RMS cells are not able to overexpress ANKRD1 protein, which can be attributed to its proteasomal degradation. The unsuccessful attempt to overexpress ANKRD1 in RMS cells indicates the possibility that its overexpression may have detrimental effects for RMS cells and opens a window for further research into its role in RMS pathogenesis and for potential therapeutic targeting.
Collapse
Affiliation(s)
- Emilija Milosevic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Mirjana Novkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi-Luca Cavalli-Sforza" Unit of Bologna, Via di Barbiano 1/10, 40136, Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| |
Collapse
|
2
|
Kalita B, Sahu S, Bharadwaj A, Panneerselvam L, Martinez-Cebrian G, Agarwal M, Mathew SJ. The Wnt-pathway corepressor TLE3 interacts with the histone methyltransferase KMT1A to inhibit differentiation in Rhabdomyosarcoma. Oncogene 2024; 43:524-538. [PMID: 38177411 DOI: 10.1038/s41388-023-02911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Rhabdomyosarcoma tumor cells resemble differentiating skeletal muscle cells, which unlike normal muscle cells, fail to undergo terminal differentiation, underlying their proliferative and metastatic properties. We identify the corepressor TLE3 as a key regulator of rhabdomyosarcoma tumorigenesis by inhibiting the Wnt-pathway. Loss of TLE3 function leads to Wnt-pathway activation, reduced proliferation, decreased migration, and enhanced differentiation in rhabdomyosarcoma cells. Muscle-specific TLE3-knockout results in enhanced expression of terminal myogenic differentiation markers during normal mouse development. TLE3-knockout rhabdomyosarcoma cell xenografts result in significantly smaller tumors characterized by reduced proliferation, increased apoptosis and enhanced differentiation. We demonstrate that TLE3 interacts with and recruits the histone methyltransferase KMT1A, leading to repression of target gene activation and inhibition of differentiation in rhabdomyosarcoma. A combination drug therapy regime to promote Wnt-pathway activation by the small molecule BIO and inhibit KMT1A by the drug chaetocin led to significantly reduced tumor volume, decreased proliferation, increased expression of differentiation markers and increased survival in rhabdomyosarcoma tumor-bearing mice. Thus, TLE3, the Wnt-pathway and KMT1A are excellent drug targets which can be exploited for treating rhabdomyosarcoma tumors.
Collapse
Affiliation(s)
- Bhargab Kalita
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Department of Pathology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Subhashni Sahu
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Anushree Bharadwaj
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Lakshmikanthan Panneerselvam
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | | | - Megha Agarwal
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Affiliated to Manipal University, Manipal, Karnataka, 576104, India
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sam J Mathew
- Developmental Genetics Laboratory Regional Centre for Biotechnology (RCB) NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
- Affiliated to Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Savary C, Luciana L, Huchedé P, Tourbez A, Coquet C, Broustal M, Lopez Gonzalez A, Deligne C, Diot T, Naret O, Costa M, Meynard N, Barbet V, Müller K, Tonon L, Gadot N, Degletagne C, Attignon V, Léon S, Vanbelle C, Bomane A, Rochet I, Mournetas V, Oliveira L, Rinaudo P, Bergeron C, Dutour A, Cordier-Bussat M, Roch A, Brandenberg N, El Zein S, Watson S, Orbach D, Delattre O, Dijoud F, Corradini N, Picard C, Maucort-Boulch D, Le Grand M, Pasquier E, Blay JY, Castets M, Broutier L. Fusion-negative rhabdomyosarcoma 3D organoids to predict effective drug combinations: A proof-of-concept on cell death inducers. Cell Rep Med 2023; 4:101339. [PMID: 38118405 PMCID: PMC10772578 DOI: 10.1016/j.xcrm.2023.101339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/29/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.
Collapse
Affiliation(s)
- Clara Savary
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Léa Luciana
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Paul Huchedé
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Arthur Tourbez
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Claire Coquet
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Maëlle Broustal
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Alejandro Lopez Gonzalez
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Clémence Deligne
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Thomas Diot
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Olivier Naret
- DOPPL, EPFL Innovation Park, Building L, Ch. de la Dent d'Oche 1, 1024 Ecublens, Switzerland
| | - Mariana Costa
- DOPPL, EPFL Innovation Park, Building L, Ch. de la Dent d'Oche 1, 1024 Ecublens, Switzerland
| | - Nina Meynard
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Virginie Barbet
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Kevin Müller
- Université Aix-Marseille, CNRS 7258, INSERM 1068, Institute Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Gilles Thomas' Bioinformatics Platform, Centre Léon Bérard, 69008 Lyon, France
| | - Nicolas Gadot
- Anatomopathology Research Platform, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Cyril Degletagne
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Valéry Attignon
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Sophie Léon
- EX-VIVO Platform, Centre de recherche en cancérologie de Lyon (CRCL), Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Christophe Vanbelle
- Plateforme d'Imagerie cellulaire, Centre de recherche en cancérologie de Lyon (CRCL), Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Alexandra Bomane
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Isabelle Rochet
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère-Enfant, 69677 Bron, France; Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France
| | | | | | | | - Christophe Bergeron
- Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France
| | - Aurélie Dutour
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Martine Cordier-Bussat
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Aline Roch
- DOPPL, EPFL Innovation Park, Building L, Ch. de la Dent d'Oche 1, 1024 Ecublens, Switzerland
| | - Nathalie Brandenberg
- DOPPL, EPFL Innovation Park, Building L, Ch. de la Dent d'Oche 1, 1024 Ecublens, Switzerland
| | - Sophie El Zein
- Department of Biopathology, Institut Curie, Paris, France
| | - Sarah Watson
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France; INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie, PSL Research University, Paris, France; Medical Oncology Department, Institut Curie, PSL Research University, Paris, France
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France
| | - Olivier Delattre
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, PSL Research University, Paris, France; INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie, PSL Research University, Paris, France
| | - Frédérique Dijoud
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère-Enfant, 69677 Bron, France
| | - Nadège Corradini
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; Department of Pediatric Oncology, Institut d'Hématologie et d'Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France; Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France
| | - Cécile Picard
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère-Enfant, 69677 Bron, France
| | - Delphine Maucort-Boulch
- Université Lyon 1, 69100 Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, 69003 Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, 69100 Villeurbanne, France
| | - Marion Le Grand
- Université Aix-Marseille, CNRS 7258, INSERM 1068, Institute Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Eddy Pasquier
- Université Aix-Marseille, CNRS 7258, INSERM 1068, Institute Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), 13009 Marseille, France
| | - Jean-Yves Blay
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France.
| | - Laura Broutier
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France.
| |
Collapse
|
4
|
Pomella S, Danielli SG, Alaggio R, Breunis WB, Hamed E, Selfe J, Wachtel M, Walters ZS, Schäfer BW, Rota R, Shipley JM, Hettmer S. Genomic and Epigenetic Changes Drive Aberrant Skeletal Muscle Differentiation in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2823. [PMID: 37345159 DOI: 10.3390/cancers15102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children and adolescents, represents an aberrant form of skeletal muscle differentiation. Both skeletal muscle development, as well as regeneration of adult skeletal muscle are governed by members of the myogenic family of regulatory transcription factors (MRFs), which are deployed in a highly controlled, multi-step, bidirectional process. Many aspects of this complex process are deregulated in RMS and contribute to tumorigenesis. Interconnected loops of super-enhancers, called core regulatory circuitries (CRCs), define aberrant muscle differentiation in RMS cells. The transcriptional regulation of MRF expression/activity takes a central role in the CRCs active in skeletal muscle and RMS. In PAX3::FOXO1 fusion-positive (PF+) RMS, CRCs maintain expression of the disease-driving fusion oncogene. Recent single-cell studies have revealed hierarchically organized subsets of cells within the RMS cell pool, which recapitulate developmental myogenesis and appear to drive malignancy. There is a large interest in exploiting the causes of aberrant muscle development in RMS to allow for terminal differentiation as a therapeutic strategy, for example, by interrupting MEK/ERK signaling or by interfering with the epigenetic machinery controlling CRCs. In this review, we provide an overview of the genetic and epigenetic framework of abnormal muscle differentiation in RMS, as it provides insights into fundamental mechanisms of RMS malignancy, its remarkable phenotypic diversity and, ultimately, opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sara G Danielli
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rita Alaggio
- Department of Pathology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146 Rome, Italy
| | - Willemijn B Breunis
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Ebrahem Hamed
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Zoe S Walters
- Translational Epigenomics Team, Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital of Zurich, 8032 Zürich, Switzerland
| | - Rossella Rota
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS Istituto Ospedale Pediatrico Bambino Gesu, Viale San Paolo 15, 00146 Rome, Italy
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London SM2 FNG, UK
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), 79104 Freiburg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University Medical Center Freiburg, 790106 Freiburg, Germany
| |
Collapse
|
5
|
Shah AM, Guo L, Morales MG, Jaichander P, Chen K, Huang H, Cano Hernandez K, Xu L, Bassel-Duby R, Olson EN, Liu N. TWIST2-mediated chromatin remodeling promotes fusion-negative rhabdomyosarcoma. SCIENCE ADVANCES 2023; 9:eade8184. [PMID: 37115930 PMCID: PMC10146891 DOI: 10.1126/sciadv.ade8184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Rhabdomyosarcoma (RMS) is a common soft tissue sarcoma in children that resembles developing skeletal muscle. Unlike normal muscle cells, RMS cells fail to differentiate despite expression of the myogenic determination protein MYOD. The TWIST2 transcription factor is frequently overexpressed in fusion-negative RMS (FN-RMS). TWIST2 blocks differentiation by inhibiting MYOD activity in myoblasts, but its role in FN-RMS pathogenesis is incompletely understood. Here, we show that knockdown of TWIST2 enables FN-RMS cells to exit the cell cycle and undergo terminal myogenesis. TWIST2 knockdown also substantially reduces tumor growth in a mouse xenograft model of FN-RMS. Mechanistically, TWIST2 controls H3K27 acetylation at distal enhancers by interacting with the chromatin remodelers SMARCA4 and CHD3 to activate growth-related target genes and repress myogenesis-related target genes. These findings provide insights into the role of TWIST2 in maintaining an undifferentiated and tumorigenic state of FN-RMS and highlight the potential of suppressing TWIST2-regulated pathways to treat FN-RMS.
Collapse
Affiliation(s)
- Akansha M. Shah
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria Gabriela Morales
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscilla Jaichander
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huocong Huang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karla Cano Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
6
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
7
|
Irazoqui AP, Gonzalez A, Buitrago C. Effects of calcitriol on the cell cycle of rhabdomyosarcoma cells. J Steroid Biochem Mol Biol 2022; 222:106146. [PMID: 35710090 DOI: 10.1016/j.jsbmb.2022.106146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Rhabdomyosarcoma (RMS) is a type of cancer of skeletal muscle. Calcitriol is the active form of vitamin D3, also recognised as a steroid hormone called 1α, 25-dihydroxy vitamin D3 (1,25D). We previously reported that 1,25D promoted cell proliferation and differentiation in non-cancerous skeletal muscle cells C2C12. The aim of this work is to evaluate some of the events triggered by 1,25D in RD cells, a human RMS cell line. In this work we reported that RD cells expressed vitamin D receptor (VDR) and treatment with 1,25D reduced VDR expression at 72 h. At the same time an acute decrease in viable cells as well as in cells in S-phase of cell cycle was also observed. Furthermore, up-regulation of p15INK4b was accompanied in a timely manner by down-regulation of cyclin D3, p21Waf1/Cip1 and myogenin protein levels. Simultaneously, 1,25D induced early apoptosis markers such as cyclin D1 and CDK4, and the disruption of the mitochondrial network together with a redistribution of mitochondria around the nucleus. Finally, 1,25D induced changes in the plasma membrane of RD cells associated with early and late apoptosis at 72 h, as determined by flow cytometry. Taken together, these results determine that treatment with 1,25D for 72 h triggers apoptosis in RD cells.
Collapse
Affiliation(s)
- Ana P Irazoqui
- Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC PBA); Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Agustina Gonzalez
- Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina
| | - Claudia Buitrago
- Departamento de Biología, Bioquímica y Farmacia, UNS, (8000) Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur-CONICET, Bahía Blanca, Argentina.
| |
Collapse
|
8
|
Ramadan F, Saab R, Hussein N, Clézardin P, Cohen PA, Ghayad SE. Non-coding RNA in rhabdomyosarcoma progression and metastasis. Front Oncol 2022; 12:971174. [PMID: 36033507 PMCID: PMC9403786 DOI: 10.3389/fonc.2022.971174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma of skeletal muscle differentiation, with a predominant occurrence in children and adolescents. One of the major challenges facing treatment success is the presence of metastatic disease at the time of diagnosis, commonly associated with the more aggressive fusion-positive subtype. Non-coding RNA (ncRNA) can regulate gene transcription and translation, and their dysregulation has been associated with cancer development and progression. MicroRNA (miRNA) are short non-coding nucleic acid sequences involved in the regulation of gene expression that act by targeting messenger RNA (mRNA), and their aberrant expression has been associated with both RMS initiation and progression. Other ncRNA including long non-coding RNA (lncRNA), circular RNA (circRNA) and ribosomal RNA (rRNA) have also been associated with RMS revealing important mechanistic roles in RMS biology, but these studies are still limited and require further investigation. In this review, we discuss the established roles of ncRNA in RMS differentiation, growth and progression, highlighting their potential use in RMS prognosis, as therapeutic agents or as targets of treatment.
Collapse
Affiliation(s)
- Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nader Hussein
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Philippe Clézardin
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Pascale A. Cohen
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| |
Collapse
|
9
|
Butler E, Xu L, Rakheja D, Schwettmann B, Toubbeh S, Guo L, Kim J, Skapek SX, Zheng Y. Exon skipping in genes encoding lineage-defining myogenic transcription factors in rhabdomyosarcoma. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006190. [PMID: 35933111 PMCID: PMC9528969 DOI: 10.1101/mcs.a006190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood sarcoma composed of myoblast-like cells, which suggests a defect in terminal skeletal muscle differentiation. To explore potential defects in the differentiation program, we searched for mRNA splicing variants in genes encoding transcription factors driving skeletal muscle lineage commitment and differentiation. We studied two RMS cases and identified altered splicing resulting in "skipping" the second of three exons in MYOD1. RNA-Seq data from 42 tumors and additional RMS cell lines revealed exon 2 skipping in both MYOD1 and MYF5 but not in MYF6 or MYOG. Complementary molecular analysis of MYOD1 mRNA found evidence for exon skipping in 5 additional RMS cases. Functional studies showed that so-called MYODΔEx2 protein failed to robustly induce muscle-specific genes, and its ectopic expression conferred a selective advantage in cultured fibroblasts and an RMS xenograft. In summary, we present previously unrecognized exon skipping within MYOD1 and MYF5 in RMS, and we propose that alternative splicing can represent a mechanism to alter the function of these two transcription factors in RMS.
Collapse
Affiliation(s)
- Erin Butler
- University of Texas Southwestern Medical Center;
| | - Lin Xu
- University of Texas Southwestern Medical Center
| | | | | | | | - Lei Guo
- University of Texas Southwestern Medical Center
| | - Jiwoon Kim
- University of Texas Southwestern Medical Center
| | | | | |
Collapse
|
10
|
Fahs A, Hussein N, Zalzali H, Ramadan F, Ghamloush F, Tamim H, El Homsi M, Badran B, Boulos F, Tawil A, Ghayad SE, Saab R. CD147 Promotes Tumorigenesis via Exosome-Mediated Signaling in Rhabdomyosarcoma. Cells 2022; 11:cells11152267. [PMID: 35892564 PMCID: PMC9331498 DOI: 10.3390/cells11152267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/05/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood soft-tissue tumor, with propensity for local invasion and distant metastasis. Exosomes are secreted vesicles that mediate paracrine signaling by delivering functional proteins and miRNA to recipient cells. The transmembrane protein CD147, also known as Basigin or EMMPRIN, is enriched in various tumor cells, as well as in tumor-derived exosomes, and has been correlated with poor prognosis in several types of cancer, but has not been previously investigated in RMS. We investigated the effects of CD147 on RMS cell biology and paracrine signaling, specifically its contribution to invasion and metastatic phenotype. CD147 downregulation diminishes RMS cell invasion and inhibits anchorage-independent growth in vitro. While treatment of normal fibroblasts with RMS-derived exosomes results in a significant increase in proliferation, migration, and invasion, these effects are reversed when using exosomes from CD147-downregulated RMS cells. In human RMS tissue, CD147 was expressed exclusively in metastatic tumors. Altogether, our results demonstrate that CD147 contributes to RMS tumor cell aggressiveness, and is involved in modulating the microenvironment through RMS-secreted exosomes. Targeted inhibition of CD147 reduces its expression levels within the isolated exosomes and reduces the capacity of these exosomes to enhance cellular invasive properties.
Collapse
Affiliation(s)
- Assil Fahs
- Department of Biology, Faculty of Science II, Lebanese University, Fanar P.O. Box 90656, Lebanon; (A.F.); (F.R.)
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
| | - Hasan Zalzali
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (H.Z.); (F.G.)
| | - Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Fanar P.O. Box 90656, Lebanon; (A.F.); (F.R.)
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
| | - Farah Ghamloush
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (H.Z.); (F.G.)
| | - Hani Tamim
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
- College of Medicine, Alfaisal University, Riyadh 11564, Saudi Arabia
| | - Mahmoud El Homsi
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadat 1003, Lebanon; (N.H.); (M.E.H.); (B.B.)
| | - Fouad Boulos
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (F.B.); (A.T.)
| | - Ayman Tawil
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (F.B.); (A.T.)
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Fanar P.O. Box 90656, Lebanon; (A.F.); (F.R.)
- C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, CEDEX 5, 13385 Marseille, France
- Correspondence: (S.E.G.); (R.S.); Tel.: +33-491835601 (S.E.G.); +961-1-350000 (ext. 4780) (R.S.); Fax: +33-491835602 (S.E.G.); +961-1-377384 (R.S.)
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon; (H.Z.); (F.G.)
- Correspondence: (S.E.G.); (R.S.); Tel.: +33-491835601 (S.E.G.); +961-1-350000 (ext. 4780) (R.S.); Fax: +33-491835602 (S.E.G.); +961-1-377384 (R.S.)
| |
Collapse
|
11
|
Marchesi I, Fais M, Fiorentino FP, Bordoni V, Sanna L, Zoroddu S, Bagella L. Bromodomain Inhibitor JQ1 Provides Novel Insights and Perspectives in Rhabdomyosarcoma Treatment. Int J Mol Sci 2022; 23:ijms23073581. [PMID: 35408939 PMCID: PMC8998669 DOI: 10.3390/ijms23073581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of pediatric soft tissue sarcoma. It is classified into two main subtypes: embryonal (eRMS) and alveolar (aRMS). MYC family proteins are frequently highly expressed in RMS tumors, with the highest levels correlated with poor prognosis. A pharmacological approach to inhibit MYC in cancer cells is represented by Bromodomain and Extra-Terminal motif (BET) protein inhibitors. In this paper, we evaluated the effects of BET inhibitor (+)-JQ1 (JQ1) on the viability of aRMS and eRMS cells. Interestingly, we found that the drug sensitivity of RMS cell lines to JQ1 was directly proportional to the expression of MYC. JQ1 induces G1 arrest in cells with the highest steady-state levels of MYC, whereas apoptosis is associated with MYC downregulation. These findings suggest BET inhibition as an effective strategy for the treatment of RMS alone or in combination with other drugs.
Collapse
Affiliation(s)
- Irene Marchesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Kitos Biotech Srls, Tramariglio, 07041 Alghero, Italy
| | - Milena Fais
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Francesco Paolo Fiorentino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Kitos Biotech Srls, Tramariglio, 07041 Alghero, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| |
Collapse
|
12
|
Montagna C, Filomeni G. Looking at denitrosylation to understand the myogenesis gone awry theory of rhabdomyosarcoma. Nitric Oxide 2022; 122-123:1-5. [PMID: 35182743 DOI: 10.1016/j.niox.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
S-nitrosylation of proteins is a nitric oxide (NO)-based post-translational modification of cysteine residues. By removing the NO moiety from S-nitrosothiol adducts, denitrosylases restore sulfhydryl protein pool and act as downstream tuners of S-nitrosylation signaling. Alterations in the S-nitrosylation/denitrosylation dynamics are implicated in many pathological states, including cancer ontogenesis and progression, skeletal muscle myogenesis and function. Here, we aim to provide and link different lines of evidence, and elaborate on the possible role of S-nitrosylation/denitrosylation signaling in rhabdomyosarcoma, one of the most common pediatric mesenchymal malignancy.
Collapse
Affiliation(s)
- Costanza Montagna
- Department of Biology, Tor Vergata University, Rome, Italy; Unicamillus-Saint Camillus University of Health Sciences, Rome, Italy.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
13
|
Qiu K, Wang Y, Xu D, He L, Zhang X, Yan E, Wang L, Yin J. Ryanodine receptor RyR1-mediated elevation of Ca 2+ concentration is required for the late stage of myogenic differentiation and fusion. J Anim Sci Biotechnol 2022; 13:9. [PMID: 35144690 PMCID: PMC8832842 DOI: 10.1186/s40104-021-00668-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Background Cytosolic Ca2+ plays vital roles in myogenesis and muscle development. As a major Ca2+ release channel of endoplasmic reticulum (ER), ryanodine receptor 1 (RyR1) key mutations are main causes of severe congenital myopathies. The role of RyR1 in myogenic differentiation has attracted intense research interest but remains unclear. Results In the present study, both RyR1-knockdown myoblasts and CRISPR/Cas9-based RyR1-knockout myoblasts were employed to explore the role of RyR1 in myogenic differentiation, myotube formation as well as the potential mechanism of RyR1-related myopathies. We observed that RyR1 expression was dramatically increased during the late stage of myogenic differentiation, accompanied by significantly elevated cytoplasmic Ca2+ concentration. Inhibition of RyR1 by siRNA-mediated knockdown or chemical inhibitor, dantrolene, significantly reduced cytosolic Ca2+ and blocked multinucleated myotube formation. The elevation of cytoplasmic Ca2+ concentration can effectively relieve myogenic differentiation stagnation by RyR1 inhibition, demonstrating that RyR1 modulates myogenic differentiation via regulation of Ca2+ release channel. However, RyR1-knockout-induced Ca2+ leakage led to the severe ER stress and excessive unfolded protein response, and drove myoblasts into apoptosis. Conclusions Therefore, we concluded that Ca2+ release mediated by dramatic increase in RyR1 expression is required for the late stage of myogenic differentiation and fusion. This study contributes to a novel understanding of the role of RyR1 in myogenic differentiation and related congenital myopathies, and provides a potential target for regulation of muscle characteristics and meat quality. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00668-x.
Collapse
Affiliation(s)
- Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs & National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Doudou Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Enfa Yan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Xia T, Meng L, Zhao Z, Li Y, Wen H, Sun H, Zhang T, Wei J, Li F, Liu C. Bioinformatics prediction and experimental verification identify MAD2L1 and CCNB2 as diagnostic biomarkers of rhabdomyosarcoma. Cancer Cell Int 2021; 21:634. [PMID: 34838000 PMCID: PMC8626952 DOI: 10.1186/s12935-021-02347-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS) is a malignant soft-tissue tumour. In recent years, the tumour microenvironment (TME) has been reported to be associated with the development of tumours. However, the relationship between the occurrence and development of RMS and TME is unclear. The purpose of this study is to identify potential tumor microenvironment-related biomarkers in rhabdomyosarcoma and analyze their molecular mechanisms, diagnostic and prognostic significance. Methods We first applied bioinformatics method to analyse the tumour samples of 125 patients with rhabdomyosarcoma (RMS) from the Gene Expression Omnibus database (GEO). Differential genes (DEGs) that significantly correlate with TME and the clinical staging of tumors were extracted. Immunohistochemistry (IHC) was applied to validate the expression of mitotic arrest deficient 2 like 1 (MAD2L1) and cyclin B2 (CCNB2) in RMS tissue. Then, we used cell function and molecular biology techniques to study the influence of MAD2L1 and CCNB2 expression levels on the progression of RMS. Results Bioinformatics results show that the RMS TME key genes were screened, and a TME-related tumour clinical staging model was constructed. The top 10 hub genes were screened through the establishment of a protein–protein interaction (PPI) network, and then Gene Expression Profiling Interactive Analysis (GEPIA) was conducted to measure the overall survival (OS) of the 10 hub genes in the sarcoma cases in The Cancer Genome Atlas (TCGA). Six DEGs of statistical significance were acquired. The relationship between these six differential genes and the clinical stage of RMS was analysed. Further analysis revealed that the OS of RMS patients with high expression of MAD2L1 and CCNB2 was worse and the expression of MAD2L1 and CCNB2 was related to the clinical stage of RMS patients. Gene set enrichment analysis (GSEA) revealed that the genes in MAD2L1 and CCNB2 groups with high expression were mainly related to the mechanism of tumour metastasis and recurrence. In the low-expression MAD2L1 and CCNB2 groups, the genes were enriched in the metabolic and immune pathways. Immunohistochemical results also confirmed that the expression levels of MAD2L1 (30/33, 87.5%) and CCNB2 (33/33, 100%) were remarkably higher in RMS group than in normal control group (0/11, 0%). Moreover, the expression of CCNB2 was related to tumour size. Downregulation of MAD2L1 and CCNB2 suppressed the growth, invasion, migration, and cell cycling of RMS cells and promoted their apoptosis. The CIBERSORT immune cell fraction analysis indicated that the expression levels of MAD2L1 and CCNB2 affected the immune status in the TME. Conclusions The expression levels of MAD2L1 and CCNB2 are potential indicators of TME status changes in RMS, which may help guide the prognosis of patients with RMS and the clinical staging of tumours.
Collapse
Affiliation(s)
- Tian Xia
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Zhijuan Zhao
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Yujun Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hao Wen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Hao Sun
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Tiantian Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Jingxian Wei
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China. .,Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
15
|
Zoroddu S, Marchesi I, Bagella L. PRC2: an epigenetic multiprotein complex with a key role in the development of rhabdomyosarcoma carcinogenesis. Clin Epigenetics 2021; 13:156. [PMID: 34372908 PMCID: PMC8351429 DOI: 10.1186/s13148-021-01147-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Skeletal muscle formation represents a complex of highly organized and specialized systems that are still not fully understood. Epigenetic systems underline embryonic development, maintenance of stemness, and progression of differentiation. Polycomb group proteins play the role of gene silencing of stemness markers that regulate muscle differentiation. Enhancer of Zeste EZH2 is the catalytic subunit of the complex that is able to trimethylate lysine 27 of histone H3 and induce silencing of the involved genes. In embryonal Rhabdomyosarcoma and several other tumors, EZH2 is often deregulated and, in some cases, is associated with tumor malignancy. This review explores the molecular processes underlying the failure of muscle differentiation with a focus on the PRC2 complex. These considerations could open new studies aimed at the development of new cutting-edge therapeutic strategies in the onset of Rhabdomyosarcoma.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Irene Marchesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
- Kitos Biotech Srls, Tramariglio, Alghero, SS, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
D’Agostino S, Tombolan L, Saggioro M, Frasson C, Rampazzo E, Pellegrini S, Favaretto F, Biz C, Ruggieri P, Gamba P, Bonvini P, Aveic S, Giovannoni R, Pozzobon M. Rhabdomyosarcoma Cells Produce Their Own Extracellular Matrix With Minimal Involvement of Cancer-Associated Fibroblasts: A Preliminary Study. Front Oncol 2021; 10:600980. [PMID: 33585217 PMCID: PMC7878542 DOI: 10.3389/fonc.2020.600980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The interplay between neoplastic cells and surrounding extracellular matrix (ECM) is one of the determinant elements for cancer growth. The remodeling of the ECM by cancer-associated fibroblasts (CAFs) shapes tumor microenvironment by depositing and digesting ECM proteins, hence promoting tumor growth and invasion. While for epithelial tumors CAFs are well characterized, little is known about the stroma composition of mesenchymal cancers, such as in rhabdomyosarcoma (RMS), the most common soft tissue sarcoma during childhood and adolescence. The aim of this work is to identify the importance of CAFs in specifying RMS microenvironment and the role of these stromal cells in RMS growth. METHODS We assessed in two dimensional (2D) and three dimensional (3D) systems the attraction between RMS cells and fibroblasts using epithelial colon cancer cell line as control. CAFs were studied in a xenogeneic mouse model of both tumor types and characterized in terms of fibroblast activation protein (FAP), mouse PDGFR expression, metalloproteases activation, and ECM gene and protein expression profiling. RESULTS In 2D model, the rate of interaction between stromal and malignant cells was significantly lower in RMS with respect to colon cancer. Particularly, in 3D system, RMS spheroids tended to dismantle the compact aggregate when grown on the layer of stromal cells. In vivo, despite the well-formed tumor mass, murine CAFs were found in low percentage in RMS xenogeneic samples. CONCLUSIONS Our findings support the evidence that, differently from epithelial cancers, RMS cells are directly involved in their own ECM remodeling, and less dependent on CAFs support for cancer cell growth.
Collapse
Affiliation(s)
- Stefania D’Agostino
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Lucia Tombolan
- Department of Women and Children Health, University of Padova, Padova, Italy
- Pediatric Solid Tumors Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Mattia Saggioro
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Chiara Frasson
- Onco-Hematology Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children Health, University of Padova, Padova, Italy
- Brain Tumors Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Stefania Pellegrini
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Francesca Favaretto
- Department of Medicine, Internal Medicine 3, University of Padua, Padua, Italy
| | - Carlo Biz
- Department of Surgery, Oncology and Gastroenterology DiSCOG, Orthopedic Clinic, University of Padova, Padova, Italy
| | - Pietro Ruggieri
- Department of Surgery, Oncology and Gastroenterology DiSCOG, Orthopedic Clinic, University of Padova, Padova, Italy
| | - Piergiorgio Gamba
- Department of Women and Children Health, University of Padova, Padova, Italy
| | - Paolo Bonvini
- Pediatric Solid Tumors Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Dental Materials and Biomaterials Research, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | | | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Department of Women and Children Health, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
18
|
Sin Y, Yoshimatsu Y, Noguchi R, Tsuchiya R, Sei A, Ono T, Toki S, Kobayashi E, Arakawa A, Sugiyama M, Yoshida A, Kawai A, Kondo T. Establishment and characterization of a novel alveolar rhabdomyosarcoma cell line, NCC-aRMS1-C1. Hum Cell 2020; 33:1311-1320. [PMID: 32715445 DOI: 10.1007/s13577-020-00403-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a histological subtype of RMS, which is the most common pediatric and adolescent soft-tissue sarcoma, accounting for 3-4% of all pediatric malignancies. Patient-derived cells are essential tools for understanding the molecular mechanisms of poor prognosis and developing novel anti-cancer drugs. However, only a limited number of well-characterized cell lines for rhabdomyosarcoma from public cell banks is available. Therefore, we aimed to establish a novel cell line of aRMS from the tumor tissue of a patient with aRMS. The cell line was established from surgically resected tumor tissue from a 4-year-old male patient diagnosed with stage III, T2bN1M0 aRMS and was named as NCC-aRMS1-C1. The cells were maintained for more than 3 months under tissue culture conditions and passaged more than 20 times. We confirmed the presence of identical fusion gene such as PAX7-FOXO1 in both the original tumor and NCC-aRMS1-C1. The cells exhibited spheroid formation and invasion. We found that docetaxel, vincristine, ifosfamide, dacarbazine, and romidepsin showed remarkable growth-suppressive effects on the NCC-aRMS1-C1 cells. In conclusion, the NCC-aRMS1-C1 cell line exhibited characteristics that may correspond to the lymph node metastasis in aRMS and mirror its less aggressive features. Thus, it may be useful for innovative seeds for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shunichi Toki
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ayumu Arakawa
- Department of Pediatric Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masanaka Sugiyama
- Department of Pediatric Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
19
|
Vial J, Huchedé P, Fagault S, Basset F, Rossi M, Geoffray J, Soldati H, Bisaccia J, Elsensohn MH, Creveaux M, Neves D, Blay JY, Fauvelle F, Bouquet F, Streichenberger N, Corradini N, Bergeron C, Maucort-Boulch D, Castets P, Carré M, Weber K, Castets M. Low expression of ANT1 confers oncogenic properties to rhabdomyosarcoma tumor cells by modulating metabolism and death pathways. Cell Death Discov 2020; 6:64. [PMID: 32728477 PMCID: PMC7382490 DOI: 10.1038/s41420-020-00302-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent form of pediatric soft-tissue sarcoma. It is divided into two main subtypes: ERMS (embryonal) and ARMS (alveolar). Current treatments are based on chemotherapy, surgery, and radiotherapy. The 5-year survival rate has plateaued at 70% since 2000, despite several clinical trials. RMS cells are thought to derive from the muscle lineage. During development, myogenesis includes the expansion of muscle precursors, the elimination of those in excess by cell death and the differentiation of the remaining ones into myofibers. The notion that these processes may be hijacked by tumor cells to sustain their oncogenic transformation has emerged, with RMS being considered as the dark side of myogenesis. Thus, dissecting myogenic developmental programs could improve our understanding of RMS molecular etiology. We focused herein on ANT1, which is involved in myogenesis and is responsible for genetic disorders associated with muscle degeneration. ANT1 is a mitochondrial protein, which has a dual functionality, as it is involved both in metabolism via the regulation of ATP/ADP release from mitochondria and in regulated cell death as part of the mitochondrial permeability transition pore. Bioinformatics analyses of transcriptomic datasets revealed that ANT1 is expressed at low levels in RMS. Using the CRISPR-Cas9 technology, we showed that reduced ANT1 expression confers selective advantages to RMS cells in terms of proliferation and resistance to stress-induced death. These effects arise notably from an abnormal metabolic switch induced by ANT1 downregulation. Restoration of ANT1 expression using a Tet-On system is sufficient to prime tumor cells to death and to increase their sensitivity to chemotherapy. Based on our results, modulation of ANT1 expression and/or activity appears as an appealing therapeutic approach in RMS management.
Collapse
Affiliation(s)
- J. Vial
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - P. Huchedé
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - S. Fagault
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - F. Basset
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. Rossi
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de pharmacie, Marseille, France
| | - J. Geoffray
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - H. Soldati
- Department of Cell Physiology and Metabolism, University of Geneva, CMU, CH-1211 Geneva, Switzerland
| | - J. Bisaccia
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. H. Elsensohn
- Service de Biostatistique—Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003 Lyon, France
| | - M. Creveaux
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | | | - J. Y. Blay
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - F. Fauvelle
- Université Grenoble Alpes, INSERM, US17, MRI facility IRMaGe, 38000 Grenoble, France
| | - F. Bouquet
- Roche Institute, Boulogne-Billancourt, France
| | - N. Streichenberger
- Hospices Civils de Lyon, Lyon, France
- INMG CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon, Lyon, France
| | - N. Corradini
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - C. Bergeron
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - D. Maucort-Boulch
- Service de Biostatistique—Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003 Lyon, France
| | - P. Castets
- Department of Cell Physiology and Metabolism, University of Geneva, CMU, CH-1211 Geneva, Switzerland
| | - M. Carré
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de pharmacie, Marseille, France
| | - K. Weber
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. Castets
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
20
|
McCarthy N, Dolgikh N, Logue S, Patterson JB, Zeng Q, Gorman AM, Samali A, Fulda S. The IRE1 and PERK arms of the unfolded protein response promote survival of rhabdomyosarcoma cells. Cancer Lett 2020; 490:76-88. [PMID: 32679165 DOI: 10.1016/j.canlet.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma, is associated with a low 5-year survival and harsh treatment side effects, underscoring an urgent need for therapy. The unfolded protein response (UPR) is activated in response to endoplasmic reticulum (ER) stress, where three ER stress receptors, IRE1, PERK and ATF6, aim to restore cellular homeostasis. The UPR is pro-tumourigenic in many cancers. In this study, we investigate basal UPR activity in RMS. Basal activation of IRE1 and PERK was observed in RMS cell lines, which was diminished upon addition of the IRE1 RNase inhibitor, MKC8866, or PERK inhibitor, AMGEN44. UPR inhibition caused a reduction in cell viability, cell proliferation and inhibition of long-term colony formation in both subtypes of RMS. Alveolar RMS (ARMS) subtype was highly sensitive to IRE1 inhibition, whereas embryonal RMS (ERMS) subtypes responded more markedly to PERK inhibition. Further investigation revealed a robust activation of senescence upon UPR inhibition. For the first time, the UPR is implicated in RMS biology and phenotype, and inhibition of UPR signalling reduces cell growth, suggesting that the UPR may be a promising target in RMS.
Collapse
Affiliation(s)
- Nicole McCarthy
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
| | - Nadezda Dolgikh
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany
| | - Susan Logue
- Rady Faculty of Health Sciences, University of Manitoba, Canada
| | | | - Qinping Zeng
- Fosun Orinove PharmaTech Inc., Suzhou, Jiangsu, China
| | - Adrienne M Gorman
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland; School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland; School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Hashemolhosseini S. The role of protein kinase CK2 in skeletal muscle: Myogenesis, neuromuscular junctions, and rhabdomyosarcoma. Neurosci Lett 2020; 729:135001. [DOI: 10.1016/j.neulet.2020.135001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023]
|
22
|
Tariq S, Naqvi SAR, Naz S, Mubarik MS, Yaseen M, Riaz M, Shah SMA, Rafi M, Roohi S. Dose-Dependent Internalization and Externalization Integrity Study of Newly Synthesized 99mTc-Thymoquinone Radiopharmaceutical as Cancer Theranostic Agent. Dose Response 2020; 18:1559325820914189. [PMID: 32362794 PMCID: PMC7180313 DOI: 10.1177/1559325820914189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 11/23/2022] Open
Abstract
Thymoquinone (TQ) is a bioactive phytochemical isolated from Nigella
sativa and has been investigated for biochemical and biological
activities in both in vitro and in vivo models. It is best known for its
anticancer activities. Thymoquinone accomplishes anticancer activities through
targeting multiple cancer markers including PPAR-γ, PTEN, P53, P73, STAT3, and
generation of reactive oxygen species at the cancer cell surface. The
radiolabeling of TQ with γ- and β-emitter radionuclide could be used as cancer
diagnostic or therapeutic radiopharmaceutical, respectively. In this study, we
are reporting the radiolabeling of TQ with technetium-99m (99mTc),
stability in saline and blood serum, internalization and externalization of
99mTc-TQ using rhabdomyosarcoma cancer cells line. The quality
control study revealed more than 95% labeling yield and stable in blood serum up
to 4 hours. In vitro internalization rate was recorded 27.08% ± 0.95% at 1 hour
post 2 hours internalization period and comparatively slow externalization. The
results of this study are quite encourging and could be investigated for further
key preclinical parameters to enter phase I clinical trials.
Collapse
Affiliation(s)
- Saima Tariq
- Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan.,Department of Food Technology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sumaira Naz
- Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan
| | | | - Muhammad Yaseen
- Division of Science and Technology, Department of Chemistry, University of Education, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Rafi
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Samina Roohi
- Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan
| |
Collapse
|
23
|
Connell DR, Rodriguez CO, Sternberg RA, Singh K, Barger A, Garrett LD. Biological behaviour and ezrin expression in canine rhabdomyosarcomas: 25 cases (1990-2012). Vet Comp Oncol 2020; 18:675-682. [PMID: 32246519 DOI: 10.1111/vco.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/01/2022]
Abstract
There are few published reports of canine rhabdomyosarcomas. In human paediatrics, rhabdomyosarcomas account for 5%-10% of all tumours and >50% of soft tissue sarcomas. They have an aggressive biologic behaviour; most patients develop diffuse metastatic disease. Ezrin, a cytoskeleton linker protein, has been correlated with metastasis in a number of tumours, including rhabdomyosarcomas. The goal of this study was to describe dogs with non-urinary rhabdomyosarcomas including clinical findings, ezrin expression and outcome. Twenty-five dogs with rhabdomyosarcomas were identified from two institutions' databases. Signalment, primary tumour location, cytologic and histologic findings, metastatic sites, treatments, survival time and necropsy results were recorded. Immunohistochemical staining for ezrin expression was performed on archived samples; cellular localization of ezrin was characterized. The mean and median age of all patients was 4.3 and 2 years, respectively. Subcutaneous and retrobulbar/orbital were the most common primary tumour locations. Sixteen dogs had metastatic disease at diagnosis. Three dogs presented with diffuse disease where a primary tumour could not be identified. A round cell tumour was the initial diagnosis in 32% of cases, and 76% of cases required immunohistochemistry to establish the diagnosis. The median survival was 10 days. Twenty-one cases had archived samples available for ezrin staining; all but one was positive and exhibited both membranous and cytoplasmic localization. Rhabdomyosarcomas occur in young dogs, may have a round cell appearance, and exhibit aggressive biologic behaviour. Given ezrin's defined role in metastasis, its observed expression in the tumours in this study suggest its possible role in canine rhabdomyosarcoma's aggressive biologic behaviour.
Collapse
Affiliation(s)
- Dana R Connell
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Carlos O Rodriguez
- Veterinary Medical Teaching Hospital, University of California, Davis, California, USA
| | - Rachel A Sternberg
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Kuldeep Singh
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Anne Barger
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Laura D Garrett
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
24
|
Liu Z, Zhang X, Lei H, Lam N, Carter S, Yockey O, Xu M, Mendoza A, Hernandez ER, Wei JS, Khan J, Yohe ME, Shern JF, Thiele CJ. CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG. Nat Commun 2020; 11:911. [PMID: 32060262 PMCID: PMC7021771 DOI: 10.1038/s41467-020-14684-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is a childhood cancer that expresses myogenic master regulatory factor MYOD but fails to differentiate. Here, we show that the zinc finger transcription factor CASZ1 up-regulates MYOD signature genes and induces skeletal muscle differentiation in normal myoblasts and ERMS. The oncogenic activation of the RAS-MEK pathway suppresses CASZ1 expression in ERMS. ChIP-seq, ATAC-seq and RNA-seq experiments reveal that CASZ1 directly up-regulates skeletal muscle genes and represses non-muscle genes through affecting regional epigenetic modifications, chromatin accessibility and super-enhancer establishment. Next generation sequencing of primary RMS tumors identified a single nucleotide variant in the CASZ1 coding region that potentially contributes to ERMS tumorigenesis. Taken together, loss of CASZ1 activity, due to RAS-MEK signaling or genetic alteration, impairs ERMS differentiation, contributing to RMS tumorigenesis.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Norris Lam
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sakereh Carter
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Oliver Yockey
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Max Xu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Edjay R Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
25
|
Li Q, Zhang L, Jiang J, Zhang Y, Wang X, Zhang Q, Wang Y, Liu C, Li F. CDK1 and CCNB1 as potential diagnostic markers of rhabdomyosarcoma: validation following bioinformatics analysis. BMC Med Genomics 2019; 12:198. [PMID: 31870357 PMCID: PMC6929508 DOI: 10.1186/s12920-019-0645-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 12/12/2019] [Indexed: 12/27/2022] Open
Abstract
Background Rhabdomyosarcoma (RMS), a common soft-tissue malignancy in pediatrics, presents high invasiveness and mortality. However, besides known changes in the PAX3/7-FOXO1 fusion gene in alveolar RMS, the molecular mechanisms of the disease remain incompletely understood. The purpose of the study is to recognize potential biomarkers related with RMS and analyse their molecular mechanism, diagnosis and prognostic significance. Methods The Gene Expression Omnibus was used to search the RMS and normal striated muscle data sets. Differentially expressed genes (DEGs) were filtered using R software. The DAVID has become accustomed to performing functional annotations and pathway analysis on DEGs. The protein interaction was constructed and further processed by the STRING tool and Cytoscape software. Kaplan–Meier was used to estimate the effect of hub genes on the ending of sarcoma sufferers, and the expression of these genes in RMS was proved by real-time polymerase chain reaction (RT-PCR). Finally, the expression of CDK1 and CCNB1 in RMS was validated by immunohistochemistry (IHC). Results A total of 1932 DEGs were obtained, amongst which 1505 were up-regulated and 427were down-regulated. Up-regulated genes were largely enriched in the cell cycle, ECM-receptor interaction, PI3K/Akt and p53 pathways, whilst down-regulated genes were primarily enriched in the muscle contraction process. CDK1, CCNB1, CDC20, CCNB2, AURKB, MAD2L1, HIST2H2BE, CENPE, KIF2C and PCNA were identified as hub genes by Cytoscape analyses. Survival analysis showed that, except for HIST2H2BE, the other hub genes were highly expressed and related to poor prognosis in sarcoma. RT-PCR validation showed that CDK1, CCNB1, CDC20, CENPE and HIST2H2BE were significantly differential expression in RMS compared to the normal control. IHC revealed that the expression of CDK1 (28/32, 87.5%) and CCNB1 (26/32, 81.25%) were notably higher in RMS than normal controls (1/9, 11.1%; 0/9, 0%). Moreover, the CCNB1 was associated with the age and location of the patient’s onset. Conclusions These results show that these hub genes, especially CDK1 and CCNB1, may be potential diagnostic biomarkers for RMS and provide a new perspective for the pathogenesis of RMS.
Collapse
Affiliation(s)
- Qianru Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Liang Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China.,Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Jinfang Jiang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Yangyang Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Xiaomeng Wang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Qiaochu Zhang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Yang Wang
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China
| | - Chunxia Liu
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China.
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine and The Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Chinese Ministry of Education, Shihezi, Xinjiang, 832002, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
| |
Collapse
|
26
|
Integrative Bayesian Analysis Identifies Rhabdomyosarcoma Disease Genes. Cell Rep 2019; 24:238-251. [PMID: 29972784 DOI: 10.1016/j.celrep.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/29/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Identifying oncogenic drivers and tumor suppressors remains a challenge in many forms of cancer, including rhabdomyosarcoma. Anticipating gene expression alterations resulting from DNA copy-number variants to be particularly important, we developed a computational and experimental strategy incorporating a Bayesian algorithm and CRISPR/Cas9 "mini-pool" screen that enables both genome-scale assessment of disease genes and functional validation. The algorithm, called iExCN, identified 29 rhabdomyosarcoma drivers and suppressors enriched for cell-cycle and nucleic-acid-binding activities. Functional studies showed that many iExCN genes represent rhabdomyosarcoma line-specific or shared vulnerabilities. Complementary experiments addressed modes of action and demonstrated coordinated repression of multiple iExCN genes during skeletal muscle differentiation. Analysis of two separate cohorts revealed that the number of iExCN genes harboring copy-number alterations correlates with survival. Our findings highlight rhabdomyosarcoma as a cancer in which multiple drivers influence disease biology and demonstrate a generalizable capacity for iExCN to unmask disease genes in cancer.
Collapse
|
27
|
Zheng Y, Xu L, Hassan M, Zhou X, Zhou Q, Rakheja D, Skapek SX. Bayesian Modeling Identifies PLAG1 as a Key Regulator of Proliferation and Survival in Rhabdomyosarcoma Cells. Mol Cancer Res 2019; 18:364-374. [PMID: 31757836 DOI: 10.1158/1541-7786.mcr-19-0764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/18/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
We recently developed a novel computational algorithm that incorporates Bayesian methodology to identify rhabdomyosarcoma disease genes whose expression level correlates with copy-number variations, and we identified PLAG1 as a candidate oncogenic driver. Although PLAG1 has been shown to contribute to other type of cancers, its role in rhabdomyosarcoma has not been elucidated. We observed that PLAG1 mRNA is highly expressed in rhabdomyosarcoma and is associated with PLAG1 gene copy-number gain. Knockdown of PLAG1 dramatically decreased cell accumulation and induced apoptosis in rhabdomyosarcoma cells, whereas its ectopic expression increased cell accumulation in vitro and as a xenograft and promoted G1 to S-phase cell-cycle progression. We found that PLAG1 regulates IGF2 expression and influences AKT and MAPK pathways in rhabdomyosarcoma, and IGF2 partially rescues cell death triggered by PLAG1 knockdown. The expression level of PLAG1 correlated with the IC50 of rhabdomyosarcoma cells to BMS754807, an IGF receptor inhibitor. IMPLICATIONS: Our data demonstrate that PLAG1 contributes to proliferation and survival of rhabdomyosarcoma cells at least partially by inducing IGF2, and this new understanding may have the potential for clinical translation.
Collapse
Affiliation(s)
- Yanbin Zheng
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mohammed Hassan
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaoyun Zhou
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qinbo Zhou
- Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dinesh Rakheja
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stephen X Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas.,Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, Texas
| |
Collapse
|
28
|
Rammal G, Fahs A, Kobeissy F, Mechref Y, Zhao J, Zhu R, Diab-Assaf M, Saab R, Ghayad SE. Proteomic Profiling of Rhabdomyosarcoma-Derived Exosomes Yield Insights into Their Functional Role in Paracrine Signaling. J Proteome Res 2019; 18:3567-3579. [PMID: 31448612 DOI: 10.1021/acs.jproteome.9b00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exosomes are important intercellular communication vehicles, secreted into body fluids by multiple cell types, including tumor cells. They have been demonstrated to contribute to the metastatic progression of tumor cells through paracrine signaling. Tumor exosomes contain intact and functional proteins, mRNA and miRNA that may alter the cellular environment to favor tumor growth. We evaluated the protein cargo of exosomes derived from the childhood tumor rhabdomyosarcoma (RMS) and the molecular pathways they are implicated in to decipher their role in the progression of this aggressive disease. We conducted a mass spectrometry analysis of exosome content isolated from five RMS cell lines: three of embryonal RMS (ERMS) and two of alveolar RMS (ARMS) histology and verified results by multiple reaction monitoring and western blot analyses. Results revealed 161 common proteins in ERMS-derived exosomes and 122 common proteins in ARMS-derived exosomes, of which 81 proteins were common to both subtypes. Using both PANTHER gene classification and Pathway Studio software, we assessed the perturbed biological processes and altered pathways in which the exosomal proteins are involved. The 81 commonly expressed proteins included those involved in "cell-signaling," "cell-movement," and "cancer." Pathways engaging the identified proteins revealed 37 common pathways including "integrin signaling pathway," "inflammation mediated by chemokine and cytokine signaling pathway," and "angiogenesis." Finally, a comparison of exosomal proteins of RMS cells with publicly available datasets from other cancer cells revealed that 36 proteins are specific and endogenous to the RMS-exosomes. Taken together, our results reveal that RMS-derived exosomes carry a protein cargo that contributes to conserved cellular signaling networks across multiple cell lines, and we also identify RMS exosome-specific proteins that should be further evaluated as possible novel biomarkers for this tumor.
Collapse
Affiliation(s)
| | | | | | - Yehia Mechref
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | - Jingfu Zhao
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | - Rui Zhu
- Department of Chemistry & Biochemistry , Texas Tech University , Lubbock 79409 , United States
| | | | | | | |
Collapse
|
29
|
The PAX3-FOXO1 oncogene alters exosome miRNA content and leads to paracrine effects mediated by exosomal miR-486. Sci Rep 2019; 9:14242. [PMID: 31578374 PMCID: PMC6775163 DOI: 10.1038/s41598-019-50592-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The alveolar subtype (ARMS) is clinically more aggressive, and characterized by an oncogenic fusion protein PAX3-FOXO1 that drives oncogenic cellular properties. Exosomes are small, secreted vesicles that affect paracrine signaling. We show that PAX3-FOXO1 transcript alters exosome content of C2C12 myoblasts, leading to pro-tumorigenic paracrine effects in recipient cells. Microarray analysis revealed alteration in miRNA content of exosomes, affecting cellular networks involved in cell metabolism, growth signaling, and cellular invasion. Overexpression and knockdown studies showed that miR-486-5p is an effector of PAX3-FOXO1, and mediates its paracrine effects in exosomes, including promoting recipient cell migration, invasion, and colony formation. Analysis of human RMS cells showed miR-486-5p is enriched in both cells and exosomes, and to a higher extent in ARMS subtypes. Analysis of human serum samples showed that miR-486-5p is enriched in exosomes of patients with RMS, and follow-up after chemotherapy showed decrease to control values. Our findings identify a novel role of both PAX3-FOXO1 and its downstream effector miR-486-5p in exosome-mediated oncogenic paracrine effects of RMS, and suggest its possible use as a biomarker.
Collapse
|
30
|
Sanna L, Piredda R, Marchesi I, Bordoni V, Forcales SV, Calvisi DF, Bagella L. “Verteporfin exhibits anti-proliferative activity in embryonal and alveolar rhabdomyosarcoma cell lines”. Chem Biol Interact 2019; 312:108813. [DOI: 10.1016/j.cbi.2019.108813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
|
31
|
Gerhart J, Behling K, Paessler M, Milton L, Bramblett G, Garcia D, Pitts M, Hurtt R, Crawford M, Lackman R, Nguyen D, Infanti J, FitzGerald P, George-Weinstein M. Rhabdomyosarcoma and Wilms tumors contain a subpopulation of noggin producing, myogenic cells immunoreactive for lens beaded filament proteins. PLoS One 2019; 14:e0214758. [PMID: 30973903 PMCID: PMC6459534 DOI: 10.1371/journal.pone.0214758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Myo/Nog cells are identified by their expression of the skeletal muscle specific transcription factor MyoD and the bone morphogenetic protein inhibitor noggin, and binding of the G8 monoclonal antibody. Their release of noggin is critical for morphogenesis and skeletal myogenesis. In the adult, Myo/Nog cells are present in normal tissues, wounds and skin tumors. Myo/Nog cells in the lens give rise to myofibroblasts that synthesize skeletal muscle proteins. The purpose of this study was to screen human lens tissue, rhabdomyosarcoma cell lines, and tissue sections from rhabdomyosarcoma, Wilms and tumors lacking features of skeletal muscle for co-localization of antibodies to Myo/Nog cell markers and the lens beaded filament proteins filensin and CP49. Immunofluorescence localization experiments revealed that Myo/Nog cells of the lens bind antibodies to beaded filament proteins. Co-localization of antibodies to G8, noggin, filensin and CP49 was observed in most RC13 and a subpopulation of RD human rhabdomyosarcoma cell lines. Western blotting with beaded filament antibodies revealed bands of similar molecular weights in RC13 and murine lens cells. Human alveolar, embryonal, pleomorphic and spindle cell rhabdomyosarcomas and Wilms tumors contained a subpopulation of cells immunoreactive for G8, noggin, MyoD and beaded filaments. G8 was also co-localized with filensin mRNA. Staining for beaded filament proteins was not detected in G8 positive cells in leiomyosarcomas, squamous and basal cell carcinomas, syringocarciomas and malignant melanomas. Lens beaded filament proteins were thought to be present only in the lens. Myo/Nog-like cells immunoreactive for beaded filaments may be diagnostic of tumors related to the skeletal muscle lineage.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Kathryn Behling
- Dept. of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States of America
- Dept. of Pathology, Cooper University Health Care, Camden, NJ, United States of America
| | - Michele Paessler
- Division of Hematopathology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - LaBraya Milton
- Dept. of Orthopaedics, Cooper University Health Care, Camden, NJ, United States of America
| | - Gregory Bramblett
- Lankenau Institute for Medical Research, Wynnewood, PA, United States of America
| | - Denise Garcia
- Dept. of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States of America
| | - Meghan Pitts
- Lankenau Institute for Medical Research, Wynnewood, PA, United States of America
| | - Reginald Hurtt
- Dept. of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States of America
| | - Mitchell Crawford
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Richard Lackman
- Dept. of Orthopaedics, Cooper University Health Care, Camden, NJ, United States of America
| | - Daniela Nguyen
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Joseph Infanti
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Paul FitzGerald
- Dept. of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States of America
| | - Mindy George-Weinstein
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
32
|
Li S, Chen K, Zhang Y, Barnes SD, Jaichander P, Zheng Y, Hassan M, Malladi VS, Skapek SX, Xu L, Bassel-Duby R, Olson EN, Liu N. Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes Dev 2019; 33:626-640. [PMID: 30975722 PMCID: PMC6546057 DOI: 10.1101/gad.324467.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
Li et al. show that TWIST2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Rhabdomyosarcoma (RMS) is an aggressive pediatric cancer composed of myoblast-like cells. Recently, we discovered a unique muscle progenitor marked by the expression of the Twist2 transcription factor. Genomic analyses of 258 RMS patient tumors uncovered prevalent copy number amplification events and increased expression of TWIST2 in fusion-negative RMS. Knockdown of TWIST2 in RMS cells results in up-regulation of MYOGENIN and a decrease in proliferation, implicating TWIST2 as an oncogene in RMS. Through an inducible Twist2 expression system, we identified Twist2 as a reversible inhibitor of myogenic differentiation with the remarkable ability to promote myotube dedifferentiation in vitro. Integrated analysis of genome-wide ChIP-seq and RNA-seq data revealed the first dynamic chromatin and transcriptional landscape of Twist2 binding during myogenic differentiation. During differentiation, Twist2 competes with MyoD at shared DNA motifs to direct global gene transcription and repression of the myogenic program. Additionally, Twist2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Our study reveals the dynamic interplay between two opposing transcriptional regulators that control the fate of RMS and provides insight into the molecular etiology of this aggressive form of cancer.
Collapse
Affiliation(s)
- Stephen Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yichi Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Spencer D Barnes
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Priscilla Jaichander
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yanbin Zheng
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mohammed Hassan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Venkat S Malladi
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephen X Skapek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lin Xu
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
Riuzzi F, Sorci G, Sagheddu R, Chiappalupi S, Salvadori L, Donato R. RAGE in the pathophysiology of skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:1213-1234. [PMID: 30334619 PMCID: PMC6351676 DOI: 10.1002/jcsm.12350] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence suggests that the signalling of the Receptor for Advanced Glycation End products (RAGE) is critical for skeletal muscle physiology controlling both the activity of muscle precursors during skeletal muscle development and the correct time of muscle regeneration after acute injury. On the other hand, the aberrant re-expression/activity of RAGE in adult skeletal muscle is a hallmark of muscle wasting that occurs in response to ageing, genetic disorders, inflammatory conditions, cancer, and metabolic alterations. In this review, we discuss the mechanisms of action and the ligands of RAGE involved in myoblast differentiation, muscle regeneration, and muscle pathological conditions. We highlight potential therapeutic strategies for targeting RAGE to improve skeletal muscle function.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Guglielmo Sorci
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Roberta Sagheddu
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Sara Chiappalupi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Laura Salvadori
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology
| | - Rosario Donato
- Department of Experimental Medicine, University of Perugia, Perugia, Italy.,Interuniversity Institute of Myology.,Centro Universitario di Ricerca sulla Genomica Funzionale, University of Perugia, Perugia, Italy
| |
Collapse
|
34
|
Genadry KC, Pietrobono S, Rota R, Linardic CM. Soft Tissue Sarcoma Cancer Stem Cells: An Overview. Front Oncol 2018; 8:475. [PMID: 30416982 PMCID: PMC6212576 DOI: 10.3389/fonc.2018.00475] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
Soft tissue sarcomas (STSs) are an uncommon group of solid tumors that can arise throughout the human lifespan. Despite their commonality as non-bony cancers that develop from mesenchymal cell precursors, they are heterogeneous in their genetic profiles, histology, and clinical features. This has made it difficult to identify a single target or therapy specific to STSs. And while there is no one cell of origin ascribed to all STSs, the cancer stem cell (CSC) principle—that a subpopulation of tumor cells possesses stem cell-like properties underlying tumor initiation, therapeutic resistance, disease recurrence, and metastasis—predicts that ultimately it should be possible to identify a feature common to all STSs that could function as a therapeutic Achilles' heel. Here we review the published evidence for CSCs in each of the most common STSs, then focus on the methods used to study CSCs, the developmental signaling pathways usurped by CSCs, and the epigenetic alterations critical for CSC identity that may be useful for further study of STS biology. We conclude with discussion of some challenges to the field and future directions.
Collapse
Affiliation(s)
- Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Silvia Pietrobono
- Department of Hematology-Oncology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Hematology-Oncology, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States.,Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
35
|
Ghayad SE, Rammal G, Sarkis O, Basma H, Ghamloush F, Fahs A, Karam M, Harajli M, Rabeh W, Mouawad JE, Zalzali H, Saab R. The histone deacetylase inhibitor Suberoylanilide Hydroxamic Acid (SAHA) as a therapeutic agent in rhabdomyosarcoma. Cancer Biol Ther 2018; 20:272-283. [PMID: 30307360 DOI: 10.1080/15384047.2018.1529093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood sarcoma with two distinct subtypes, embryonal (ERMS) and alveolar (ARMS) histologies. More effective treatment is needed to improve outcomes, beyond conventional cytotoxic chemotherapy. The pan-histone deacetylase inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), has shown promising efficacy in limited preclinical studies. We used a panel of human ERMS and ARMS cell lines and xenografts to evaluate the effects of SAHA as a therapeutic agent in both RMS subtypes. SAHA decreased cell viability by inhibiting S-phase progression in all cell lines tested, and induced apoptosis in all but one cell line. Molecularly, SAHA-treated cells showed activation of a DNA damage response, induction of the cell cycle inhibitors p21Cip1 and p27Kip1 and downregulation of Cyclin D1. In a subset of RMS cell lines, SAHA promoted features of cellular senescence and myogenic differentiation. Interestingly, SAHA treatment profoundly decreased protein levels of the driver fusion oncoprotein PAX3-FOXO1 in ARMS cells at a post-translational level. In vivo, SAHA-treated xenografts showed increased histone acetylation and induction of a DNA damage response, along with variable upregulation of p21Cip1 and p27Kip1. However, while the ARMS Rh41 xenograft tumor growth was significantly inhibited, there was no significant inhibition of the ERMS tumor xenograft RD. Thus, our work shows that, while SAHA is effective against ERMS and ARMS tumor cells in vitro, it has divergent in vivo effects . Together with the observed effects on the PAX3-FOXO1 fusion protein, these data suggest SAHA as a possible therapeutic agent for clinical testing in patients with fusion protein-positive RMS.
Collapse
Affiliation(s)
- Sandra E Ghayad
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Ghina Rammal
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon.,b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Omar Sarkis
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Hussein Basma
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Farah Ghamloush
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Assil Fahs
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Mia Karam
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Mohamad Harajli
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Wissam Rabeh
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Joe E Mouawad
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Hassan Zalzali
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Raya Saab
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon.,c Department of Anatomy, Cell Biology and Physiology , American University of Beirut , Beirut , Lebanon
| |
Collapse
|
36
|
Kendall GC, Watson S, Xu L, LaVigne CA, Murchison W, Rakheja D, Skapek SX, Tirode F, Delattre O, Amatruda JF. PAX3-FOXO1 transgenic zebrafish models identify HES3 as a mediator of rhabdomyosarcoma tumorigenesis. eLife 2018; 7:33800. [PMID: 29869612 PMCID: PMC5988421 DOI: 10.7554/elife.33800] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/25/2018] [Indexed: 12/23/2022] Open
Abstract
Alveolar rhabdomyosarcoma is a pediatric soft-tissue sarcoma caused by PAX3/7-FOXO1 fusion oncogenes and is characterized by impaired skeletal muscle development. We developed human PAX3-FOXO1 -driven zebrafish models of tumorigenesis and found that PAX3-FOXO1 exhibits discrete cell lineage susceptibility and transformation. Tumors developed by 1.6–19 months and were primitive neuroectodermal tumors or rhabdomyosarcoma. We applied this PAX3-FOXO1 transgenic zebrafish model to study how PAX3-FOXO1 leverages early developmental pathways for oncogenesis and found that her3 is a unique target. Ectopic expression of the her3 human ortholog, HES3, inhibits myogenesis in zebrafish and mammalian cells, recapitulating the arrested muscle development characteristic of rhabdomyosarcoma. In patients, HES3 is overexpressed in fusion-positive versus fusion-negative tumors. Finally, HES3 overexpression is associated with reduced survival in patients in the context of the fusion. Our novel zebrafish rhabdomyosarcoma model identifies a new PAX3-FOXO1 target, her3/HES3, that contributes to impaired myogenic differentiation and has prognostic significance in human disease. One of the most common cancers in children and adolescents is rhabdomyosarcoma, a cancer of soft tissue such as muscle, tendon or cartilage. The fusion of DNA on two different chromosomes causes the most aggressive form of rhabdomyosarcoma. The fused DNA produces an abnormal protein called PAX3-FOXO1. During normal muscle development, a subset of rapidly growing cells eventually slow down and form mature, working muscle cells. It is still unclear how exactly rhabdomyosarcoma develops, but it is thought that PAX3-FOXO1 stops muscle cells from maturing and the cells that grow out of control result in a tumor. Learning how PAX3-FOXO1 hijacks normal muscle development could lead to new treatments for rhabdomyosarcoma. One treatment approach is to slow the growth of a tumor and force the cells to mature. Then, young patients might avoid chemotherapy or radiation treatments and their side effects. Efforts to improve treatment for this type of cancer face several obstacles. Currently, only one vertebrate animal model of the disease is available to test drugs, and it is still not known how PAX3-FOXO1 causes healthy cells to become cancerous. It is also hard to turn off PAX3-FOXO1 itself, so scientists must find additional proteins that collaborate with it to target with drugs. Now, Kendall et al. show that genetically engineered zebrafish with human PAX3-FOXO1 develop rhabdomyosarcoma-like tumors. Experiments on these zebrafish showed that the protein turns on a gene called her3. Humans have a similar gene called HES3. In zebrafish or mouse cells, human HES3 interferes with muscle-cell maturation and allows cells that acquire PAX3-FOXO1 to persist during development instead of dying. It also increases the cell growth and cancerous behavior in human tumor cells. Kendall et al. further looked at HES3 levels in tumors collected from patients with rhabdomyosarcoma and found that having higher levels of HES3 increased the risk of death from the cancer. Human rhabdomyosarcoma tumors with high HES3 levels were also more likely to have certain cell-growth and cell-differentiation related proteins. Drugs that turn off or modify the activity of these proteins already exist. Testing these drugs that target processes such as cell growth in the zebrafish with rhabdomyosarcoma-like tumors may help scientists determine if they reduce tumor growth. If they do, additional trials could determine if they would help patients with rhabdomyosarcoma.
Collapse
Affiliation(s)
- Genevieve C Kendall
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, United States.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, United States
| | - Sarah Watson
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Inserm U830, Institut Curie, Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Lin Xu
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, United States
| | - Collette A LaVigne
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, United States.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, United States
| | - Whitney Murchison
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, United States
| | - Dinesh Rakheja
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, United States.,Department of Pathology, UT Southwestern Medical Center, Dallas, United States
| | - Stephen X Skapek
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, United States
| | - Franck Tirode
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre LéonBérard, Lyon, France
| | - Olivier Delattre
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Inserm U830, Institut Curie, Paris Sciences et Lettres (PSL) Research University, Paris, France.,INSERM U80, Institute Curie Research Center, Paris, France.,Institut Curie Hospital Group, Unité de Génétique Somatique, Paris, France
| | - James F Amatruda
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, United States.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, United States.,Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
37
|
Deel MD, Slemmons KK, Hinson AR, Genadry KC, Burgess BA, Crose LES, Kuprasertkul N, Oristian KM, Bentley RC, Linardic CM. The Transcriptional Coactivator TAZ Is a Potent Mediator of Alveolar Rhabdomyosarcoma Tumorigenesis. Clin Cancer Res 2018. [PMID: 29514840 DOI: 10.1158/1078-0432.ccr-17-1207] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Alveolar rhabdomyosarcoma (aRMS) is a childhood soft tissue sarcoma driven by the signature PAX3-FOXO1 (P3F) fusion gene. Five-year survival for aRMS is <50%, with no improvement in over 4 decades. Although the transcriptional coactivator TAZ is oncogenic in carcinomas, the role of TAZ in sarcomas is poorly understood. The aim of this study was to investigate the role of TAZ in P3F-aRMS tumorigenesis.Experimental Design: After determining from publicly available datasets that TAZ is upregulated in human aRMS transcriptomes, we evaluated whether TAZ is also upregulated in our myoblast-based model of P3F-initiated tumorigenesis, and performed IHC staining of 63 human aRMS samples from tissue microarrays. Using constitutive and inducible RNAi, we examined the impact of TAZ loss of function on aRMS oncogenic phenotypes in vitro and tumorigenesis in vivo Finally, we performed pharmacologic studies in aRMS cell lines using porphyrin compounds, which interfere with TAZ-TEAD transcriptional activity.Results: TAZ is upregulated in our P3F-initiated aRMS model, and aRMS cells and tumors have high nuclear TAZ expression. In vitro, TAZ suppression inhibits aRMS cell proliferation, induces apoptosis, supports myogenic differentiation, and reduces aRMS cell stemness. TAZ-deficient aRMS cells are enriched in G2-M phase of the cell cycle. In vivo, TAZ suppression attenuates aRMS xenograft tumor growth. Preclinical studies show decreased aRMS xenograft tumor growth with porphyrin compounds alone and in combination with vincristine.Conclusions: TAZ is oncogenic in aRMS sarcomagenesis. While P3F is currently not therapeutically tractable, targeting TAZ could be a promising novel approach in aRMS. Clin Cancer Res; 24(11); 2616-30. ©2018 AACR.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katherine K Slemmons
- Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Ashley R Hinson
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Katia C Genadry
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Breanne A Burgess
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | | | - Kristianne M Oristian
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina
| | - Rex C Bentley
- Department of Pathology, School of Medicine, Duke University, Durham, North Carolina
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina. .,Department of Pharmacology & Cancer Biology, School of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
38
|
Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep 2018; 8:1479. [PMID: 29367618 PMCID: PMC5784149 DOI: 10.1038/s41598-018-19917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023] Open
Abstract
Prohibitin 2 (PHB2), as a conserved multifunctional protein, is traditionally localized in the mitochondrial inner membrane and essential for maintenance of mitochondrial function. Here, we investigated the role of PHB2 in human rhabdomyosarcoma (RMS) RD cells and found substantial localization of PHB2 in the nucleolus. We demonstrated that PHB2 knockdown inhibited RD cell proliferation through inducing cell cycle arrest and suppressing DNA synthesis. Meanwhile, down-regulation of PHB2 also induced apoptosis and promoted differentiation in fractions of RD cells. In addition, PHB2 silencing led to altered nucleolar morphology, as observed by transmission electron microscopy, and impaired nucleolar function, as evidenced by down-regulation of 45S and 18S ribosomal RNA synthesis. Consistently, upon PHB2 knockdown, occupancy of c-Myc at the ribosomal DNA (rDNA) promoter was attenuated, while more myoblast determination protein 1 (MyoD) molecules bound to the rDNA promoter. In conclusion, our findings suggest that nucleolar PHB2 is involved in maintaining nucleolar morphology and function in RD cells by regulating a variety of transcription factors, which is likely to be one of the underlying mechanisms by which PHB2 promotes tumor proliferation and represses differentiation. Our study provides new insight into the pathogenesis of RMS and novel characterizations of the highly conserved PHB2 protein.
Collapse
|
39
|
Ragab N, Viehweger F, Bauer J, Geyer N, Yang M, Seils A, Belharazem D, Brembeck FH, Schildhaus HU, Marx A, Hahn H, Simon-Keller K. Canonical WNT/β-Catenin Signaling Plays a Subordinate Role in Rhabdomyosarcomas. Front Pediatr 2018; 6:378. [PMID: 30568936 PMCID: PMC6290061 DOI: 10.3389/fped.2018.00378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022] Open
Abstract
The development of skeletal muscle from immature precursors is partially driven by canonical WNT/β-catenin signaling. Rhabdomyosarcomas (RMS) are immature skeletal muscle-like, highly lethal cancers with a variably pronounced blockade of muscle differentiation. To investigate whether canonical β-catenin signaling in RMS is involved in differentiation and aggressiveness of RMS, we analyzed the effects of WNT3A and of a siRNA-mediated or pharmacologically induced β-catenin knock-down on proliferation, apoptosis and differentiation of embryonal and alveolar RMS cell lines. While the canonical WNT pathway was maintained in all cell lines as shown by WNT3A induced AXIN expression, more distal steps including transcriptional activation of its key target genes were consistently impaired. In addition, activation or inhibition of canonical WNT/β-catenin only moderately affected proliferation, apoptosis or myodifferentiation of the RMS tumor cells and a conditional knockout of β-catenin in RMS of Ptch del/+ mice did not alter RMS incidence or multiplicity. Together our data indicates a subordinary role of the canonical WNT/β-catenin signaling for RMS proliferation, apoptosis or differentiation and thus aggressiveness of this malignant childhood tumor.
Collapse
Affiliation(s)
- Nada Ragab
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Florian Viehweger
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany.,Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Bauer
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Natalie Geyer
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Mingya Yang
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anna Seils
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix H Brembeck
- Tumor Biology and Signal Transduction, Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
40
|
Marchesi I, Sanna L, Fais M, Fiorentino FP, Giordano A, Bagella L. 12-O-tetradecanoylphorbol-13-acetate and EZH2 inhibition: A novel approach for promoting myogenic differentiation in embryonal rhabdomyosarcoma cells. J Cell Physiol 2017; 233:2360-2365. [DOI: 10.1002/jcp.26107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/26/2023]
Affiliation(s)
- Irene Marchesi
- Department of Biomedical Sciences; University of Sassari; Sassari Italy
| | - Luca Sanna
- Department of Biomedical Sciences; University of Sassari; Sassari Italy
| | - Milena Fais
- Department of Biomedical Sciences; University of Sassari; Sassari Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia Pennsylvania
- Department of Medicine; Surgery and Neuroscience; University of Siena; Siena Italy
| | - Luigi Bagella
- Department of Biomedical Sciences; University of Sassari; Sassari Italy
- Sbarro Institute for Cancer Research and Molecular Medicine; Center for Biotechnology; College of Science and Technology; Temple University; Philadelphia Pennsylvania
| |
Collapse
|
41
|
Porpiglia E, Samusik N, Ho ATV, Cosgrove BD, Mai T, Davis KL, Jager A, Nolan GP, Bendall SC, Fantl WJ, Blau HM. High-resolution myogenic lineage mapping by single-cell mass cytometry. Nat Cell Biol 2017; 19:558-567. [PMID: 28414312 DOI: 10.1038/ncb3507] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/14/2017] [Indexed: 12/18/2022]
Abstract
Muscle regeneration is a dynamic process during which cell state and identity change over time. A major roadblock has been a lack of tools to resolve a myogenic progression in vivo. Here we capitalize on a transformative technology, single-cell mass cytometry (CyTOF), to identify in vivo skeletal muscle stem cell and previously unrecognized progenitor populations that precede differentiation. We discovered two cell surface markers, CD9 and CD104, whose combined expression enabled in vivo identification and prospective isolation of stem and progenitor cells. Data analysis using the X-shift algorithm paired with single-cell force-directed layout visualization defined a molecular signature of the activated stem cell state (CD44+/CD98+/MyoD+) and delineated a myogenic trajectory during recovery from acute muscle injury. Our studies uncover the dynamics of skeletal muscle regeneration in vivo and pave the way for the elucidation of the regulatory networks that underlie cell-state transitions in muscle diseases and ageing.
Collapse
Affiliation(s)
- Ermelinda Porpiglia
- Blau Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.,Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nikolay Samusik
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Nolan Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrew Tri Van Ho
- Blau Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.,Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Benjamin D Cosgrove
- Blau Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.,Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Thach Mai
- Blau Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.,Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kara L Davis
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Nolan Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Astraea Jager
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Nolan Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Garry P Nolan
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Nolan Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sean C Bendall
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Nolan Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wendy J Fantl
- Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Stanford Comprehensive Cancer Institute and Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford California, California 94305, USA
| | - Helen M Blau
- Blau Laboratory, Stanford University School of Medicine, Stanford, California 94305, USA.,Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
42
|
Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci Rep 2016; 6:37088. [PMID: 27853183 PMCID: PMC5112573 DOI: 10.1038/srep37088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood soft tissue tumor, which exists in oncoprotein PAX-FOXO1 fusion positive and fusion negative subtypes, with the fusion-positive RMS being characterized by a more aggressive clinical behavior. Exosomes are small membranous vesicles secreted into body fluids by multiple cell types, including tumor cells, and have been implicated in metastatic progression through paracrine signaling. We characterized exosomes secreted by a panel of 5 RMS cell lines. Expression array analysis showed that, for both fusion-positive and fusion-negative cells, exosome miRNA clustered well together and to a higher extent than cellular miRNA. While enriched miRNA in exosomes of fusion-negative RMS cells were distinct from those of fusion-positive RMS cells, the most significant predicted disease and functions in both groups were related to processes relevant to cancer and tissue remodelling. Functionally, we found that RMS-derived exosomes exerted a positive effect on cellular proliferation of recipient RMS cells and fibroblasts, induced cellular migration and invasion of fibroblasts, and promoted angiogenesis. These findings show that RMS-derived exosomes enhance invasive properties of recipient cells, and that exosome content of fusion-positive RMS is different than that of fusion-negative RMS, possibly contributing to the different metastatic propensity of the two subtypes.
Collapse
|
43
|
Missiaglia E, Shepherd CJ, Aladowicz E, Olmos D, Selfe J, Pierron G, Delattre O, Walters Z, Shipley J. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. Cancer Lett 2016; 385:251-260. [PMID: 27984116 PMCID: PMC5157784 DOI: 10.1016/j.canlet.2016.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022]
Abstract
Rhabdomyosarcomas (RMS) in children and adolescents are heterogeneous sarcomas broadly defined by skeletal muscle features and the presence/absence of PAX3/7-FOXO1 fusion genes. MicroRNAs are small non-coding RNAs that regulate gene expression in a cell context specific manner. Sequencing analyses of microRNAs in 64 RMS revealed expression patterns separating skeletal muscle, fusion gene positive and negative RMS. Integration with parallel gene expression data assigned biological functions to 12 co-expression networks/modules that reassuringly included myogenic roles strongly correlated with microRNAs known in myogenesis and RMS development. Modules also correlated with clinical outcome and fusion status. Regulation of microRNAs by the fusion protein was demonstrated after PAX3-FOXO1 reduction, exemplified by miR-9-5p. MiR-9-5p levels correlated with poor outcome, even within fusion gene positive RMS, and were higher in metastatic versus non-metastatic disease. MiR-9-5p reduction inhibited RMS cell migration. Our findings reveal microRNAs in a regulatory framework of biological and clinical significance in RMS. RNAseq profiled miRNA expression in 64 rhabdomyosarcomas (RMS). MiRNA expression distinguished muscle and RMS on the basis of fusion gene status. Co-expression networks linked to function, clinical data and fusion gene status. Identified miRNAs, including miR-9-5p, altered by the PAX3-FOXO1 fusion protein. Demonstrated clinical and functional role for miR-9-5p in RMS.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Chris J Shepherd
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Ewa Aladowicz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - David Olmos
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, 26 Rue d'Ulm, 75248, Paris Cedex 05, France
| | - Olivier Delattre
- Unité de Génétique Somatique, Institut Curie, 26 Rue d'Ulm, 75248, Paris Cedex 05, France
| | - Zoe Walters
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK.
| |
Collapse
|
44
|
Morena D, Maestro N, Bersani F, Forni PE, Lingua MF, Foglizzo V, Šćepanović P, Miretti S, Morotti A, Shern JF, Khan J, Ala U, Provero P, Sala V, Crepaldi T, Gasparini P, Casanova M, Ferrari A, Sozzi G, Chiarle R, Ponzetto C, Taulli R. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. eLife 2016; 5. [PMID: 26987019 PMCID: PMC4811764 DOI: 10.7554/elife.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/26/2016] [Indexed: 11/24/2022] Open
Abstract
Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity. DOI:http://dx.doi.org/10.7554/eLife.12116.001 Soft tissue sarcomas are rare cancers that originate in tissues such as muscles, tendons, cartilage and fat. These cancers are further classified into subtypes based on their appearance. For example, rhabdomyosarcoma cells resemble the cells that normally develop into muscle, while other soft tissue tumors that do not look like a distinct cell type are called undifferentiated pleomorphic sarcomas. Recent experiments have suggested that although these subtypes appear different, they may both arise from the cells that build muscles. However, this had not been confirmed. Morena et al. investigated whether changing the environment – also known as the “niche” – of muscle stem cells could influence what type of sarcoma developed in mice that were prone to cancer. Normally muscle stem cells in an adult only regenerate injured muscles, and need to receive the correct cues before they divide. Among these cues is a protein called Hepatocyte Growth Factor (or HGF for short), which is produced by cells in the muscle stem cells’ niche. Morena et al. engineered mice so that the production of HGF in the muscles could be switched on or off at will. Mice that were already prone to cancer and produced a lot of HGF tended to develop rhabdomyosarcomas. However, when HGF was turned on in similar mice that also lacked normal muscle stem cells, the resulting sarcomas were predominantly undifferentiated pleomorphic sarcomas. These data indicate that rhabdomyosarcomas probably originate from muscle stem cells, whereas undifferentiated pleomorphic sarcomas develop from other cells in the niche. Lastly, Morena et al. studied the sarcomas in their mice in more detail and observed that, similar to what has been found in human rhabdomyosarcomas, individual tumors had different genetic mutations. These differences make it difficult to treat sarcomas with a single anti-cancer drug. However, the new results suggest that a combination of targeted drugs may prove effective in blocking tumor growth and in preventing resistance. DOI:http://dx.doi.org/10.7554/eLife.12116.002
Collapse
Affiliation(s)
- Deborah Morena
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Nicola Maestro
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Francesca Bersani
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Paolo Emanuele Forni
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Marcello Francesco Lingua
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Valentina Foglizzo
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Petar Šćepanović
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Jack F Shern
- Pediatric Oncology Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health (NIH), Bethesda, United States
| | - Javed Khan
- Pediatric Oncology Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health (NIH), Bethesda, United States
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Sala
- Department of Oncology, University of Turin, Turin, Italy
| | | | - Patrizia Gasparini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Michela Casanova
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Andrea Ferrari
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Gabriella Sozzi
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Roberto Chiarle
- CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, United States
| | - Carola Ponzetto
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| |
Collapse
|
45
|
Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases. Sci Rep 2016; 6:20376. [PMID: 26847534 PMCID: PMC4742887 DOI: 10.1038/srep20376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 12/31/2015] [Indexed: 11/08/2022] Open
Abstract
The transition from a committed progenitor cell to one that is actively differentiating represents a process that is fundamentally important in skeletal myogenesis. Although the expression and functional activation of myogenic regulatory transcription factors (MRFs) are well known to govern lineage commitment and differentiation, exactly how the first steps in differentiation are suppressed in a proliferating myoblast is much less clear. We used cultured mammalian myoblasts and an RNA interference library targeting 571 kinases to identify those that may repress muscle differentiation in proliferating myoblasts in the presence or absence of a sensitizing agent directed toward CDK4/6, a kinase previously established to impede muscle gene expression. We identified 55 kinases whose knockdown promoted myoblast differentiation, either independently or in conjunction with the sensitizer. A number of the hit kinases could be connected to known MRFs, directly or through one interaction node. Focusing on one hit, Mtor, we validated its role to impede differentiation in proliferating myoblasts and carried out mechanistic studies to show that it acts, in part, by a rapamycin-sensitive complex that involves Raptor. Our findings inform our understanding of kinases that can block the transition from lineage commitment to a differentiating state in myoblasts and offer a useful resource for others studying myogenic differentiation.
Collapse
|
46
|
Basma H, Ghayad SE, Rammal G, Mancinelli A, Harajly M, Ghamloush F, Dweik L, El-Eit R, Zalzali H, Rabeh W, Pisano C, Darwiche N, Saab R. The synthetic retinoid ST1926 as a novel therapeutic agent in rhabdomyosarcoma. Int J Cancer 2015; 138:1528-37. [PMID: 26453552 DOI: 10.1002/ijc.29886] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. Despite multiple attempts at intensifying chemotherapeutic approaches to treatment, only moderate improvements in survival have been made for patients with advanced disease. Retinoic acid is a differentiation agent that has shown some antitumor efficacy in RMS cells in vitro; however, the effects are of low magnitude. E-3-(4'-hydroxyl-3'-adamantylbiphenyl-4-yl) acrylic acid (ST1926) is a novel orally available synthetic atypical retinoid, shown to have more potent activity than retinoic acid in several types of cancer cells. We used in vitro and in vivo models of RMS to explore the efficacy of ST1926 as a possible therapeutic agent in this sarcoma. We found that ST1926 reduced RMS cell viability in all tested alveolar (ARMS) and embryonal (ERMS) RMS cell lines, at readily achievable micromolar concentrations in mice. ST1926 induced an early DNA damage response (DDR), which led to increase in apoptosis, in addition to S-phase cell cycle arrest and a reduction in protein levels of the cell cycle kinase CDK1. Effects were irrespective of TP53 mutational status. Interestingly, in ARMS cells, ST1926 treatment decreased PAX3-FOXO1 fusion oncoprotein levels, and this suppression occurred at a post-transcriptional level. In vivo, ST1926 was effective in inhibiting growth of ARMS and ERMS xenografts, and induced a prominent DDR. We conclude that ST1926 has preclinical efficacy against RMS, and should be further developed in this disease in clinical trials.
Collapse
Affiliation(s)
- Hussein Basma
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Sandra E Ghayad
- Department of Biology, Faculty of Science, EDST, Lebanese University, Beirut, Lebanon
| | - Ghina Rammal
- Department of Biology, Faculty of Science, EDST, Lebanese University, Beirut, Lebanon
| | - Angelo Mancinelli
- Medicinal Investigational Research, Biogem Research Institute, Ariano Irpino, Italy
| | - Mohammad Harajly
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Farah Ghamloush
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Loai Dweik
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Rabab El-Eit
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Hassan Zalzali
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Wissam Rabeh
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Claudio Pisano
- Medicinal Investigational Research, Biogem Research Institute, Ariano Irpino, Italy
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Raya Saab
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
47
|
Kephart JJG, Tiller RGJ, Crose LES, Slemmons KK, Chen PH, Hinson AR, Bentley RC, Chi JTA, Linardic CM. Secreted Frizzled-Related Protein 3 (SFRP3) Is Required for Tumorigenesis of PAX3-FOXO1-Positive Alveolar Rhabdomyosarcoma. Clin Cancer Res 2015; 21:4868-80. [PMID: 26071485 DOI: 10.1158/1078-0432.ccr-14-1797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 05/25/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a five-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, this study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. EXPERIMENTAL DESIGN Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 was used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. RESULTS In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. CONCLUSIONS SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cluster Analysis
- Disease Models, Animal
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- G1 Phase Cell Cycle Checkpoints/drug effects
- G1 Phase Cell Cycle Checkpoints/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Glycoproteins/genetics
- Humans
- Intracellular Signaling Peptides and Proteins
- Mice
- Myoblasts/drug effects
- Myoblasts/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- RNA Interference
- RNA, Small Interfering/genetics
- Rhabdomyosarcoma, Alveolar/drug therapy
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/mortality
- Rhabdomyosarcoma, Alveolar/pathology
- Tumor Burden/drug effects
- Vincristine/pharmacology
- Wnt Proteins/antagonists & inhibitors
- Wnt Signaling Pathway/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Julie J G Kephart
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Rosanne G J Tiller
- School of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Lisa E S Crose
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Katherine K Slemmons
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Po-Han Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Ashley R Hinson
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Rex C Bentley
- School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Jen-Tsan Ashley Chi
- School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina
| | - Corinne M Linardic
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina. School of Medicine, Duke University Medical Center, Durham, North Carolina. Department of Pediatrics, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
48
|
Codenotti S, Battistelli M, Burattini S, Salucci S, Falcieri E, Rezzani R, Faggi F, Colombi M, Monti E, Fanzani A. Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncol Rep 2015; 34:279-87. [PMID: 25998836 DOI: 10.3892/or.2015.3987] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022] Open
Abstract
Melatonin is a small indole produced by the pineal gland and other tissues, and has numerous functions that aid in the maintenance of the whole body homeostasis, ranging from the regulation of circadian rhythms and sleep to protection from oxidative stress. Melatonin has also been reported to counteract cell growth and chemoresistance in different types of cancer. In the present study, we investigated the effects of exogenous melatonin administration on different human cell lines and primary mouse tumor cultures of rhabdomyosarcoma (RMS), the most frequent soft tissue sarcoma affecting childhood. The results showed that melatonin significantly affected the behavior of RMS cells, leading to inhibition of cell proliferation and impairment of myogenic differentiation followed by increased apoptotic cell death, as observed by immunoblotting analysis of apoptosis-related markers including Bax, Bcl-2 and caspase-3. Similar findings were observed using a combination of microscopy techniques, including scanning/transmission electron and confocal microscopy. Furthermore, melatonin in combination with doxorubicin or cisplatin, two compounds commonly used for the treatment of solid tumors, increased the sensitivity of RMS cells to apoptosis. These data indicated that melatonin may be effective in counteracting RMS tumor growth and chemoresistance.
Collapse
Affiliation(s)
- Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Michela Battistelli
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Sabrina Burattini
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Sara Salucci
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Elisabetta Falcieri
- Department of Earth, Life and Environmental Sciences (DiSTeVA), University Carlo Bo, I-61029 Urbino, Italy
| | - Rita Rezzani
- Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| |
Collapse
|
49
|
Kollu S, Abou-Khalil R, Shen C, Brack AS. The Spindle Assembly Checkpoint Safeguards Genomic Integrity of Skeletal Muscle Satellite Cells. Stem Cell Reports 2015; 4:1061-74. [PMID: 25960061 PMCID: PMC4471836 DOI: 10.1016/j.stemcr.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 01/29/2023] Open
Abstract
To ensure accurate genomic segregation, cells evolved the spindle assembly checkpoint (SAC), whose role in adult stem cells remains unknown. Inducible perturbation of a SAC kinase, Mps1, and its downstream effector, Mad2, in skeletal muscle stem cells shows the SAC to be critical for normal muscle growth, repair, and self-renewal of the stem cell pool. SAC-deficient muscle stem cells arrest in G1 phase of the cell cycle with elevated aneuploidy, resisting differentiation even under inductive conditions. p21(CIP1) is responsible for these SAC-deficient phenotypes. Despite aneuploidy's correlation with aging, we find that aged proliferating muscle stem cells display robust SAC activity without elevated aneuploidy. Thus, muscle stem cells have a two-step mechanism to safeguard their genomic integrity. The SAC prevents chromosome missegregation and, if it fails, p21(CIP1)-dependent G1 arrest limits cellular propagation and tissue integration. These mechanisms ensure that muscle stem cells with compromised genomes do not contribute to tissue homeostasis.
Collapse
Affiliation(s)
- Swapna Kollu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Rana Abou-Khalil
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Carl Shen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA
| | - Andrew S Brack
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Ramachandran C, Quirin KW, Escalon EA, Lollett IV, Melnick SJ. Therapeutic Effect of Supercritical CO2 Extracts of Curcuma Species with Cancer Drugs in Rhabdomyosarcoma Cell Lines. Phytother Res 2015; 29:1152-60. [PMID: 25939344 DOI: 10.1002/ptr.5360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 03/26/2015] [Accepted: 04/02/2015] [Indexed: 11/10/2022]
Abstract
Synergistic effect of supercritical CO2 extracts of Curcuma species with conventional chemotherapeutic drugs was investigated in human alveolar (SJRH30) and embryonal (RD) rhabdomyosarcoma cell lines. The Curcuma amada (mango ginger) (CA) extract showed the highest levels of cytotoxicity with inhibitory concentration IC50 values of 7.133 µg/ml and 7.501 µg/ml for SJRH30 and RD cell lines, respectively, as compared with Curcuma longa (turmeric) and Curcuma xanthorrhiza (Javanese turmeric) extracts. CA showed synergistic cytotoxic effects with vinblastine (VBL) and cyclophosphamide (CP) as indicated by the combination index values of <1 for VBL + CA, CP + CA, and VBL + CP + CA combinations in both embryonal and alveolar rhabdomyosarcomas. When lower doses of CA (0.1-0.2 µg/ml) were combined with cancer drugs like CP and VBL, caspase-3 activity increased significantly compared with individual agents and correlated with the percentage of apoptotic cells. CA in combination with VBL and CP induced a higher percentage of apoptosis than single agents in both cell lines. CA also modulated the expression of genes associated with intrinsic pathway of apoptosis (Bcl-2, Bax, Bak, and p53) and also inhibited the expression of genes associated with inflammation such as COX-2 and NF-κB. Xenograft studies with SJRH30 tumors in nude mice showed that CA treatment inhibited tumor growth rate with and without VBL and increased the survival rate significantly. These results suggest that CA can be evaluated further as an adjuvant with cancer drugs for the treatment of rhabdomyosarcoma patients. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cheppail Ramachandran
- Department of Pathology, Miami Children's Hospital, Miami, FL, 33155, USA.,Dharma Biomedical LLC, Miami, FL, 33156, USA
| | | | - Enrique A Escalon
- Division of Hematology/Oncology, Miami Children's Hospital, Miami, FL, 33155, USA
| | | | - Steven J Melnick
- Department of Pathology, Miami Children's Hospital, Miami, FL, 33155, USA.,Dharma Biomedical LLC, Miami, FL, 33156, USA
| |
Collapse
|