1
|
Hensel IV, Éliás S, Steinhauer M, Stoll B, Benfatto S, Merkt W, Krienke S, Lorenz HM, Haas J, Wildemann B, Resnik-Docampo M. SLE serum induces altered goblet cell differentiation and leakiness in human intestinal organoids. EMBO Mol Med 2024; 16:547-574. [PMID: 38316934 PMCID: PMC10940301 DOI: 10.1038/s44321-024-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolfgang Merkt
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Krienke
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
2
|
Wang L, Jiang L, Chu Y, Feng F, Tang W, Chen C, Qiu Y, Hu Z, Diao H, Tang Z. Dietary Taurine Improves Growth Performance and Intestine Health via the GSH/GSSG Antioxidant System and Nrf2/ARE Signaling Pathway in Weaned Piglets. Antioxidants (Basel) 2023; 12:1852. [PMID: 37891931 PMCID: PMC10604690 DOI: 10.3390/antiox12101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Early weaning of piglets was prone to increase reactive oxygen species, disrupt the redox balance, decrease antioxidant capacity, cause oxidative stress and intestinal oxidative damage, and lead to diarrhea in piglets. This research aimed to study dietary taurine (Tau) supplementation at a level relieving intestinal oxidative damage in early-weaned piglets. A total of 48 piglets were assigned to four groups of 12 individuals and fed a basal diet with 0.0% Tau (CON), 0.2% Tau (L-Tau), 0.3% Tau (M-Tau), or 0.4% Tau (H-Tau), respectively. The animal experiment lasted 30 days. The final weight, weight gain, average daily gain, and feed conversion rate increased with the increase in dietary Tau (Linear, p < 0.05; Quadratic p < 0.05), while the diarrhea index of piglets decreased with the increase in dietary Tau (Linear, p < 0.05). Serum malondialdehyde, nitric oxide (NO), D-lactose, and oxidized glutathione (GSSG) concentrations decreased with the increase in dietary Tau (Linear, p < 0.05). The O2•- and •OH clearance rate in serum, liver, and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). Serum superoxide dismutase (SOD) activity, glutathione peroxidase (GPX) activity, catalase (CAT) activity, and peroxidase (POD) activity and total antioxidant capacity increased with the increase in dietary Tau (Linear, p < 0.05). The serum glutathione (GSH) concentration and the ratio of GSH to GSSG increased with the increase in dietary Tau (Linear, p < 0.05). The POD and glutathione synthase activity in the liver and jejunum mucosa increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of HO-1 and GPX1 in the H-Tau group were higher than that in the L-Tau, M-Tau, and CON groups (p < 0.05). The mRNA abundances of SOD1 and Nrf2 in the M-Tau and H-Tau groups were higher than in the L-Tau and CON groups (p < 0.05). The mRNA abundance of SOD2 in the L-Tau, M-Tau, and H-Tau groups was higher than in the CON group (p < 0.05). The VH and the ratio of VH to CD of jejunum and ileum increased with the increase in dietary Tau (Linear, p < 0.05). The mRNA abundances of occludens 1 and claudin 1 in the H-Tau group were higher than that in the CON, L-Tau, and M-Tau (p < 0.05). The mRNA abundance of occludin in the L-Tau, M-Tau, and H-Tau groups was higher than that in CON (p < 0.05). The abundance of Firmicutes increased with the increase in dietary Tau (Linear, p < 0.05), while Proteobacteria and Spirochaetota decreased with the increase in dietary Tau (Linear, p < 0.05). Collectively, dietary supplementation of 0.3% and 0.4% Tau in feed could significantly improve the growth performance and enhance the antioxidant capacity of piglets.
Collapse
Affiliation(s)
- Lingang Wang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Liwen Jiang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Yunyun Chu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Fu Feng
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (W.T.); (H.D.)
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Chen Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Yibin Qiu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Zhijin Hu
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| | - Hui Diao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (W.T.); (H.D.)
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group Co., Ltd., Chengdu 610066, China
| | - Zhiru Tang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (L.W.); (L.J.); (Y.C.); (F.F.); (C.C.); (Y.Q.); (Z.H.)
| |
Collapse
|
3
|
Jauregi-Miguel A. The tight junction and the epithelial barrier in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:105-132. [PMID: 33707052 DOI: 10.1016/bs.ircmb.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial barriers are essential to maintain multicellular organisms well compartmentalized and protected from external environment. In the intestine, the epithelial layer orchestrates a dynamic balance between nutrient absorption and prevention of microorganisms, and antigen intrusion. Intestinal barrier function has been shown to be altered in coeliac disease but whether it contributes to the pathogenesis development or if it is merely a phenomenon secondary to the aberrant immune response is still unknown. The tight junction complexes are multiprotein cell-cell adhesions that seal the epithelial intercellular space and regulate the paracellular permeability of ions and solutes. These structures have a fundamental role in epithelial barrier integrity as well as in signaling mechanisms that control epithelial-cell polarization, the formation of apical domains and cellular processes such as cell proliferation, migration, differentiation, and survival. In coeliac disease, the molecular structures and function of tight junctions appear disrupted and are not completely recovered after treatment with gluten-free diet. Moreover, zonulin, the only known physiological regulator of the tight junction permeability, appears augmented in autoimmune conditions associated with TJ dysfunction, including coeliac disease. This chapter will examine recent discoveries about the molecular architecture of tight junctions and their functions. We will discuss how different factors contribute to tight junction disruption and intestinal barrier impairment in coeliac disease. To conclude, new insights into zonulin-driven disruption of tight junction structures and barrier integrity in coeliac disease are presented together with the advancements in novel therapy to treat the barrier defect seen in pathogenesis.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden.
| |
Collapse
|
4
|
Matthews SM, Eshelman MA, Berg AS, Koltun WA, Yochum GS. The Crohn's disease associated SNP rs6651252 impacts MYC gene expression in human colonic epithelial cells. PLoS One 2019; 14:e0212850. [PMID: 30794691 PMCID: PMC6386311 DOI: 10.1371/journal.pone.0212850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) is a debilitating inflammatory bowel disease (IBD) that arises from chronic inflammation in the gastrointestinal tract. Genome-wide association studies (GWAS) have identified over 200 single nucleotide polymorphisms (SNPs) that are associated with a predisposition for developing IBD. For the majority, the causal variant and target genes affected are unknown. Here, we investigated the CD-associated SNP rs6651252 that maps to a gene desert region on chromosome 8. We demonstrate that rs6651252 resides within a Wnt responsive DNA enhancer element (WRE) and that the disease associated allele augments binding of the TCF7L2 transcription factor to this region. Using CRISPR/Cas9 directed gene editing and epigenetic modulation, we find that the rs6651252 enhancer regulates expression of the c-MYC proto-oncogene (MYC). Furthermore, we found MYC transcript levels are elevated in patient-derived colonic segments harboring the disease-associated allele in comparison to those containing the ancestral allele. These results suggest that Wnt/MYC signaling contributes to CD pathogenesis and that patients harboring the disease-associated allele may benefit from therapies that target MYC or MYC-regulated genes.
Collapse
Affiliation(s)
- Stephen M. Matthews
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Melanie A. Eshelman
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Arthur S. Berg
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Walter A. Koltun
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Gregory S. Yochum
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- Department of Surgery, Division of Colon and Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
5
|
Fair KL, Colquhoun J, Hannan NRF. Intestinal organoids for modelling intestinal development and disease. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170217. [PMID: 29786552 PMCID: PMC5974440 DOI: 10.1098/rstb.2017.0217] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal diseases are becoming increasingly prevalent in developed countries. Immortalized cells and animal models have delivered important but limited insight into the mechanisms that initiate and propagate these diseases. Human-specific models of intestinal development and disease are desperately needed that can recapitulate structure and function of the gut in vitro Advances in pluripotent stem cells and primary tissue culture techniques have made it possible to culture intestinal epithelial cells in three dimensions that self-assemble to form 'intestinal organoids'. These organoids allow for new, human-specific models that can be used to gain insight into gastrointestinal disease and potentially deliver new therapies to treat them. Here we review current in vitro models of intestinal development and disease, considering where improvements could be made and potential future applications in the fields of developmental modelling, drug/toxicity testing and therapeutic uses.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.
Collapse
Affiliation(s)
- Kathryn L Fair
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer Colquhoun
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nicholas R F Hannan
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- National Institute for Health Research (NIHR) Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
6
|
Placet M, Arguin G, Molle CM, Babeu JP, Jones C, Carrier JC, Robaye B, Geha S, Boudreau F, Gendron FP. The G protein-coupled P2Y₆ receptor promotes colorectal cancer tumorigenesis by inhibiting apoptosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1539-1551. [PMID: 29454075 DOI: 10.1016/j.bbadis.2018.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Colorectal tumors are immersed in an array of tumor-promoting factors including extracellular nucleotides such as uridine 5'‑diphosphate (UDP). UDP is the endogenous agonist of the G protein-coupled P2Y6 receptor (P2Y6R), which may contribute to the formation of a tumor-promoting microenvironment by coordinating resistance to apoptosis. Colorectal cancer (CRC) was chemically induced in P2ry6 knockout (P2ry6-/-) mice using azoxymethane and dextran sulfate sodium challenges. Mice were euthanatized and their tumor load determined. Fixed tissues were stained for histological and immunohistochemistry analysis. Tumoroids were also prepared from CRC tumors resected from P2ry6+/+ mice to determine the role of P2Y6R in resistance to apoptosis, whereas HT29 carcinoma cells were used to elucidate the signaling mechanism involved in P2Y6R anti-apoptotic effect. P2ry6-/- mice developed a reduced number of colorectal tumors with apparent tumors having smaller volumes. Overall dysplastic score was significantly lower in P2ry6-/- animals. Stimulation of P2Y6R with the selective agonist MRS2693 protected HT-29 cells from TNFα-induced apoptosis. This protective effect was mediated by the stabilizing phosphorylation of the X-linked inhibitor of apoptosis protein (XIAP) by AKT. Using CRC-derived tumoroids, P2Y6R activation was found to contribute to chemoresistance since addition of the P2Y6R agonist MRS2693 significantly prevented the cytotoxic effect of 5-fluorouracil. The present study shows that sustained activation of P2Y6R may contribute to intestinal tumorigenesis by blocking the apoptotic process and by contributing to chemoresistance, a substantial concern in the treatment of patients with CRC. These results suggest that P2Y6R may represent a prime target for reducing colorectal carcinogenesis.
Collapse
Affiliation(s)
- Morgane Placet
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Arguin
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Caroline M Molle
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christine Jones
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julie C Carrier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bernand Robaye
- Institute of Interdisciplinary Research, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Francois Boudreau
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fernand-Pierre Gendron
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
7
|
Kechele DO, Blue RE, Zwarycz B, Espenschied ST, Mah AT, Siegel MB, Perou CM, Ding S, Magness ST, Lund PK, Caron KM. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest 2017; 127:593-607. [PMID: 28094771 DOI: 10.1172/jci87588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling-induced proliferation, particularly during regeneration and adenoma formation.
Collapse
|
8
|
Preventive Effects of a Chinese Herbal Formula, Shengjiang Xiexin Decoction, on Irinotecan-Induced Delayed-Onset Diarrhea in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7350251. [PMID: 28167974 PMCID: PMC5266813 DOI: 10.1155/2017/7350251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/13/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022]
Abstract
Irinotecan is a well-known chemotherapy drug for the treatment of various cancers. However, delayed-onset diarrhea is a common adverse reaction, limiting the application of the drug. The study presented was designed to evaluate the preventive effects of Shengjiang Xiexin decoction (SXD) on irinotecan-induced diarrhea and to explore the possible mechanisms of this action. We established a diarrhea rat model. The condition of the rats was observed. The proliferation and apoptosis of intestinal cells were measured using immunohistochemical assays and a caspase-3 activity assay, respectively. The expression of Lgr5 and CD44 staining were used to observe intestinal stem cells (ISCs). In addition, the activity of β-glucuronidase in the rats' feces was measured. Our results showed that the number of proliferating intestinal cells in the SXD groups was obviously higher, while the activity of caspase-3 was lower. The expression of Lgr5 and the integrated option density (IOD) of CD44 stain were increased significantly by SXD. Additionally, SXD decreased the activity of β-glucuronidase after irinotecan administration. In conclusion, SXD exhibited preventive effects on irinotecan-induced diarrhea, and this action was associated with an inhibitory effect on intestinal apoptosis and β-glucuronidase and a promotive effect on intestinal cell proliferation due to increased maintenance of ISCs.
Collapse
|
9
|
Feng Q, Wu LQ. Relationship between KLF4 and primary hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:497-504. [DOI: 10.11569/wcjd.v24.i4.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kruppel-like factors (KLFs) are a family of transcription factors with zinc finger structure, which play a key role in cell proliferation, apoptosis, differentiation and embryonic development. KLF4 is an important member of the KLF family, and it is highly expressed in primary hepatocellular carcinoma tissues. However, the mechanism of KLF4 in primary hepatocellular carcinoma remains to be explored. This paper reviews the biological function of KLF4 in primary hepatocellular carcinoma.
Collapse
|
10
|
Vasanth G, Kiron V, Kulkarni A, Dahle D, Lokesh J, Kitani Y. A Microbial Feed Additive Abates Intestinal Inflammation in Atlantic Salmon. Front Immunol 2015; 6:409. [PMID: 26347738 PMCID: PMC4541333 DOI: 10.3389/fimmu.2015.00409] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023] Open
Abstract
The efficacy of a microbial feed additive (Bactocell®) in countering intestinal inflammation in Atlantic salmon was examined in this study. Fish were fed either the additive-coated feed (probiotic) or feed without it (control). After an initial 3-week feeding, an inflammatory condition was induced by anally intubating all the fish with oxazolone. The fish were offered the feeds for 3 more weeks. Distal intestine from the groups was obtained at 4 h, 24 h, and 3 weeks, after oxazolone treatment. Inflammatory responses were prominent in both groups at 24 h, documented by changes in intestinal micromorphology, expression of inflammation-related genes, and intestinal proteome. The control group was characterized by edema, widening of intestinal villi and lamina propria, infiltration of granulocytes and lymphocytes, and higher expression of genes related to inflammatory responses, mul1b, il1b, tnfa, ifng, compared to the probiotic group or other time points of the control group. Further, the protein expression in the probiotic group at 24 h after inducing inflammation revealed five differentially regulated proteins – Calr, Psma5, Trp1, Ctsb, and Naga. At 3 weeks after intubation, the inflammatory responses subsided in the probiotic group. The findings provide evidence that the microbial additive contributes to intestinal homeostasis in Atlantic salmon.
Collapse
Affiliation(s)
- Ghana Vasanth
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Amod Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| | - Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, University of Nordland , Bodø , Norway
| |
Collapse
|
11
|
Orlando G, García-Arrarás JE, Soker T, Booth C, Sanders B, Ross CL, De Coppi P, Farney AC, Rogers J, Stratta RJ. Regeneration and bioengineering of the gastrointestinal tract: current status and future perspectives. Dig Liver Dis 2012; 44:714-20. [PMID: 22622201 DOI: 10.1016/j.dld.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/10/2012] [Indexed: 12/11/2022]
Abstract
The present review aims to illustrate the strategies that are being implemented in regenerative medicine to treat diseases that affect the digestive tract. Possible avenues are twofold: organ bioengineering, where cells are seeded on biological or synthetic scaffolding materials ex vivo and allowed to either mature in bioreactors or be implanted without undergoing any maturation; and regeneration per se, where the diseased tissue or organ is regenerated by recapitulation of its multi-step ontogenesis. This latter avenue may be induced either in vivo or ex vivo. While bioengineering technology has already manufactured segments of the digestive tract and sphincters, pure regeneration of any segment of the digestive tract has not yet been described. However, models of regeneration extrapolated from simple organisms are elucidating the complex yet fascinating mechanisms that regulate the ontogenesis of the digestive tract and are paving the way for the development of new regenerative technologies and methods.
Collapse
Affiliation(s)
- Giuseppe Orlando
- Department of General Surgery, Section of Transplantation, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|