1
|
Viger RS, Bouchard MF, Tremblay JJ. A STAR for the ages: a 30-year historical perspective of the role of transcription factors in the regulation of steroidogenic acute regulatory gene expression. J Endocrinol 2024; 263:e240087. [PMID: 39208190 DOI: 10.1530/joe-24-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The steroidogenic acute regulatory (STAR) protein is an essential cholesterol transporter that shuttles cholesterol from the outer to the inner mitochondrial membrane in the major steroidogenic endocrine organs. It is a key player in the acute regulation of steroid hormone biosynthesis in response to tropic hormone stimulation. Its discovery 30 years ago sparked immediate interest in understanding how STAR action is controlled. Since increased STAR gene expression is a classic feature of the acute regulation of steroidogenesis, a special emphasis was placed on defining the transcriptional regulatory mechanisms that underlie its rapid induction in response to tropic hormone stimulation. These mechanisms include the effects of enhancers, the regulation of chromatin accessibility, the impact of epigenetic factors, and the role of transcription factors. Over the past three decades, understanding the transcription factors that regulate STAR gene expression has been the subject of more than 170 independent scientific publications, making it one of, and if not the best, studied genes in the steroidogenic pathway. This intense research effort has led to the identification of dozens of transcription factors and their related binding sites in STAR 5' flanking (promoter) sequences across multiple species. STAR gene transcription appears to be complex in that a large number of transcription factors have been proposed to interact with either isolated or overlapping regulatory sequences that are tightly clustered over a relatively short promoter region upstream of the STAR transcription start site. Many of these transcription factors appear to work in unique combinatorial codes and are impacted by diverse hormonal and intracellular signaling pathways. This review provides a retrospective overview of the transcription factors proposed to regulate both basal and acute (hormonal) STAR gene expression, and how insights in this area have evolved over the past 30 years.
Collapse
Affiliation(s)
- Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Québec, Quebec, Canada
| | - Marie France Bouchard
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Gao K, Chen Y, Wang P, Chang W, Cao B, Luo L. GATA4: Regulation of expression and functions in goat granulosa cells. Domest Anim Endocrinol 2024; 89:106859. [PMID: 38810369 DOI: 10.1016/j.domaniend.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
GATA4 plays a pivotal role in the reproductive processes of mammals. However, the research on GATA4 in goat ovary is limited. This study aimed to study the expression and function of GATA4 in goat ovary. Utilizing real-time PCR and western blot analysis, we studied the expression and regulatory mechanisms of GATA4 in goat ovary and granulosa cells (GCs). We found that GATA4 was expressed in all follicle types in the goat ovary, with significantly higher levels in GCs of larger follicles (>3 mm) compared to those in smaller follicles (<3 mm). Additionally, we demonstrated that human chorionic gonadotrophin (hCG) induced GATA4 mRNA expression via the activation of PKA, MEK, p38 MAPK, PKC, and PI3K pathways in vitro. Our study also showed that hCG suppressed the levels of miR-200b and miR-429, which in turn directly target GATA4, thereby modulating the basal and hCG-induced expression of GATA4. Functionally, we examined the effect of siRNA-mediated GATA4 knockdown on cell proliferation and hormone secretion in goat GCs. Our results revealed that knockdown of GATA4, miR-200b, and miR-429 suppressed cell proliferation. Moreover, knockdown of GATA4 decreased estradiol and progesterone production by inhibiting the promoter activities of CYP11A1, CYP19A1, HSD3B, and StAR. Collectively, our findings suggest a critical involvement of GATA4 in regulating goat GC survival and steroidogenesis.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Yeda Chen
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenlin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China.
| |
Collapse
|
3
|
Stancampiano MR, Meroni SLC, Bucolo C, Russo G. 46,XX Differences of Sex Development outside congenital adrenal hyperplasia: pathogenesis, clinical aspects, puberty, sex hormone replacement therapy and fertility outcomes. Front Endocrinol (Lausanne) 2024; 15:1402579. [PMID: 38841305 PMCID: PMC11150773 DOI: 10.3389/fendo.2024.1402579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The term 'differences of sex development' (DSD) refers to a group of congenital conditions that are associated with atypical development of chromosomal, gonadal, and/or anatomical sex. DSD in individuals with a 46,XX karyotype can occur due to fetal or postnatal exposure to elevated amount of androgens or maldevelopment of internal genitalia. Clinical phenotype could be quite variable and for this reason these conditions could be diagnosed at birth, in newborns with atypical genitalia, but also even later in life, due to progressive virilization during adolescence, or pubertal delay. Understand the physiological development and the molecular bases of gonadal and adrenal structures is crucial to determine the diagnosis and best management and treatment for these patients. The most common cause of DSD in 46,XX newborns is congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency, determining primary adrenal insufficiency and androgen excess. In this review we will focus on the other rare causes of 46,XX DSD, outside CAH, summarizing the most relevant data on genetic, clinical aspects, puberty and fertility outcomes of these rare diseases.
Collapse
|
4
|
Wen F, Ding Y, Wang M, Du J, Zhang S, Kee K. FOXL2 and NR5A1 induce human fibroblasts into steroidogenic ovarian granulosa-like cells. Cell Prolif 2024; 57:e13589. [PMID: 38192172 PMCID: PMC11056703 DOI: 10.1111/cpr.13589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
Human granulosa cells in different stages are essential for maintaining normal ovarian function, and granulosa cell defect is the main cause of ovarian dysfunction. To address this problem, it is necessary to induce functional granulosa cells at different stages in vitro. In this study, we established a reprogramming method to induce early- and late-stage granulosa cells with different steroidogenic abilities. We used an AMH-fluorescence-reporter system to screen candidate factors for cellular reprogramming and generated human induced granulosa-like cells (hiGC) by overexpressing FOXL2 and NR5A1. AMH-EGFP+ hiGC resembled human cumulus cells in transcriptome profiling and secreted high levels of oestrogen and progesterone, similar to late-stage granulosa cells at antral or preovulatory stage. Moreover, we identified CD55 as a cell surface marker that can be used to isolate early-stage granulosa cells. CD55+ AMH-EGFP- hiGC secreted high levels of oestrogen but low levels of progesterone, and their transcriptome profiles were more similar to early-stage granulosa cells. More importantly, CD55+ hiGC transplantation alleviated polycystic ovary syndrome (PCOS) in a mouse model. Therefore, hiGC provides a cellular model to study the developmental program of human granulosa cells and has potential to treat PCOS.
Collapse
Affiliation(s)
- Fan Wen
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Yuxi Ding
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Mingming Wang
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Jing Du
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| | - Shen Zhang
- Reproductive Medicine Center, The First Affiliated HospitalWenzhou Medical UniversityWenzhouChina
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Kehkooi Kee
- The State Key Laboratory for Complex, Severe, and Rare Diseases; SXMU‐Tsinghua Collaborative Innovation Center for Frontier Medicine; Department of Basic Medical Sciences, School of MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
5
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
6
|
Zhang C, Zhao H, Song X, Wang J, Zhao S, Deng H, He L, Zhou X, Yin X, Zhang K, Zhang Y, Wu Z, Chen Q, Du J, Yu D, Zhang S, Deng W. Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway. J Biol Chem 2022; 298:101581. [PMID: 35038452 PMCID: PMC8857480 DOI: 10.1016/j.jbc.2022.101581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.
Collapse
Affiliation(s)
- Cheng Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Houliang Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoye Song
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Wang
- School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Shasha Zhao
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Huan Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Liu He
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiangyu Zhou
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaomei Yin
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kewei Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Yue Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Zhongyu Wu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Qiyue Chen
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jiannan Du
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Deen Yu
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shihua Zhang
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| | - Wensheng Deng
- School of Life Science and Health, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Abstract
In 46,XY men, testis is determined by a genetic network(s) that both promotes testis formation and represses ovarian development. Disruption of this process results in a lack of testis-determination and affected individuals present with 46,XY gonadal dysgenesis (GD), a part of the spectrum of Disorders/Differences of Sex Development/Determination (DSD). A minority of all cases of GD are associated with pathogenic variants in key players of testis-determination, SRY, SOX9, MAP3K1 and NR5A1. However, most of the cases remain unexplained. Recently, unbiased exome sequencing approaches have revealed new genes and loci that may cause 46,XY GD. We critically evaluate the evidence to support causality of these factors and describe how functional studies are continuing to improve our understanding of genotype-phenotype relationships in genes that are established causes of GD. As genomic data continues to be generated from DSD cohorts, we propose several recommendations to help interpret the data and establish causality.
Collapse
Affiliation(s)
- Maëva Elzaiat
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics, Institut Pasteur, Paris, France
| | - Anu Bashamboo
- Human Developmental Genetics, Institut Pasteur, Paris, France.
| |
Collapse
|
8
|
McElreavey K, Bashamboo A. Monogenic forms of DSD: An update. Horm Res Paediatr 2021; 96:144-168. [PMID: 34963118 DOI: 10.1159/000521381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
DSD encompasses a wide range of pathologies that impact gonad formation, development and function in both 46,XX and 46,XY individuals. The majority of these conditions are considered to be monogenic, although the expression of the phenotype may be influenced by genetic modifiers. Although considered monogenic, establishing the genetic etiology in DSD has been difficult compared to other congenital disorders for a number of reasons including the absence of family cases for classical genetic association studies and the lack of evolutionary conservation of key genetic factors involved in gonad formation. In recent years, the widespread use of genomic sequencing technologies has resulted in multiple genes being identified and proposed as novel monogenic causes of 46,XX and/or 46,XY DSD. In this review, we will focus on the main genomic findings of recent years, which consists of new candidate genes or loci for DSD as well as new reproductive phenotypes associated with genes that are well established to cause DSD. For each gene or loci, we summarise the data that is currently available in favor of or against a role for these genes in DSD or the contribution of genomic variants within well-established genes to a new reproductive phenotype. Based on this analysis we propose a series of recommendations that should aid the interpretation of genomic data and ultimately help to improve the accuracy and yield genetic diagnosis of DSD.
Collapse
|
9
|
Kouri C, Sommer G, Flück CE. Oligogenic Causes of Human Differences of Sex Development: Facing the Challenge of Genetic Complexity. Horm Res Paediatr 2021; 96:169-179. [PMID: 34537773 DOI: 10.1159/000519691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deviations of intrauterine sex determination and differentiation and postnatal sex development can result in a very heterogeneous group of differences of sex development (DSD) with a broad spectrum of phenotypes. Variants in genes involved in sexual development cause different types of DSD, but predicting the phenotype from an individual's genotype and vice versa remains challenging. SUMMARY Next Generation Sequencing (NGS) studies suggested that oligogenic inheritance contributes to the broad manifestation of DSD phenotypes. This review will focus on possible oligogenic inheritance in DSD identified by NGS studies with a special emphasis on NR5A1variants as an example of oligogenic origin associated with a broad range of DSD phenotypes. We thoroughly searched the literature for evidence regarding oligogenic inheritance in DSD diagnosis with NGS technology and describe the challenges to interpret contribution of these genes to DSD phenotypic variability and pathogenicity. Key Messages: Variants in common DSD genes like androgen receptor (AR), mitogen-activated protein kinase kinase kinase 1 (MAP3K1), Hydroxy-Delta-5-Steroid Dehydrogenase 3 Beta- And Steroid Delta-Isomerase 2 (HSD3B2), GATA Binding Protein 4 (GATA4), zinc finger protein friend of GATA family member 2 (ZFPM2), 17b-hydroxysteroid dehydrogenase type 3 (HSD17B3), mastermind-like domain-containing protein 1 (MAMLD1), and nuclear receptor subfamily 5 group A member 1 (NR5A1) have been detected in combination with additional variants in related genes in DSD patients with a broad range of phenotypes, implying a role of oligogenic inheritance in DSD, while still awaiting proof. Use of NGS approach for genetic diagnosis of DSD patients can reveal more complex genetic traits supporting the concept of oligogenic cause of DSD. However, assessing the pathomechanistic contribution of multiple gene variants on a DSD phenotype remains an unsolved conundrum.
Collapse
Affiliation(s)
- Chrysanthi Kouri
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Grit Sommer
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Bouchard MF, Bergeron F, Grenier Delaney J, Harvey LM, Viger RS. In Vivo Ablation of the Conserved GATA-Binding Motif in the Amh Promoter Impairs Amh Expression in the Male Mouse. Endocrinology 2019; 160:817-826. [PMID: 30759208 PMCID: PMC6426834 DOI: 10.1210/en.2019-00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
GATA4 is an essential transcriptional regulator required for gonadal development, differentiation, and function. In the developing testis, proposed GATA4-regulated genes include steroidogenic factor 1 (Nr5a1), SRY-related HMG box 9 (Sox9), and anti-Müllerian hormone (Amh). Although some of these genes have been validated as genuine GATA4 targets, it remains unclear whether GATA4 is a direct regulator of endogenous Amh transcription. We used a CRISPR/Cas9-based approach to specifically inactivate or delete the sole GATA-binding motif of the proximal mouse Amh promoter. AMH mRNA and protein levels were assessed at developmental time points corresponding to elevated AMH levels: fetal and neonate testes in males and adult ovaries in females. In males, loss of GATA binding to the Amh promoter significantly reduced Amh expression. Although the loss of GATA binding did not block the initiation of Amh transcription, AMH mRNA and protein levels failed to upregulate in the developing fetal and neonate testis. Interestingly, adult male mice presented no anatomical anomalies and had no evidence of retained Müllerian duct structures, suggesting that AMH levels, although markedly reduced, were sufficient to masculinize the male embryo. In contrast to males, GATA binding to the Amh promoter was dispensable for Amh expression in the adult ovary. These results provide conclusive evidence that in males, GATA4 is a positive modulator of Amh expression that works in concert with other key transcription factors to ensure that the Amh gene is sufficiently expressed in a correct spatiotemporal manner during fetal and prepubertal testis development.
Collapse
Affiliation(s)
- Marie France Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Jasmine Grenier Delaney
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Louis-Mathieu Harvey
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Quebec, Canada
- Correspondence: Robert S. Viger, PhD, Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval, 2705 Laurier Boulevard, Quebec, Quebec G1V 4G2, Canada. E-mail:
| |
Collapse
|
11
|
Ernst EH, Franks S, Hardy K, Villesen P, Lykke-Hartmann K. Granulosa cells from human primordial and primary follicles show differential global gene expression profiles. Hum Reprod 2019; 33:666-679. [PMID: 29506120 DOI: 10.1093/humrep/dey011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Can novel genetic candidates involved in follicle dormancy, activation and integrity be identified from transcriptomic profiles of isolated granulosa cells from human primordial and primary follicles? SUMMARY ANSWER The granulosa cell compartment of the human primordial and primary follicle was extensively enriched in signal transducer and activator of transcription 3 (STAT3) and cAMP-response element binding protein (CREB) signalling, and several other putative signalling pathways that may also be mediators of follicle growth and development were identified. WHAT IS KNOWN ALREADY Mechanistic target of rapamycin kinase (mTOR) signalling and the factors Forkhead Box L2 (FOXL2) and KIT proto-oncogene receptor tyrosine kinase (KITL) may be involved in defining the early steps of mammalian follicular recruitment through complex bidirectional signalling between the oocyte and granulosa cells. cAMP/protein kinase K (PKA)/CREB signalling is a feature of FSH-induced regulation of granulosa cell steroidogenesis that is essential to normal human fertility. STUDY DESIGN, SIZE, DURATION A class comparison study was carried out on primordial follicles (n = 539 follicles) and primary follicles (n = 261) follicles) donated by three women having ovarian tissue cryopreserved before chemotherapy. PARTICIPANTS/MATERIALS, SETTING, METHODS RNA samples from isolates of laser capture micro-dissected oocytes and follicles from the primordial and primary stage, respectively, were sequenced on the HiSeq Illumina platform. Data mapping, quality control, filtering, FPKM (fragments per kilobase of exon per million) normalization and comparisons were performed. The granulosa cell contribution in whole follicle isolates was extracted in silico. Modelling of complex biological systems was performed using Ingenuity Pathway Analysis (IPA). For validation of transcriptomic findings, we performed quantitative RT-PCR of selected candidate genes. Furthermore, we interrogated the in situ localization of selected corresponding proteins using immunofluorescence. MAIN RESULTS AND THE ROLE OF CHANCE Our differentially expressed gene analysis revealed a number of transcripts in the granulosa cells to be significantly down- (736 genes) or up- (294 genes) regulated during the human primordial-to-primary follicle transition. The IPA analysis revealed enriched canonical signalling pathways not previously associated with granulosa cells from human primordial and primary follicles. Immunofluorescent staining of human ovarian tissue explored the intra-ovarian localization of FOG2, and FOXL2, which revealed the presence of forkhead box L2 (FOXL2) in both oocytes and granulosa cells in primary follicles, with a more enriched staining in the granulosa cells in primary follicles. Friend of GATA 2 (FOG2) stained strongly in oocytes in primordial follicles, with a shift towards granulosa cell as follicle stage advanced. LARGE SCALE DATA http://users-birc.au.dk/biopv/published_data/ernst_et_al_GC_2017/. LIMITATIONS REASONS FOR CAUTION This is a descriptive study, and no functional assays were employed. The study was based on a limited number of patients, and it is acknowledged that natural biological variance exists in human samples. Strict filters were applied to accommodate the in silico extraction of the granulosa cell contribution. In support of this, quantitative RT-PCR was used to confirm selected candidate genes, and immunofluorescent staining was employed to interrogate the intra-ovarian distribution of selected corresponding proteins. Moreover, it is unknown whether the primordial follicles analysed represent those still in the resting pool, or those from the cohort that have entered the growing pool. WIDER IMPLICATIONS OF THE FINDINGS We present, for the first time, a detailed description of global gene activity in the human granulosa cell compartment of primordial and primary follicles. These results may be utilized in the development of novel clinical treatment strategies aimed at improving granulosa cell function. STUDY FUNDING/COMPETING INTEREST(S) E.H.E. was supported by the Health Faculty, Aarhus University and Kong Christian Den Tiendes Fond. K.L.H. was supported by a grant from Fondens til Lægevidenskabens Fremme and Kong Christian Den Tiendes Fond. No authors have competing interests to declare.
Collapse
Affiliation(s)
- E H Ernst
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - S Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - K Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - P Villesen
- Bioinformatic Research Centre (BiRC), Aarhus University, C.F. Møllers Allé 8, DK-8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark
| | - K Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.,Department of Clinical Medicine, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, DK-8200 Aarhus N, Denmark
| |
Collapse
|
12
|
The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in Drosophila and Preserves the Glial Fate. J Neurosci 2018; 39:238-255. [PMID: 30504274 DOI: 10.1523/jneurosci.1059-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
Despite their different origins, Drosophila glia and hemocytes are related cell populations that provide an immune function. Drosophila hemocytes patrol the body cavity and act as macrophages outside the nervous system, whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. Drosophila glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development. Interestingly, the Drosophila immune cells within (glia) and outside (hemocytes) the nervous system require the same transcription factor glial cells deficient/glial cells missing (Glide/Gcm) for their development. This raises the issue of how do glia specifically differentiate in the nervous system, and hemocytes in the procephalic mesoderm. The Repo homeodomain transcription factor and panglial direct target of Glide/Gcm is known to ensure glial terminal differentiation. Here we show that Repo also takes center stage in the process that discriminates between glia and hemocytes. First, Repo expression is repressed in the hemocyte anlagen by mesoderm-specific factors. Second, Repo ectopic activation in the procephalic mesoderm is sufficient to repress the expression of hemocyte-specific genes. Third, the lack of Repo triggers the expression of hemocyte markers in glia. Thus, a complex network of tissue-specific cues biases the potential of Glide/Gcm. These data allow us to revise the concept of fate determinants and help us to understand the bases of cell specification. Both sexes were analyzed.SIGNIFICANCE STATEMENT Distinct cell types often require the same pioneer transcription factor, raising the issue of how one factor triggers different fates. In Drosophila, glia and hemocytes provide a scavenger activity within and outside the nervous system, respectively. While they both require the glial cells deficient/glial cells missing (Glide/Gcm) transcription factor, glia originate from the ectoderm, and hemocytes from the mesoderm. Here we show that tissue-specific factors inhibit the gliogenic potential of Glide/Gcm in the mesoderm by repressing the expression of the homeodomain protein Repo, a major glial-specific target of Glide/Gcm. Repo expression in turn inhibits the expression of hemocyte-specific genes in the nervous system. These cell-specific networks secure the establishment of the glial fate only in the nervous system and allow cell diversification.
Collapse
|
13
|
Jia W, Wu W, Yang D, Xiao C, Huang M, Long F, Su Z, Qin M, Liu X, Zhu YZ. GATA4 regulates angiogenesis and persistence of inflammation in rheumatoid arthritis. Cell Death Dis 2018; 9:503. [PMID: 29717129 PMCID: PMC5931571 DOI: 10.1038/s41419-018-0570-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by abnormal inflammation, angiogenesis, and cartilage destruction. In RA, neoangiogenesis is an early and crucial event to promote the formation of pannus, causing further inflammatory cell infiltration. The transcription factor GATA4 is a critical regulator of cardiac differentiation-specific gene expression. We find that a higher level of GATA4 exists in synovium of rheumatoid arthritis (RA) patients, but the function of GATA4 in RA remains unclear. In the present study, IL-1β induces inflammation in fibroblast-like synoviocytes (FLS) MH7A, which is accompanied with the increased expression of GATA4 and VEGF production. Through application of GATA4 loss-of-function assays, we confirm the requirement of GATA4 expression for inflammation induced by IL-1β in FLS. In addition, we demonstrate for the first time that GATA4 plays key roles in regulating VEGF secretion from RA FLS to promote cellular proliferation, induce cell migration, and angiogenic tube formation of endothelial cells. GATA4 induces the angiogenic factors VEGFA and VEGFC, by directly binding to the promoter and enhancing transcription. The knockdown of GATA4 attenuates the development of collagen-induced arthritis (CIA) and prevents RA-augmented angiogenesis in vivo, which are accompanied with decreased VEGF level. These results reveal a previously unrecognized function for GATA4 as a regulator of RA angiogenesis and we provide experimental data validating the therapeutic target of GATA4 in RA mice.
Collapse
Affiliation(s)
- Wanwan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Weijun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chenxi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mengwei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fen Long
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhenghua Su
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xinhua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Yi Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
14
|
Liu X, Li Z, Wang B, Zhu H, Liu Y, Qi J, Zhang Q. GATA4 is a transcriptional regulator of R-spondin1 in Japanese flounder (Paralichthys olivaceus). Gene 2018; 648:68-75. [PMID: 29331483 DOI: 10.1016/j.gene.2018.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
GATA4 is a well-known transcription factor of the GATA family implicated in regulation of sex determination and gonadal development in mammals. In this study, we cloned the full-length cDNA of Paralichthys olivaceus gata4 (Po-gata4). Phylogenetic, gene structure, and synteny analysis showed that Po-GATA4 is homologous to GATA4 of teleost and tetrapod. Po-gata4 transcripts were detected in Sertoli cells, spermatogonia, oogonia and oocytes, with higher transcript levels overall in the testis than the ovary. The promoter region of P. olivaceus R-spondin1was found to contain a GATA4-binding motif. Results of CBA (cleaved amplified polymorphic sequence-based binding assay) indicated that GATA4 could indeed bind to the promoter sequence of R-spondin1. Moreover, human GATA4 recombinant protein could upregulate R-spondin1 in P. olivaceus ovary cells and FBCs (flounder brain cell line). In FBCs, overexpression of Po-gata4 resulted in elevated transcript levels of R-spondin1. Taken together, our results indicate that Po-GATA4 is involved in gonadal development by regulating R-spondin1 expression.
Collapse
Affiliation(s)
- Xiumei Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - He Zhu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, PR China
| |
Collapse
|
15
|
Lin HY, Zeng D, Liang YK, Wei XL, Chen CF. GATA3 and TRPS1 are distinct biomarkers and prognostic factors in breast cancer: database mining for GATA family members in malignancies. Oncotarget 2017; 8:34750-34761. [PMID: 28423734 PMCID: PMC5471008 DOI: 10.18632/oncotarget.16160] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/13/2017] [Indexed: 02/05/2023] Open
Abstract
GATA transcription factors are zinc finger DNA binding proteins that activate transcription during development and cell differentiation. To date, 7 members of GATA family have been reported. However, the expression patterns and the exact roles of distinct GATA family members contributing to tumorigenesis and progression of breast cancer (BC) remain to be elucidated. Here, we studied the expression of GATA transcripts in a variety of tumor types compared with the normal controls using the ONCOMINE and GOBO databases, along with their corresponding expression profiles in an array of cancer cell lines through CCLE analysis. Based on Kaplan-Meier plotter, we further investigated the prognostic values of GATA members specifically high expressed in BC patients. It was found that, when compared with normal tissues, GATA3 and TRPS1 were distinctly high expressed in BC patients among all GATA members. GATA3 expression was significantly associated with ESR1, while TRPS1 was correlated with ERBB2. In survival analysis, GATA3 and TRPS1 mRNA high expressions were correlated to better survival in BC patients, and TRPS1 high expression was significantly associated with longer RFS in patients who have received chemotherapy. These results suggest that GATA3 and TRPS1 are distinct biomarkers and essential prognostic factors for breast cancer.
Collapse
Affiliation(s)
- Hao-Yu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - De Zeng
- Department of Breast Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- ChangJiang Scholar's Laboratory of Shantou University Medical College, Shantou, China
| | - Yuan-Ke Liang
- ChangJiang Scholar's Laboratory of Shantou University Medical College, Shantou, China
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Xiao-Long Wei
- Department of Pathology, Cancer Hospital of SUMC, Shantou, China
| | - Chun-Fa Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Bashamboo A, McElreavey K. Mechanism of Sex Determination in Humans: Insights from Disorders of Sex Development. Sex Dev 2016; 10:313-325. [DOI: 10.1159/000452637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
|
17
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
18
|
Tevosian SG, Jiménez E, Hatch HM, Jiang T, Morse DA, Fox SC, Padua MB. Adrenal Development in Mice Requires GATA4 and GATA6 Transcription Factors. Endocrinology 2015; 156:2503-17. [PMID: 25933105 PMCID: PMC4475720 DOI: 10.1210/en.2014-1815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adrenal glands consist of an outer cortex and an inner medulla, and their primary purposes include hormone synthesis and secretion. The adrenal cortex produces a complex array of steroid hormones, whereas the medulla is part of the sympathetic nervous system and produces the catecholamines epinephrine and norepinephrine. In the mouse, GATA binding protein (GATA) 4 and GATA6 transcription factors are coexpressed in several embryonic tissues, including the adrenal cortex. To explore the roles of GATA4 and GATA6 in mouse adrenal development, we conditionally deleted these genes in adrenocortical cells using the Sf1Cre strain of animals. We report here that mice with Sf1Cre-mediated double deletion of Gata4 and Gata6 genes lack identifiable adrenal glands, steroidogenic factor 1-positive cortical cells and steroidogenic gene expression in the adrenal location. The inactivation of the Gata6 gene alone (Sf1Cre;Gata6(flox/flox)) drastically reduced the adrenal size and corticosterone production in the adult animals. Adrenocortical aplasia is expected to result in the demise of the animal within 2 weeks after birth unless glucocorticoids are provided. In accordance, Sf1Cre;Gata4(flox/flox)Gata6(flox/flox) females depend on steroid supplementation to survive after weaning. Surprisingly, Sf1Cre;Gata4(flox/flox)Gata6(flox/flox) males appear to live normal lifespans as vital steroidogenic synthesis shifts to their testes. Our results reveal a requirement for GATA factors in adrenal development and provide a novel tool to characterize the transcriptional network controlling adrenocortical cell fates.
Collapse
Affiliation(s)
- Sergei G Tevosian
- Department of Physiological Sciences (S.G.T., E.J., H.M.H., T.J., S.C.F., M.B.P.), College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610-0144; and Department of Applied Physiology and Kinesiology (D.A.M.), College of Health and Human Performance, University of Florida, Gainesville, Florida 32611-8200
| | - Elizabeth Jiménez
- Department of Physiological Sciences (S.G.T., E.J., H.M.H., T.J., S.C.F., M.B.P.), College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610-0144; and Department of Applied Physiology and Kinesiology (D.A.M.), College of Health and Human Performance, University of Florida, Gainesville, Florida 32611-8200
| | - Heather M Hatch
- Department of Physiological Sciences (S.G.T., E.J., H.M.H., T.J., S.C.F., M.B.P.), College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610-0144; and Department of Applied Physiology and Kinesiology (D.A.M.), College of Health and Human Performance, University of Florida, Gainesville, Florida 32611-8200
| | - Tianyu Jiang
- Department of Physiological Sciences (S.G.T., E.J., H.M.H., T.J., S.C.F., M.B.P.), College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610-0144; and Department of Applied Physiology and Kinesiology (D.A.M.), College of Health and Human Performance, University of Florida, Gainesville, Florida 32611-8200
| | - Deborah A Morse
- Department of Physiological Sciences (S.G.T., E.J., H.M.H., T.J., S.C.F., M.B.P.), College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610-0144; and Department of Applied Physiology and Kinesiology (D.A.M.), College of Health and Human Performance, University of Florida, Gainesville, Florida 32611-8200
| | - Shawna C Fox
- Department of Physiological Sciences (S.G.T., E.J., H.M.H., T.J., S.C.F., M.B.P.), College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610-0144; and Department of Applied Physiology and Kinesiology (D.A.M.), College of Health and Human Performance, University of Florida, Gainesville, Florida 32611-8200
| | - Maria B Padua
- Department of Physiological Sciences (S.G.T., E.J., H.M.H., T.J., S.C.F., M.B.P.), College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610-0144; and Department of Applied Physiology and Kinesiology (D.A.M.), College of Health and Human Performance, University of Florida, Gainesville, Florida 32611-8200
| |
Collapse
|
19
|
Wnt signaling in testis development: Unnecessary or essential? Gene 2015; 565:155-65. [DOI: 10.1016/j.gene.2015.04.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/29/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
20
|
Padua MB, Jiang T, Morse DA, Fox SC, Hatch HM, Tevosian SG. Combined loss of the GATA4 and GATA6 transcription factors in male mice disrupts testicular development and confers adrenal-like function in the testes. Endocrinology 2015; 156:1873-86. [PMID: 25668066 PMCID: PMC4398756 DOI: 10.1210/en.2014-1907] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The roles of the GATA4 and GATA6 transcription factors in testis development were examined by simultaneously ablating Gata4 and Gata6 with Sf1Cre (Nr5a1Cre). The deletion of both genes resulted in a striking testicular phenotype. Embryonic Sf1Cre; Gata4(flox/flox) Gata6(flox/flox) (conditional double mutant) testes were smaller than control organs and contained irregular testis cords and fewer gonocytes. Gene expression analysis revealed significant down-regulation of Dmrt1 and Mvh. Surprisingly, Amh expression was strongly up-regulated and remained high beyond postnatal day 7, when it is normally extinguished. Neither DMRT1 nor GATA1 was detected in the Sertoli cells of the mutant postnatal testes. Furthermore, the expression of the steroidogenic genes Star, Cyp11a1, Hsd3b1, and Hsd17b3 was low throughout embryogenesis. Immunohistochemical analysis revealed a prominent reduction in cytochrome P450 side-chain cleavage enzyme (CYP11A1)- and 3β-hydroxysteroid dehydrogenase-positive (3βHSD) cells, with few 17α-hydroxylase/17,20 lyase-positive (CYP17A1) cells present. In contrast, in postnatal Sf1Cre; Gata4(flox/flox) Gata6(flox/flox) testes, the expression of the steroidogenic markers Star, Cyp11a1, and Hsd3b6 was increased, but a dramatic down-regulation of Hsd17b3, which is required for testosterone synthesis, was observed. The genes encoding adrenal enzymes Cyp21a1, Cyp11b1, Cyp11b2, and Mcr2 were strongly up-regulated, and clusters containing numerous CYP21A2-positive cells were localized in the interstitium. These data suggest a lack of testis functionality, with a loss of normal steroidogenic testis function, concomitant with an expansion of the adrenal-like cell population in postnatal conditional double mutant testes. Sf1Cre; Gata4(flox/flox) Gata6(flox/flox) animals of both sexes lack adrenal glands; however, despite this deficiency, males are viable in contrast to the females of the same genotype, which die shortly after birth.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | | | | | | | | | | |
Collapse
|
21
|
Bergeron F, Nadeau G, Viger RS. GATA4 knockdown in MA-10 Leydig cells identifies multiple target genes in the steroidogenic pathway. Reproduction 2014; 149:245-57. [PMID: 25504870 DOI: 10.1530/rep-14-0369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GATA4 is an essential transcription factor required for the initiation of genital ridge formation, for normal testicular and ovarian differentiation at the time of sex determination, and for male and female fertility in adulthood. In spite of its crucial roles, the genes and/or gene networks that are ultimately regulated by GATA4 in gonadal tissues remain to be fully understood. This is particularly true for the steroidogenic lineages such as Leydig cells of the testis where many in vitro (promoter) studies have provided good circumstantial evidence that GATA4 is a key regulator of Leydig cell gene expression and steroidogenesis, but formal proof is still lacking. We therefore performed a microarray screening analysis of MA-10 Leydig cells in which Gata4 expression was knocked down using an siRNA strategy. Analysis identified several GATA4-regulated pathways including cholesterol synthesis, cholesterol transport, and especially steroidogenesis. A decrease in GATA4 protein was associated with decreased expression of steroidogenic genes previously suspected to be GATA4 targets such as Cyp11a1 and Star. Gata4 knockdown also led to an important decrease in other novel steroidogenic targets including Srd5a1, Gsta3, Hsd3b1, and Hsd3b6, as well as genes known to participate in cholesterol metabolism such as Scarb1, Ldlr, Soat1, Scap, and Cyp51. Consistent with the decreased expression of these genes, a reduction in GATA4 protein compromised the ability of MA-10 cells to produce steroids both basally and under hormone stimulation. These data therefore provide strong evidence that GATA4 is an essential transcription factor that sits atop of the Leydig cell steroidogenic program.
Collapse
Affiliation(s)
- Francis Bergeron
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Gabriel Nadeau
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Robert S Viger
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4 ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| |
Collapse
|
22
|
Tevosian SG. Transgenic mouse models in the study of reproduction: insights into GATA protein function. Reproduction 2014; 148:R1-R14. [DOI: 10.1530/rep-14-0086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For the past 2 decades, transgenic technology in mice has allowed for an unprecedented insight into the transcriptional control of reproductive development and function. The key factor among the mouse genetic tools that made this rapid advance possible is a conditional transgenic approach, a particularly versatile method of creating gene deletions and substitutions in the mouse genome. A centerpiece of this strategy is an enzyme, Cre recombinase, which is expressed from defined DNA regulatory elements that are active in the tissue of choice. The regulatory DNA element (either genetically engineered or natural) assures Cre expression only in predetermined cell types, leading to the guided deletion of genetically modified (flanked by loxP or ‘floxed’ byloxP) gene loci. This review summarizes and compares the studies in which genes encoding GATA family transcription factors were targeted either globally or by Cre recombinases active in the somatic cells of ovaries and testes. The conditional gene loss experiments require detailed knowledge of the spatial and temporal expression of Cre activity, and the challenges in interpreting the outcomes are highlighted. These studies also expose the complexity of GATA-dependent regulation of gonadal gene expression and suggest that gene function is highly context dependent.
Collapse
|
23
|
Padua MB, Fox SC, Jiang T, Morse DA, Tevosian SG. Simultaneous gene deletion of gata4 and gata6 leads to early disruption of follicular development and germ cell loss in the murine ovary. Biol Reprod 2014; 91:24. [PMID: 24899573 DOI: 10.1095/biolreprod.113.117002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Granulosa cell formation and subsequent follicular assembly are important for ovarian development and function. Two members of the GATA family of transcription factors, GATA4 and GATA6, are expressed in ovarian somatic cells early in development, and their importance in adult ovarian function has been recently highlighted. In this study, we demonstrated that the embryonic loss of Gata4 and Gata6 expression within the ovary results in a strong down-regulation of genes involved in the ovarian developmental pathway (Fst and Irx3) as well as diminished expression of the pregranulosa and granulosa cell markers SPRR2 and FOXL2, respectively. Postnatal ovaries deficient in both Gata genes show impaired somatic cell proliferation and arrested follicular development at the primordial stage, where oocytes are either enclosed by one layer of squamous granulosa cells or remain in germ cell nests/clusters. Furthermore, germ cell nests and primordial follicles are predominantly localized to the central region of the Sf1Cre; Gata4(flox/flox) Gata6(flox/flox) ovaries, where the boundary between the medulla and cortex is almost nonexistent. Lastly, most of the oocytes are lost early in development in conditional double mutant ovaries, which confirms the importance of normally differentiated granulosa cells as supporting cells for oocyte survival. Thus, both GATA4 and GATA6 proteins are fundamental regulators of granulosa cell differentiation and proliferation, and consequently of proper follicular assembly during normal ovarian development and function.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Shawna C Fox
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Tianyu Jiang
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Deborah A Morse
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Sergei G Tevosian
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
24
|
Bashamboo A, Brauner R, Bignon-Topalovic J, Lortat-Jacob S, Karageorgou V, Lourenco D, Guffanti A, McElreavey K. Mutations in the FOG2/ZFPM2 gene are associated with anomalies of human testis determination. Hum Mol Genet 2014; 23:3657-65. [DOI: 10.1093/hmg/ddu074] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
25
|
Mazaud-Guittot S, Prud'homme B, Bouchard MF, Bergeron F, Daems C, Tevosian SG, Viger RS. GATA4 autoregulates its own expression in mouse gonadal cells via its distal 1b promoter. Biol Reprod 2014; 90:25. [PMID: 24352556 DOI: 10.1095/biolreprod.113.113290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transcription factor GATA4 is required for the development and function of the mammalian gonads. We first reported that the GATA4 gene in both human and rodents is expressed as two major alternative transcripts that differ solely in their first untranslated exon (exon 1a vs. exon 1b). We had also showed by quantitative PCR that in mouse tissues, both Gata4 exon 1a- and 1b-containing transcripts are present in all sites that are normally positive for GATA4 protein. In adult tissues, exon 1a-containing transcripts generally predominate. A notable exception, however, is the testis where the Gata4 exon 1a and 1b transcripts exhibit a similar level of expression. We now confirm by in situ hybridization analysis that each transcript is also strongly expressed during gonad differentiation in both sexes in the rat. To gain further insights into how Gata4 gene expression is controlled, we characterized the mouse Gata4 promoter sequence located upstream of exon 1b. In vitro studies revealed that the Gata4 1b promoter is less active than the 1a promoter in several gonadal cell lines tested. Whereas we have previously shown that endogenous Gata4 transcription driven by the 1a promoter is dependent on a proximally located Ebox motif, we now show using complementary in vitro and in vivo approaches that Gata4 promoter 1b-directed expression is regulated by GATA4 itself. Thus, Gata4 transcription in the gonads and other tissues is ensured by distinct promoters that are regulated differentially and independently.
Collapse
Affiliation(s)
- Séverine Mazaud-Guittot
- Reproduction, Mother and Child Health, Centre de recherche du CHU de Québec and Centre de recherche en biologie de la reproduction (CRBR), Quebec City, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Guioli S, Nandi S, Zhao D, Burgess-Shannon J, Lovell-Badge R, Clinton M. Gonadal Asymmetry and Sex Determination in Birds. Sex Dev 2014; 8:227-42. [DOI: 10.1159/000358406] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Rawnsley DR, Xiao J, Lee JS, Liu X, Mericko-Ishizuka P, Kumar V, He J, Basu A, Lu M, Lynn FC, Pack M, Gasa R, Kahn ML. The transcription factor Atonal homolog 8 regulates Gata4 and Friend of Gata-2 during vertebrate development. J Biol Chem 2013; 288:24429-40. [PMID: 23836893 DOI: 10.1074/jbc.m113.463083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GATA and Friend of GATA (FOG) form a transcriptional complex that plays a key role in cardiovascular development in both fish and mammals. In the present study we demonstrate that the basic helix-loop-helix transcription factor Atonal homolog 8 (Atoh8) is required for development of the heart in fish but not in mice. Genetic studies reveal that Atoh8 interacts specifically with Gata4 and Fog1 during development of the heart and swim bladder in the fish. Biochemical studies reveal that ATOH8, GATA4, and FOG2 associate in a single complex in vitro. In contrast to fish, ATOH8-deficient mice exhibit normal cardiac development and loss of ATOH8 does not alter cardiac development in Gata4(+/-) mice. This species difference in the role of ATOH8 is explained in part by LacZ and GFP reporter alleles that reveal restriction of Atoh8 expression to atrial but not ventricular myocardium in the mouse. Our findings identify ATOH8 as a novel regulator of GATA-FOG function that is required for cardiac development in the fish but not the mouse. Whether ATOH8 modulates GATA-FOG function at other sites or in more subtle ways in mammals is not yet known.
Collapse
Affiliation(s)
- David R Rawnsley
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li D, Lin Y, Liu Z, Zhang Y, Rong Z, Liu X. Transcriptional regulation of human novel gene SPATA12 promoter by AP-1 and HSF. Gene 2012; 511:18-25. [PMID: 22981541 DOI: 10.1016/j.gene.2012.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/03/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022]
Abstract
Human SPATA12 is a spermatogenesis associated gene and is supposed to function as an inhibitor during male germ cell development. SPATA12 is specifically expressed in spermatocytes, spermatids, and spermatozoa of human testis. In order to understand the regulation mechanism of SPATA12 gene expression, we identified and characterized the SPATA12 gene core promoter region and transcription factor binding sites by using reporter gene assays. AP-1 is founded to be a potential transcriptional activator of SPATA12. The promoter activity of SPATA12 was drastically declined after AP-1 binding site mutation or deletion. We also demonstrated that AP-1 combined with Smad3/4 contributes to the transcriptional regulation of SPATA12 in response to TGF-β1. The expression of SPATA12 could be induced by TGF-β1 in a dose-dependent manner, suggesting that AP-1 as an activator plays a role in the regulation of SPATA12 promoter. We have also shown that heat shock treatment could activate the expression of SPATA12 and transcription factor HSF binding sites in the SPATA12 promoter might be responsible for this heat-induction. These results suggested that AP-1 and HSF may play an important role in regulating SPATA12 promoter activity.
Collapse
Affiliation(s)
- Dan Li
- Department of Life Science, School of Biology, Hunan University, Changsha 410082, China.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
During embryonic development, ovarian somatic cells embark on a course that is separate from male somatic cells and from indifferent precursor cells. While the former aspect of ovarian development is well known, the latter has not received much attention until recently. This review attempts to integrate the most recent work regarding the differentiation of ovarian somatic cells. The discussion of the parallel development of the testis is limited to the key differences only. Similarly, germ cell development will be introduced only inasmuch as it becomes necessary to draw attention to a particular aspect of the somatic component differentiation. Finally, while postnatal ovarian development and folliculogenesis undoubtedly provide the ultimate morphological and functional fitness tests for the ovarian somatic cells, postnatal phenotypes will be only referred to when they have already been connected to genes that are expressed during embryogenesis.
Collapse
Affiliation(s)
- S G Tevosian
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Fla. 32601, USA.
| |
Collapse
|