1
|
Peng H, Yang M, Feng K, Lv Q, Zhang Y. Semaphorin 3C (Sema3C) reshapes stromal microenvironment to promote hepatocellular carcinoma progression. Signal Transduct Target Ther 2024; 9:169. [PMID: 38956074 PMCID: PMC11220018 DOI: 10.1038/s41392-024-01887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
More than 90% of hepatocellular carcinoma (HCC) cases develop in the presence of fibrosis or cirrhosis, making the tumor microenvironment (TME) of HCC distinctive due to the intricate interplay between cancer-associated fibroblasts (CAFs) and cancer stem cells (CSCs), which collectively regulate HCC progression. However, the mechanisms through which CSCs orchestrate the dynamics of the tumor stroma during HCC development remain elusive. Our study unveils a significant upregulation of Sema3C in fibrotic liver, HCC tissues, peripheral blood of HCC patients, as well as sorafenib-resistant tissues and cells, with its overexpression correlating with the acquisition of stemness properties in HCC. We further identify NRP1 and ITGB1 as pivotal functional receptors of Sema3C, activating downstream AKT/Gli1/c-Myc signaling pathways to bolster HCC self-renewal and tumor initiation. Additionally, HCC cells-derived Sema3C facilitated extracellular matrix (ECM) contraction and collagen deposition in vivo, while also promoting the proliferation and activation of hepatic stellate cells (HSCs). Mechanistically, Sema3C interacted with NRP1 and ITGB1 in HSCs, activating downstream NF-kB signaling, thereby stimulating the release of IL-6 and upregulating HMGCR expression, consequently enhancing cholesterol synthesis in HSCs. Furthermore, CAF-secreted TGF-β1 activates AP1 signaling to augment Sema3C expression in HCC cells, establishing a positive feedback loop that accelerates HCC progression. Notably, blockade of Sema3C effectively inhibits tumor growth and sensitizes HCC cells to sorafenib in vivo. In sum, our findings spotlight Sema3C as a novel biomarker facilitating the crosstalk between CSCs and stroma during hepatocarcinogenesis, thereby offering a promising avenue for enhancing treatment efficacy and overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Hao Peng
- Medical School, Southeast University, Nanjing, 210009, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical. Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Kun Feng
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Qingpeng Lv
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Zheng X, Lei W, Zhang Y, Jin H, Han C, Wu F, Jia C, Zeng R, Chen Z, Zhang Y, Wang H, Liu Q, Yao Z, Yu Y, Zhou J. Neuropilin-1 high monocytes protect against neonatal inflammation. Cell Mol Immunol 2024; 21:575-588. [PMID: 38632385 PMCID: PMC11143335 DOI: 10.1038/s41423-024-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Neonates are susceptible to inflammatory disorders such as necrotizing enterocolitis (NEC) due to their immature immune system. The timely appearance of regulatory immune cells in early life contributes to the control of inflammation in neonates, yet the underlying mechanisms of which remain poorly understood. In this study, we identified a subset of neonatal monocytes characterized by high levels of neuropilin-1 (Nrp1), termed Nrp1high monocytes. Compared with their Nrp1low counterparts, Nrp1high monocytes displayed potent immunosuppressive activity. Nrp1 deficiency in myeloid cells aggravated the severity of NEC, whereas adoptive transfer of Nrp1high monocytes led to remission of NEC. Mechanistic studies showed that Nrp1, by binding to its ligand Sema4a, induced intracellular p38-MAPK/mTOR signaling and activated the transcription factor KLF4. KLF4 transactivated Nos2 and enhanced the production of nitric oxide (NO), a key mediator of immunosuppression in monocytes. These findings reveal an important immunosuppressive axis in neonatal monocytes and provide a potential therapeutic strategy for treating inflammatory disorders in neonates.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen Lei
- Pediatric Immunity and Healthcare Biomedical Co., Ltd, Guangzhou, 510320, China
| | - Yongmei Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Han Jin
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fan Wu
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Chonghong Jia
- Institute of Pediatric Health and Disease, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Ruihong Zeng
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhanghua Chen
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yuxia Zhang
- Department of Gastroenterology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Haitao Wang
- Department of oncology, The Second Hospital of Tianjin Medical University, Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases, Tianjin, 300211, China
| | - Qiang Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, International Joint Laboratory of Ocular Diseases (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
4
|
Xu BB, Zheng ED, Sun HY, Huang Y, Zheng L, Lan QL, Zhou XL, Geng XG, Wang YN, Wang XY, Yu YC. Comprehensive analysis of circular RNA-associated competing endogenous RNA networks and immune infiltration in gastric cancer. Transpl Immunol 2023; 77:101793. [PMID: 36773765 DOI: 10.1016/j.trim.2023.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Circular RNA (circRNA) has been proved to be an important regulator of gastric cancer (GC). However, the role and regulatory mechanism of circrna related competitive endogenous RNA (ceRNA) in GC have not been established. METHODS CircRNA data and clinical data were obtained from the GEO and TCGA databases. The ceRNA networks were constructed and a function enrichment analysis was completed. Additionally, correlations between hub genes expression, immune cell infiltration, and clinical phenotypes were determined. The differentially expressed circRNAs and their downstream microRNAs (miRNAs) were validated by quantitative real-time polymerase chain reaction, and the hub genes were validated by western blot analysis. The migration and invasion ability of overexpressed hsa_circ_0002504 was determined by a transwell assay. RESULTS The ceRNA network contained 2 circRNAs, 3 miRNAs, and 55 messenger RNAs (mRNAs). 323 biological processes terms, 53 cellular components terms, 51 molecular functions terms, and 4 signaling pathways were revealed by the function enrichment analysis. The GSEA analysis revealed that the hub genes were positively correlated with the axon guidance and adhesion molecules pathways. The correlation analysis revealed that overexpressed EPHA4 and KCNA1 indicated poor tissue differentiation and were associated with clinically advanced stages of GC. The in vitro experiments showed that hsa_circ_0002504 was significantly down-regulated in GC cell lines. In addition, the overexpression of hsa_circ_0002504 led to a significant downregulation of hsa-miR-615-5p and hsa-miR-767-5p, as well as an upregulation of EPHA4, KCNA1, and NCAM1. Furthermore, it suppressed the migration and invasion ability of GC cells. CONCLUSIONS Hsa_circ_0002504 is a potential diagnostic biomarker for GC. High expression of EPHA4 and KCNA1 may indicate poor prognosis.
Collapse
Affiliation(s)
- Bei-Bei Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Soochow University, Suzhou 215000, Jiangsu, China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - En-Dian Zheng
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Hao-Yue Sun
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Yi Huang
- Department of General Surgery, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou 325000, Zhejiang, China
| | - Liang Zheng
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qiao-Li Lan
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiao-Lu Zhou
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Xiao-Ge Geng
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou 310000, Zhejiang, China
| | - Ya-Nan Wang
- Zhejiang University of Technology, Hangzhou 310000, Zhejiang, China
| | - Xiu-Yan Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Ying-Cong Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
5
|
Jiang J, Zhang F, Wan Y, Fang K, Yan ZD, Ren XL, Zhang R. Semaphorins as Potential Immune Therapeutic Targets for Cancer. Front Oncol 2022; 12:793805. [PMID: 35155237 PMCID: PMC8830438 DOI: 10.3389/fonc.2022.793805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
Semaphorins are a large class of secreted or membrane-bound molecules. It has been reported that semaphorins play important roles in regulating several hallmarks of cancer, including angiogenesis, metastasis, and immune evasion. Semaphorins and their receptors are widely expressed on tumor cells and immune cells. However, the biological role of semaphorins in tumor immune microenvironment is intricate. The dysregulation of semaphorins influences the recruitment and infiltration of immune cells, leading to abnormal anti-tumor effect. Although the underlying mechanisms of semaphorins on regulating tumor-infiltrating immune cell activation and functions are not fully understood, semaphorins can notably be promising immunotherapy targets for cancer.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Fang Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wan
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ke Fang
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ze-Dong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xin-Ling Ren
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pulmonary Medicine, Shenzhen General Hospital, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Leclerc M, Voilin E, Gros G, Corgnac S, de Montpréville V, Validire P, Bismuth G, Mami-Chouaib F. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun 2019; 10:3345. [PMID: 31350404 PMCID: PMC6659631 DOI: 10.1038/s41467-019-11280-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Neuropilin-1 (Nrp-1) is a marker for murine CD4+FoxP3+ regulatory T (Treg) cells, a subset of human CD4+ Treg cells, and a population of CD8+ T cells infiltrating certain solid tumours. However, whether Nrp-1 regulates tumour-specific CD8 T-cell responses is still unclear. Here we show that Nrp-1 defines a subset of CD8+ T cells displaying PD-1hi status and infiltrating human lung cancer. Interaction of Nrp-1 with its ligand semaphorin-3A inhibits migration and tumour-specific lytic function of cytotoxic T lymphocytes. In vivo, Nrp-1+PD-1hi CD8+ tumour-infiltrating lymphocytes (TIL) in B16F10 melanoma are enriched for tumour-reactive T cells exhibiting an exhausted state, expressing Tim-3, LAG-3 and CTLA-4 inhibitory receptors. Anti-Nrp-1 neutralising antibodies enhance the migration and cytotoxicity of Nrp-1+PD-1hi CD8+ TIL ex vivo, while in vivo immunotherapeutic blockade of Nrp-1 synergises with anti-PD-1 to enhance CD8+ T-cell proliferation, cytotoxicity and tumour control. Thus, Nrp-1 could be a target for developing combined immunotherapies. Neuropilin-1 (Nrp-1) is a marker for CD4 + regulatory T cells. Here the authors show that Nrp-1 is co-expressed with PD-1 on a subset of CD8 tumour-infiltrating T lymphocytes and inhibits T-cell migration and cytotoxicity when bound by its ligand semaphorin-3A, while blockade of Nrp-1 synergises with anti-PD-1 to promote antitumour immunity in mouse tumour models.
Collapse
Affiliation(s)
- Marine Leclerc
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Elodie Voilin
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Gwendoline Gros
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Stéphanie Corgnac
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Vincent de Montpréville
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.,Centre chirurgical Marie-Lannelongue, Service d'Anatomie Pathologie, 92350, Le-Plessis-Robinson, France
| | - Pierre Validire
- Institut Mutualiste Montsouris, Service d'Anatomie pathologique, 75014, Paris, France
| | - Georges Bismuth
- INSERM U1016, Institut Cochin, 75014, Paris, France.,CNRS, Unité mixte de Recherche 8104, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Gustave Roussy, EPHE, PSL, Faculté de Médecine-Université Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France.
| |
Collapse
|
7
|
Garcia S. Role of Semaphorins in Immunopathologies and Rheumatic Diseases. Int J Mol Sci 2019; 20:ijms20020374. [PMID: 30654587 PMCID: PMC6359241 DOI: 10.3390/ijms20020374] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatic diseases are disorders characterized by joint inflammation, in which other organs are also affected. There are more than two hundred rheumatic diseases, the most studied so far are rheumatoid arthritis, osteoarthritis, spondyloarthritis, systemic lupus erythematosus, and systemic sclerosis. The semaphorin family is a large group of proteins initially described as axon guidance molecules involved in nervous system development. Studies have demonstrated that semaphorins play a role in other processes such as the regulation of immunity, angiogenesis, bone remodeling, apoptosis, and cell migration and invasion. Moreover, semaphorins have been related to the pathogenesis of multiple sclerosis, asthma, Alzheimer, myocarditis, atherosclerosis, fibrotic diseases, osteopetrosis, and cancer. The aim of this review is to summarize current knowledge regarding the role of semaphorins in rheumatic diseases, and discuss their potential applications as therapeutic targets to treat these disorders.
Collapse
Affiliation(s)
- Samuel Garcia
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
8
|
Grindel BJ, Martinez JR, Tellman TV, Harrington DA, Zafar H, Nakhleh L, Chung LW, Farach-Carson MC. Matrilysin/MMP-7 Cleavage of Perlecan/HSPG2 Complexed with Semaphorin 3A Supports FAK-Mediated Stromal Invasion by Prostate Cancer Cells. Sci Rep 2018; 8:7262. [PMID: 29740048 PMCID: PMC5940808 DOI: 10.1038/s41598-018-25435-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Interrupting the interplay between cancer cells and extracellular matrix (ECM) is a strategy to halt tumor progression and stromal invasion. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) is an extracellular proteoglycan that orchestrates tumor angiogenesis, proliferation, differentiation and invasion. Metastatic prostate cancer (PCa) cells degrade perlecan-rich tissue borders to reach bone, including the basement membrane, vasculature, reactive stromal matrix and bone marrow. Domain IV-3, perlecan’s last 7 immunoglobulin repeats, mimics native proteoglycan by promoting tumoroid formation. This is reversed by matrilysin/matrix metalloproteinase-7 (MMP-7) cleavage to favor cell dispersion and tumoroid dyscohesion. Both perlecan and Domain IV-3 induced a strong focal adhesion kinase (FAK) dephosphorylation/deactivation. MMP-7 cleavage of perlecan reversed this, with FAK in dispersed tumoroids becoming phosphorylated/activated with metastatic phenotype. We demonstrated Domain IV-3 interacts with the axon guidance protein semaphorin 3A (Sema3A) on PCa cells to deactivate pro-metastatic FAK. Sema3A antibody mimicked the Domain IV-3 clustering activity. Direct binding experiments showed Domain IV-3 binds Sema3A. Knockdown of Sema3A prevented Domain IV-3-induced tumoroid formation and Sema3A was sensitive to MMP-7 proteolysis. The perlecan-Sema3A complex abrogates FAK activity and stabilizes PCa cell interactions. MMP-7 expressing cells destroy the complex to initiate metastasis, destroy perlecan-rich borders, and favor invasion and progression to lethal bone disease.
Collapse
Affiliation(s)
- Brian J Grindel
- Department of BioSciences, Rice University, Houston, TX, 77005, USA.,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, 77054, USA.,Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jerahme R Martinez
- Department of BioSciences, Rice University, Houston, TX, 77005, USA.,Department of Mechanical Engineering, University of Delaware, Newark, DE, 19706, USA
| | - Tristen V Tellman
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, 77054, USA
| | - Daniel A Harrington
- Department of BioSciences, Rice University, Houston, TX, 77005, USA.,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, 77054, USA
| | - Hamim Zafar
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, TX, 77005, USA
| | - Leland W Chung
- Uro-Oncology Research Program, Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Mary C Farach-Carson
- Department of BioSciences, Rice University, Houston, TX, 77005, USA. .,Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, 77054, USA.
| |
Collapse
|
9
|
Li H, Wang JS, Mu LJ, Shan KS, Li LP, Zhou YB. Promotion of Sema4D expression by tumor-associated macrophages: Significance in gastric carcinoma. World J Gastroenterol 2018; 24:593-601. [PMID: 29434448 PMCID: PMC5799860 DOI: 10.3748/wjg.v24.i5.593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the role of semaphorin 4D (Sema4D) expression promoted by tumor-associated macrophages (TAMs) in gastric carcinoma cells and its clinical significance in the invasion and metastasis of gastric carcinoma. METHODS CD68 and Sema4D expression was analyzed in gastric carcinoma and adjacent normal tissues from 290 patients using the immunohistochemical streptavidin-peroxidase method, and their relationships with clinicopathological features were evaluated. Human M2 macrophages were induced in vitro and co-cultured in non-contact with gastric carcinoma SGC-7901 cells. Changes in the secretory Sema4D level in the SGC-7901 cell supernatant were measured using an enzyme-linked immunosorbent assay. The effects of TAMs on SGC-7901 cell invasion and migration were assessed with invasion and migration assays, respectively. RESULTS CD68 and Sema4D protein expression was significantly higher in gastric carcinoma tissues than in adjacent normal tissues (71.7% vs 33.8% and 74.5% vs 42.8%, respectively; P < 0.01). CD68 and Sema4D protein expression was significantly associated with histological differentiation, TNM stage, and lymph node metastasis (P < 0.05), and their expression levels were positively correlated with one another (r = 0.467, P < 0.01). In the in vitro experiment, secretory Sema4D protein expression was significantly increased in the supernatant of SGC-7901 cells co-cultured with TAMs compared with the blank control (1224.13 ± 29.43 vs 637.15 ± 33.84, P < 0.01). Cell invasion and metastasis were enhanced in the Transwell invasion and migration assays (P < 0.01). CONCLUSION TAMs promote the invasion and metastasis of gastric carcinoma cells possibly through upregulated secretory Sema4D protein expression. Combined detection of TAM markers, CD68 and Sema4D, in gastric carcinoma tissue shows potential to predict the trend of gastric carcinoma progression.
Collapse
Affiliation(s)
- Han Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jin-Shen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Lin-Jun Mu
- Department of Emergency Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Ke-Shu Shan
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Le-Ping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-Bing Zhou
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
10
|
Pathological and functional significance of Semaphorin-5A in pancreatic cancer progression and metastasis. Oncotarget 2017; 9:5931-5943. [PMID: 29464045 PMCID: PMC5814185 DOI: 10.18632/oncotarget.23644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 01/23/2023] Open
Abstract
Semaphorin-5A (SEMA5A) has differential cell surface expression between normal and cancer cells and represents an attractive target for therapeutic intervention in pancreatic cancer (PC). In this study, we delineated the pathological expression and significance of SEMA5A during PC progression and metastasis. We utilized human tissue microarrays and different PC mouse models (Pdx1-cre; LSL- Kras(G12D), Pdx1-Cre; LSL-Kras(G12D); LSL-p53(R172H) and RIP1-Tag2) to analyze SEMA5A expression during PC progression. Using human patients and different mouse models, we demonstrated that SEMA5A expression was highest in liver metastases, followed by primary pancreatic tumors, and the lowest expression was found in the normal pancreas. SEMA5A expression was localized on tumor cells with no staining in the surrounding stroma. To understand the functional significance of SEMA5A, we treated PC cell lines with recombinant SEMA5A. We observed an increase in migration, chemotaxis, and scattering of PC cells. To delineate the signaling axis of SEMA5A, we generated SEMA5A receptor-Plexin-B3 knockdown in T3M-4 and CD18/HPAF PC cell lines and observed that the effect of SEMA5A treatment was absent in the Plexin-B3 knockdown counterparts of T3M-4 and CD18/HPAF cells. SEMA5A treatment leads to phosphorylation of cMET in Plexin-B3 dependent manner. Our data demonstrate that there is an increase in SEMA5A expression during PC progression and the elevation of this expression takes place at metastatic sites especially the liver in both exocrine and endocrine tumors. SEMA5A can elicit a migratory response in cells by activating cMET through the Plexin-B3 receptor. In conclusion, SEMA5A signaling represents a potential molecule for targeting metastasis in pancreatic cancer.
Collapse
|
11
|
Wu M, Li J, Gao Q, Ye F. The role of Sema4D/CD100 as a therapeutic target for tumor microenvironments and for autoimmune, neuroimmune and bone diseases. Expert Opin Ther Targets 2016; 20:885-901. [PMID: 26732941 DOI: 10.1517/14728222.2016.1139083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Semaphorin 4D (Sema4D), also known as CD100, has been implicated in physiologic roles in the immune and nervous systems. However, the interaction of Sema4D with its high affinity receptor, Plexin-B1, reveals a novel role for Sema4D produced by the tumor microenvironment in tumor angiogenesis and metastasis. AREAS COVERED The ligation of Sema4D/CD100 with CD72 on immune and inflammatory cells is known to stimulate immune responses and regulation. Because CD100 and CD72 are expressed on lung immune and nonimmune cells, as well as on mast cells, the CD100/CD72 interaction plays another important role in allergic airway inflammation and mast cell functions. A better understanding of Sema4D-mediated cell signaling in physiological and pathological processes may be crucial for crafting new Sema4D-based therapeutics for human disease and tumor microenvironments. Strategies to achieve effective management through treatment with Sema4D include special siRNAs, neutralizing antibodies and knockdown. EXPERT OPINION This review focuses on the links between Sema4D and human diseases such as cancer, bone metabolism, immune responses and organ development. The current knowledge regarding the expression of Sema4D and its receptors and its functional roles is systemically reviewed to explore Sema4D as both a target and a therapeutic in human diseases.
Collapse
Affiliation(s)
- Mingfu Wu
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jing Li
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Qinglei Gao
- a Cancer Biology Research Center, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Fei Ye
- b Department of Neurosurgery, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
12
|
Jones EY. Understanding cell signalling systems: paving the way for new therapies. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20130155. [PMID: 25624520 PMCID: PMC4308982 DOI: 10.1098/rsta.2013.0155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cell-to-cell signalling mechanisms of multi-cellular organisms orchestrate human development during embryogenesis and control homeostasis in adult tissues. These are mechanisms vital to human health and perturbation of cell-to-cell signalling is a contributing factor in many pathologies including cancer. The semaphorin cell guidance cues and their cognate plexin receptors exemplify a cell-to-cell signalling system for which insights into mechanistic principles are emerging. X-ray crystallographic data from Diamond beam lines have enabled us to probe the inner workings of semaphorin-plexin signalling to atomic-level resolutions. Importantly, we can complement protein crystallographic results with biophysical and cellular studies to dovetail structural information with functional impact. The signature seven-bladed β propeller 'sema' domain of the semaphorins forms a dimer; in contrast the equivalent domain in the plexins is monomeric. The generic architecture of a semaphorin-plexin complex is characterized by the dimeric semaphorin cross-linking two copies of the plexin receptor. For specific family members, the co-receptor neuropilin serves to bolster this architecture, but in all cases, the dimeric interaction lies at the core of the ligand receptor complex, providing the essential trigger for signalling.
Collapse
Affiliation(s)
- E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
13
|
Liu Y, Ma JY, Luo SJ, Sun CW, Shao LL, Liu QZ. Semaphoring mAb: a new guide in RIT in inhibiting the proliferation of human skin carcinoma. Asian Pac J Cancer Prev 2015; 16:941-5. [PMID: 25735386 DOI: 10.7314/apjcp.2015.16.3.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Semaphoring is a transmembrane receptor which participates in many cytokine-mediated signal pathways that are closely related to the angiogenesis, occurrence and development of carcinoma. The present study was designed to access the effect of mono-antibody (mAb) guided radioimmunotherapy (RIT) on skin carcinoma and investigate the potential mechanisms. Semaphoring mAb was acquired from mice (Balb/c), purified with rProtein A column; purity, concentration and activity were tested with SDS-PAGE and indirect ELISA; specificity and expression on the cutanuem carcinoma line and tissue were tested by Western blotting; morphology change was assessed by microscopy. MTT assay and colony inhibition tests were carried out to test the influence on the proliferation of tumor cells; Western blotting was also carried out for expression of apoptosis-associated (caspase-3, Bax, Bcl-2) and proliferation-related (PI3K, p-Akt, Akt, p-ERK1/2, ERK1/2) proteins and analyse the change in signal pathways (PI3K/Akt and MEK/ERK). The purity of purified semaphorin mAb was 96.5% and the titer is about 1?106. Western blotting showed semaphoring mAb to have specifically binding stripes with semaphoring b1b2 protein, B16F10, and A431 cells at 39KDa, 100KDa and 130KDa, respectively. Positive expression was detected both in cutanuem carcinoma line and tissue and it mostly located in cell membranes. MMT assay revealed dose-relate and time-relate inhibitory effect of semaphorin mAb on A431 and B16F10. Colony inhibition tests also showed dose-relate inhibitory effects. Western blotting demonstrated the expression of apoptosis and proliferation-related protein and changes in signal pathway. In conclusion, we demonstrated that semaphorin is highly expressed on the tumor cell-surfaces and RIT with semaphorin mAb has effect in inhibiting proliferation and accelerating apoptosis of tumor cells.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China E-mail :
| | | | | | | | | | | |
Collapse
|
14
|
Koch S, van Meeteren LA, Morin E, Testini C, Weström S, Björkelund H, Le Jan S, Adler J, Berger P, Claesson-Welsh L. NRP1 presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation. Dev Cell 2014; 28:633-46. [PMID: 24656741 DOI: 10.1016/j.devcel.2014.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 11/04/2013] [Accepted: 02/13/2014] [Indexed: 11/30/2022]
Abstract
Neuropilin 1 (NRP1) modulates angiogenesis by binding vascular endothelial growth factor (VEGF) and its receptor, VEGFR2. We examined the consequences when VEGFR2 and NRP1 were expressed on the same cell (cis) or on different cells (trans). In cis, VEGF induced rapid VEGFR2/NRP1 complex formation and internalization. In trans, complex formation was delayed and phosphorylation of phospholipase Cγ (PLCγ) and extracellular regulated kinase 2 (ERK2) was prolonged, whereas ERK1 phosphorylation was reduced. Trans complex formation suppressed initiation and vascularization of NRP1-expressing mouse fibrosarcoma and melanoma. Suppression in trans required high-affinity, steady-state binding of VEGF to NRP1, which was dependent on the NRP1 C-terminal domain. Compatible with a trans effect of NRP1, quiescent vasculature in the developing retina showed continuous high NRP1 expression, whereas angiogenic sprouting occurred where NRP1 levels fluctuated between adjacent endothelial cells. Therefore, through communication in trans, NRP1 can modulate VEGFR2 signaling and suppress angiogenesis.
Collapse
Affiliation(s)
- Sina Koch
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185 Uppsala, Sweden
| | - Laurens A van Meeteren
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185 Uppsala, Sweden
| | - Eric Morin
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185 Uppsala, Sweden
| | - Chiara Testini
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185 Uppsala, Sweden
| | - Simone Weström
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185 Uppsala, Sweden
| | | | - Sébastien Le Jan
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185 Uppsala, Sweden
| | - Jeremy Adler
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185 Uppsala, Sweden
| | - Philipp Berger
- Paul Scherrer Institute, Laboratory of Biomolecular Research, Molecular Cell Biology, 5232 Villigen PSI, Switzerland
| | - Lena Claesson-Welsh
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory and Science for Life Laboratory, Uppsala University, Dag Hammarskjöldsväg 20, 75185 Uppsala, Sweden.
| |
Collapse
|
15
|
Abstract
Lymphangiogenesis, the growth of lymphatic vessels, is essential in embryonic development. In adults, it is involved in many pathological processes such as lymphedema, inflammatory diseases, and tumor metastasis. Advances during the past decade have dramatically increased the knowledge of the mechanisms of lymphangiogenesis, including the roles of transcription factors, lymphangiogenic growth factors and their receptors, and intercellular and intracellular signaling cascades. Strategies based on these mechanisms are being tested in the treatment of various human diseases such as cancer, lymphedema, and tissue allograft rejection. This Review summarizes the recent progress on lymphangiogenic mechanisms and their applications in disease treatment.
Collapse
|
16
|
Ge C, Li Q, Wang L, Xu X. The role of axon guidance factor semaphorin 6B in the invasion and metastasis of gastric cancer. J Int Med Res 2014; 41:284-92. [PMID: 23781008 DOI: 10.1177/0300060513476436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To investigate the role of semaphorin 6B in gastric cancer invasion and metastasis. METHODS Immunohistochemistry for semaphorin 6B was performed on gastric cancer tumour tissue samples in this retrospective study. Levels of semaphorin 6B protein and mRNA were determined in gastric cancer cell lines by Western blotting and quantitative reverse transcription-polymerase chain reaction, respectively. The human gastric cancer cell line SGC-7901 was transfected with small interfering RNA targeting semaphorin 6B; effects on cell adhesion, migration and invasion were determined by cell adhesion assay, transwell chamber migration assay and wound healing assay, respectively. RESULTS Tumour tissue samples from 220 patients were analysed. In vivo, semaphorin 6B immunopositivity correlated with tumour differentiation, lymph node metastasis and distant metastasis but not patient age, sex or tumour stage. Semaphorin 6B gene silencing significantly suppressed adhesion, migration and invasion of gastric cancer cells in vitro. CONCLUSIONS Semaphorin 6B is related to tumour differentiation and metastasis in vivo, and tumour cell migration, adhesion and invasion in vitro. Semaphorin 6B may represent a reliable biomarker for diagnosis, evaluation and gene-targeted therapy of gastric cancer.
Collapse
Affiliation(s)
- Changqing Ge
- National Hepatobiliary and Enteric Surgery Research Centre, Central South University, Changsha, Hunan, China
| | | | | | | |
Collapse
|
17
|
Baldo BA, Pham NH. Adverse reactions to targeted and non-targeted chemotherapeutic drugs with emphasis on hypersensitivity responses and the invasive metastatic switch. Cancer Metastasis Rev 2013; 32:723-61. [PMID: 24043487 PMCID: PMC7102343 DOI: 10.1007/s10555-013-9447-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More than 100 drugs are used to treat the many different cancers. They can be divided into agents with relatively broad, non-targeted specificity and targeted drugs developed on the basis of a more refined understanding of individual cancers and directed at specific molecular targets on different cancer cells. Individual drugs in both groups have been classified on the basis of their mechanism of action in killing cancer cells. The targeted drugs include proteasome inhibitors, toxic chimeric proteins and signal transduction inhibitors such as tyrosine kinase (non-receptor and receptor), serine/threonine kinase, histone deacetylase and mammalian target of rapamycin inhibitors. Increasingly used targeted vascular (VEGF) and platelet-derived endothelial growth factor blockade can provoke a range of pathological consequences. Many of the non-targeted drugs are cytotoxic, suppressing haematopoiesis as well as provoking cutaneous eruptions and vascular, lung and liver injury. Cytotoxic side effects of the targeted drugs occur less often and usually with less severity, but they show their own unusual adverse effects including, for example, a lengthened QT interval, a characteristic papulopustular rash, nail disorders and a hand-foot skin reaction variant. The term hypersensitivity is widely used across a number of disciplines but not always with the same definition in mind, and the terminology needs to be standardised. This is particularly apparent in cancer chemotherapy where anti-neoplastic drug-induced thrombocytopenia, neutropenia, anaemia, vascular disorders, liver injury and lung disease as well as many dermatological manifestations sometimes have an immune basis. The most insidious of all adverse consequences of targeted therapies, however, are tumour adaptation, increased malignancy and the invasive metastatic switch seen with anti-angiogenic drugs that inhibit the VEGF-A pathway. Adverse reactions to 44 non-targeted and 33 targeted, frequently used, chemotherapeutic drugs are presented together with discussions of diagnosis, premedications, desensitizations and importance of understanding the mechanisms underlying the various drug-induced reactions. There is need for wide-ranging acceptance of what constitutes a hypersensitivity reaction and for allergists to be more involved in the diagnosis, treatment and prevention of chemotherapeutic drug-induced hypersensitivity reactions.
Collapse
Affiliation(s)
- Brian A Baldo
- Molecular Immunology Unit, Kolling Institute of Medical Research, Royal North Shore Hospital of Sydney, Sydney, New South Wales, Australia,
| | | |
Collapse
|
18
|
Cagnoni G, Tamagnone L. Semaphorin receptors meet receptor tyrosine kinases on the way of tumor progression. Oncogene 2013; 33:4795-802. [DOI: 10.1038/onc.2013.474] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/25/2013] [Accepted: 09/25/2013] [Indexed: 12/21/2022]
|
19
|
MICAL, the flavoenzyme participating in cytoskeleton dynamics. Int J Mol Sci 2013; 14:6920-59. [PMID: 23535333 PMCID: PMC3645671 DOI: 10.3390/ijms14046920] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/02/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023] Open
Abstract
MICAL (from the Molecule Interacting with CasL) indicates a family of recently discovered cytosolic, multidomain proteins, which uniquely couple an N-terminal FAD-containing monooxygenase-like domain to typical calponine homology, LIM and coiled-coil protein-interaction modules. Genetic and cell biology approaches have demonstrated an essential role of the catalytic activity of the monooxygenase-like domain in transducing the signal initiated by semaphorins interaction with their plexin receptors, which results in local actin cytoskeleton disassembly as part of fundamental processes that include differentiation, migration and cell-cell contacts in neuronal and non-neuronal cell types. This review focuses on the structure-function relations of the MICAL monooxygenase-like domain as they are emerging from the available in vitro studies on mouse, human and Drosophila MICAL forms that demonstrated a NADPH-dependent actin depolymerizing activity of MICAL. With Drosophila MICAL forms, actin depolymerization was demonstrated to be associated to conversion of Met44 to methionine sulfone through a postulated hydroxylating reaction. Arguments supporting the concept that MICAL effect on F-actin may be reversible will be discussed.
Collapse
|
20
|
Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol 2013; 24:179-89. [PMID: 23099250 DOI: 10.1016/j.semcdb.2012.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023]
Abstract
The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding "normal" cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.
Collapse
Affiliation(s)
- Michael Rehman
- Institute for Cancer Research at Candiolo (IRC@C), University of Torino-Dept. of Oncology, 10060 Candiolo, Italy
| | | |
Collapse
|
21
|
Tafani M, Pucci B, Russo A, Schito L, Pellegrini L, Perrone GA, Villanova L, Salvatori L, Ravenna L, Petrangeli E, Russo MA. Modulators of HIF1α and NFkB in Cancer Treatment: Is it a Rational Approach for Controlling Malignant Progression? Front Pharmacol 2013; 4:13. [PMID: 23408731 PMCID: PMC3569619 DOI: 10.3389/fphar.2013.00013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 01/23/2013] [Indexed: 01/17/2023] Open
Abstract
HIF1α and NFkB are two transcription factors very frequently activated in tumors and involved in tumor growth, progression, and resistance to chemotherapy. In fact, HIF1α and NFkB together regulate transcription of over a thousand genes that, in turn, control vital cellular processes such as adaptation to the hypoxia, metabolic reprograming, inflammatory reparative response, extracellular matrix digestion, migration and invasion, adhesion, etc. Because of this wide involvement they could control in an integrated manner the origin of the malignant phenotype. Interestingly, hypoxia and inflammation have been sequentially bridged in tumors by the discovery that alarmin receptors genes such as RAGE, P2X7, and some TLRs, are activated by HIF1α; and that, in turn, alarmin receptors strongly activate NFkB and proinflammatory gene expression, evidencing all the hallmarks of the malignant phenotype. Recently, a large number of drugs have been identified that inhibit one or both transcription factors with promising results in terms of controlling tumor progression. In addition, many of these molecules are natural compounds or off-label drugs already used to cure other pathologies. Some of them are undergoing clinical trials and soon they will be used alone or in combination with standard anti-tumoral agents to achieve a better treatment of tumors with reduction of metastasis formation and, more importantly, with a net increase in survival. This review highlights the central role of HIF1α activated in hypoxic regions of the tumor, of NFkB activation and proinflammatory gene expression in transformed cells to understand their progression toward malignancy. Different molecules and strategies to inhibit these transcription factors will be reviewed. Finally, the central role of a new class of deacetylases called Sirtuins in regulating HIF1α and NFkB activity will be outlined.
Collapse
Affiliation(s)
- Marco Tafani
- Department of Experimental Medicine, Sapienza University of Rome Rome, Italy ; Laboratory of Molecular and Cellular Pathology - Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Pisana Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Roney K, Holl E, Ting J. Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 2013; 4:17-26. [PMID: 23307780 DOI: 10.1007/s13238-012-2108-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022] Open
Abstract
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.
Collapse
Affiliation(s)
- Kelly Roney
- Department of Microbiology and Immunology, 22-004 Lineberger Comprehensive Cancer Center, University of Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
23
|
Baudet ML, Bellon A, Holt CE. Role of microRNAs in Semaphorin function and neural circuit formation. Semin Cell Dev Biol 2012; 24:146-55. [PMID: 23219835 DOI: 10.1016/j.semcdb.2012.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/19/2012] [Accepted: 11/28/2012] [Indexed: 01/23/2023]
Abstract
Since the discovery of the first microRNA (miRNA) almost 20 years ago, insight into their functional role has gradually been accumulating. This class of non-coding RNAs has recently been implicated as key molecular regulators in the biology of most eukaryotic cells, contributing to the physiology of various systems including immune, cardiovascular, nervous systems and also to the pathophysiology of cancers. Interestingly, Semaphorins, a class of evolutionarily conserved signalling molecules, are acknowledged to play major roles in these systems also. This, combined with the fact that Semaphorin signalling requires tight spatiotemporal regulation, a hallmark of miRNA expression, suggests that miRNAs could be crucial regulators of Semaphorin function. Here, we review evidence suggesting that Semaphorin signalling is regulated by miRNAs in various systems in health and disease. In particular, we focus on neural circuit formation, including axon guidance, where Semaphorin function was first discovered.
Collapse
|
24
|
Janssen BJ, Malinauskas T, Weir GA, Cader MZ, Siebold C, Jones EY. Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nat Struct Mol Biol 2012; 19:1293-9. [PMID: 23104057 PMCID: PMC3590443 DOI: 10.1038/nsmb.2416] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/18/2012] [Indexed: 12/15/2022]
Abstract
Co-receptors add complexity to cell-cell signaling systems. The secreted semaphorin 3s (Sema3s) require a co-receptor, neuropilin (Nrp), to signal through plexin As (PlxnAs) in functions ranging from axon guidance to bone homeostasis, but the role of the co-receptor is obscure. Here we present the low-resolution crystal structure of a mouse semaphorin-plexin-Nrp complex alongside unliganded component structures. Dimeric semaphorin, two copies of plexin and two copies of Nrp are arranged as a dimer of heterotrimers. In each heterotrimer subcomplex, semaphorin contacts plexin, similar to in co-receptor-independent signaling complexes. The Nrp1s cross brace the assembly, bridging between sema domains of the Sema3A and PlxnA2 subunits from the two heterotrimers. Biophysical and cellular analyses confirm that this Nrp binding mode stabilizes a canonical, but weakened, Sema3-PlxnA interaction, adding co-receptor control over the mechanism by which receptor dimerization and/or oligomerization triggers signaling.
Collapse
Affiliation(s)
- Bert J.C. Janssen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Greg A. Weir
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - M. Zameel Cader
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
26
|
Prud'homme GJ, Glinka Y. Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012; 3:921-39. [PMID: 22948112 PMCID: PMC3660061 DOI: 10.18632/oncotarget.626] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 09/01/2012] [Indexed: 12/17/2022] Open
Abstract
The neuropilins (Nrps) are multifunctional proteins involved in development, immunity and cancer. Neuropilin-1 (Nrp1), or its homologue neuropilin-2 (Nrp2), are coreceptors that enhance responses to several growth factors (GFs) and other mediators. Nrps are coreceptors for the class 3 semaphorins (SEMA3), involved in axonal guidance, and several members of the vascular endothelial growth factor (VEGF) family. However, recent findings reveal they have a much broader spectrum of activity. They bind transforming growth factor β1 (TGF-β1) and its receptors, hepatocyte growth factor (HGF) and its receptor (cMet), platelet derived growth factor (PDGF) and its receptors, fibroblast growth factors (FGFs), and integrins. Nrps also promote Hedgehog signaling. These ligands and pathways are all relevant to angiogenesis and wound healing. In the immune system, the Nrps are expressed primarily by dendritic cells (DCs) and regulatory T cells (Tregs), and exert mainly inhibitory effects. In cancer, Nrps have been linked to a poor prognosis, which is consistent with their numerous interactions with ligands and receptors that promote tumor progression. We hypothesize that Nrps boost responses by capturing ligands, regulating GF receptor expression, endocytosis and recycling, and possibly also by signaling independently. Importantly, they promote epithelial-mesenchymal transition (EMT), and the survival of cancer stem cells. The recent finding that Nrps bind and internalize cell-penetrating peptides (CPPs) with arginine/lysine-rich C-terminal motifs (C-end rule; e.g., RXXR) is of interest. These CPPs can be coupled to large drugs for cancer therapy. Almost all studies have been preclinical, but findings suggest Nrps are excellent targets for anti-cancer drug development.
Collapse
Affiliation(s)
- Gérald J Prud'homme
- Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, ON, Canada.
| | | |
Collapse
|