1
|
Rojas S, Barghouth PG, Karabinis P, Oviedo NJ. The DNA methyltransferase DMAP1 is required for tissue maintenance and planarian regeneration. Dev Biol 2024; 516:196-206. [PMID: 39179016 PMCID: PMC11521571 DOI: 10.1016/j.ydbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
The precise regulation of transcription is required for embryonic development, adult tissue turnover, and regeneration. Epigenetic modifications play a crucial role in orchestrating and regulating the transcription of genes. These modifications are important in the transition of pluripotent stem cells and their progeny. Methylation, a key epigenetic modification, influences gene expression through changes in DNA methylation. Work in different organisms has shown that the DNA methyltransferase-1-associated protein (DMAP1) may associate with other molecules to repress transcription through DNA methylation. Thus, DMAP1 is a versatile protein implicated in a myriad of events, including pluripotency maintenance, DNA damage repair, and tumor suppression. While DMAP1 has been extensively studied in vitro, its complex regulation in the context of the adult organism remains unclear. To gain insights into the possible roles of DMAP1 at the organismal level, we used planarian flatworms that possess remarkable regenerative capabilities driven by pluripotent stem cells called neoblast. Our findings demonstrate the evolutionary conservation of DMAP1 in the planarian Schmidtea mediterranea. Functional disruption of DMAP1 through RNA interference revealed its critical role in tissue maintenance, neoblast differentiation, and regeneration in S. mediterranea. Moreover, our analysis unveiled a novel function for DMAP1 in regulating cell death in response to DNA damage and influencing the expression of axial polarity markers. Our findings provide a simplified paradigm for studying DMAP1's function in adult tissues.
Collapse
Affiliation(s)
- Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Peter Karabinis
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343, USA; Health Sciences Research Institute, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
2
|
Rojas S, Barghouth PG, Karabinis P, Oviedo NJ. The DNA Methyltransferase DMAP1 is Required for Tissue Maintenance and Planarian Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588909. [PMID: 38645093 PMCID: PMC11030423 DOI: 10.1101/2024.04.10.588909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The precise regulation of transcription is required for embryonic development, adult tissue turnover, and regeneration. Epigenetic modifications play a crucial role in orchestrating and regulating the transcription of genes. These modifications are important in the transition of pluripotent stem cells and their progeny. Methylation, a key epigenetic modification, influences gene expression through changes in histone tails and direct DNA methylation. Work in different organisms has shown that the DNA methyltransferase-1-associated protein (DMAP1) may associate with other molecules to repress transcription through DNA methylation. Thus, DMAP1 is a versatile protein implicated in a myriad of events, including pluripotency maintenance, DNA damage repair, and tumor suppression. While DMAP1 has been extensively studied in vitro, its complex regulation in the context of the adult organism remains unclear. To gain insights into the possible roles of DMAP1 at the organismal level, we used planarian flatworms that possess remarkable regenerative capabilities driven by pluripotent stem cells called neoblast. Our findings demonstrate the evolutionary conservation of DMAP1 in the planarian Schmidtea mediterranea. Functional disruption of DMAP1 through RNA interference revealed its critical role in tissue maintenance, neoblast differentiation, and regeneration in S. mediterranea. Moreover, our analysis unveiled a novel function for DMAP1 in regulating cell death in response to DNA damage and influencing the expression of axial polarity markers. Our findings provide a simplified paradigm for studying DMAP1's epigenetic regulation in adult tissues.
Collapse
Affiliation(s)
- Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Paul G. Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Peter Karabinis
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
| | - Néstor J. Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, CA, 95343
- Health Sciences Research Institute, University of California, Merced, CA, 95343
| |
Collapse
|
3
|
Wong LL, Bruxvoort CG, Cejda NI, Delaney MR, Otero JR, Forsthoefel DJ. Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians. Nat Commun 2022; 13:3803. [PMID: 35778403 PMCID: PMC9249923 DOI: 10.1038/s41467-022-31385-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/16/2022] [Indexed: 02/08/2023] Open
Abstract
Lipid metabolism plays an instructive role in regulating stem cell state and differentiation. However, the roles of lipid mobilization and utilization in stem cell-driven regeneration are unclear. Planarian flatworms readily restore missing tissue due to injury-induced activation of pluripotent somatic stem cells called neoblasts. Here, we identify two intestine-enriched orthologs of apolipoprotein b, apob-1 and apob-2, which mediate transport of neutral lipid stores from the intestine to target tissues including neoblasts, and are required for tissue homeostasis and regeneration. Inhibition of apob function by RNAi causes head regression and lysis in uninjured animals, and delays body axis re-establishment and regeneration of multiple organs in amputated fragments. Furthermore, apob RNAi causes expansion of the population of differentiating neoblast progeny and dysregulates expression of genes enriched in differentiating and mature cells in eight major cell type lineages. We conclude that intestine-derived lipids serve as a source of metabolites required for neoblast progeny differentiation.
Collapse
Affiliation(s)
- Lily L Wong
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christina G Bruxvoort
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Veteran Affairs Medical Center - Research Services, Oklahoma City, OK, USA
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Center for Biomedical Data Science, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Matthew R Delaney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jannette Rodriguez Otero
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Education, Universidad Interamericana de Puerto Rico, San Juan, Puerto Rico, USA
| | - David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Wu W, Liu S, Wu H, Chen M, Gao L, Zhao B, Liu B, Pang Q. DjPtpn11 is an essential modulator of planarian (Dugesia japonica) regeneration. Int J Biol Macromol 2022; 209:1054-1064. [PMID: 35452697 DOI: 10.1016/j.ijbiomac.2022.04.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022]
Abstract
Freshwater planarian Dugesia japonica is an excellent model organism for investigating stem cell behavior during regeneration. Despite studies showing that numerous genetic factors are involved in regeneration, much more research is required to fully understand the molecular mechanisms that orchestrate regeneration. In this study, we identified an evolutionarily conserved gene DjPtpn11(DjShp2). DjPtpn11 transcripts are expressed in neoblasts and some differentiated cells, with a high expression at the newly formed blastema. Its silencing by RNA interference (RNAi) affected anterior regeneration and inhibited the regeneration of posterior regions, including cholinergic and serotonergic neuron regeneration. In adult planarians, DjPtpn11 knockdown did not affect neoblast survival and proliferation but might prevent the stem cell migration and differentiation through ERK signaling. DjPtpn11 was demonstrated to be necessary for the anterior blastema cell differentiation partially via regulating ERK-DjMkpA activity. DjPtpn11 also influenced posterior specification via DjIslet, suggesting that DjPtpn11 may be involved in regulating the Wnt signaling pathway during the development of posterior blastema. Together, these data identified that DjPtpn11 is an essential modulator for the regeneration of planarians, and it may influence the appropriate differentiation of blastema cells.
Collapse
Affiliation(s)
- Weiwei Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Shuo Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Hao Wu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Meishan Chen
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Baohua Liu
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.; Shenzhen University of Health Science Center, Shenzhen 518060, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.; Laboratory of Developmental and Evolutionary Biology, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China.
| |
Collapse
|
5
|
Sridhar D, Aboobaker A. Monitoring Chromatin Regulation in Planarians Using Chromatin Immunoprecipitation Followed by Sequencing (ChIP-seq). Methods Mol Biol 2022; 2450:529-547. [PMID: 35359327 PMCID: PMC9761535 DOI: 10.1007/978-1-0716-2172-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Planarians are an accessible model system to study animal regeneration and stem cells. Over the last two decades, new molecular techniques have provided us with powerful tools to understand whole-body regeneration and pluripotent adult stem cells specifically. We describe a method for performing Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) on planarian cells that relies on FACS to isolate different cell populations followed by immunoprecipitation and library preparation for next-generation sequencing. Whole-genome profiling of histone modifications enables a greater understanding of epigenetic mechanisms in development, pluripotency, and differentiation. This protocol adds to the growing list of functional genomic approaches to study whole-body regeneration in animals.
Collapse
Affiliation(s)
- Divya Sridhar
- Department of Zoology, University of Oxford, Oxford, UK
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Fraguas S, Cárcel S, Vivancos C, Molina MD, Ginés J, Mazariegos J, Sekaran T, Bartscherer K, Romero R, Cebrià F. CREB-binding protein (CBP) gene family regulates planarian survival and stem cell differentiation. Dev Biol 2021; 476:53-67. [PMID: 33774010 DOI: 10.1016/j.ydbio.2021.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/21/2022]
Abstract
In developmental biology, the regulation of stem cell plasticity and differentiation remains an open question. CBP(CREB-binding protein)/p300 is a conserved gene family that functions as a transcriptional co-activator and plays important roles in a wide range of cellular processes, including cell death, the DNA damage response, and tumorigenesis. The acetyl transferase activity of CBPs is particularly important, as histone and non-histone acetylation results in changes in chromatin architecture and protein activity that affect gene expression. Many studies have described the conserved functions of CBP/p300 in stem cell proliferation and differentiation. The planarian Schmidtea mediterranea is an excellent model for the in vivo study of the molecular mechanisms underlying stem cell differentiation during regeneration. However, how this process is regulated genetically and epigenetically is not well-understood yet. We identified 5 distinct Smed-cbp genes in S. mediterranea that show different expression patterns. Functional analyses revealed that Smed-cbp-2 appears to be essential for stem cell maintenance. On the other hand, the silencing of Smed-cbp-3 resulted in the growth of blastemas that were apparently normal, but remained largely unpigmented and undifferentiated. Smed-cbp-3 silencing also affected the differentiation of several cell lineages including neural, epidermal, digestive, and excretory cell types. Finally, we analysed the predicted interactomes of CBP-2 and CBP-3 as an initial step to better understand their functions in planarian stem cell biology. Our results indicate that planarian cbp genes play key roles in stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Sheila Cárcel
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Coral Vivancos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Ma Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain
| | - Jordi Ginés
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Judith Mazariegos
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | | | | | - Rafael Romero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain.
| |
Collapse
|
7
|
Vaca HR, Celentano AM, Toscanini MA, Heimburg T, Ghazy E, Zeyen P, Hauser AT, Oliveira G, Elissondo MC, Jung M, Sippl W, Camicia F, Rosenzvit MC. The potential for histone deacetylase (HDAC) inhibitors as cestocidal drugs. PLoS Negl Trop Dis 2021; 15:e0009226. [PMID: 33657105 PMCID: PMC7959350 DOI: 10.1371/journal.pntd.0009226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/15/2021] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Background Echinococcosis and cysticercosis are neglected tropical diseases caused by cestode parasites (family Taeniidae). Not only there is a small number of approved anthelmintics for the treatment of these cestodiases, but also some of them are not highly effective against larval stages, such that identifying novel drug targets and their associated compounds is critical. Histone deacetylase (HDAC) enzymes are validated drug targets in cancers and other diseases, and have been gaining relevance for developing new potential anti-parasitic treatments in the last years. Here, we present the anthelmintic profile for a panel of recently developed HDAC inhibitors against the model cestode Mesocestoides vogae (syn. M. corti). Methodology/Principal findings Phenotypic screening was performed on M. vogae by motility measurements and optical microscopic observations. Some HDAC inhibitors showed potent anthelmintic activities; three of them -entinostat, TH65, and TH92- had pronounced anthelmintic effects, reducing parasite viability by ~100% at concentrations of ≤ 20 μM. These compounds were selected for further characterization and showed anthelmintic effects in the micromolar range and in a time- and dose-dependent manner. Moreover, these compounds induced major alterations on the morphology and ultrastructural features of M. vogae. The potencies of these compounds were higher than albendazole and the anthelmintic effects were irreversible. Additionally, we evaluated pairwise drug combinations of these HDAC inhibitors and albendazole. The results suggested a positive interaction in the anthelmintic effect for individual pairs of compounds. Due to the maximum dose approved for entinostat, adjustments in the dose regime and/or combinations with currently-used anthelmintic drugs are needed, and the selectivity of TH65 and TH92 towards parasite targets should be assessed. Conclusion, significance The results presented here suggest that HDAC inhibitors represent novel and potent drug candidates against cestodes and pave the way to understanding the roles of HDACs in these parasites. Neglected tropical diseases, such as echinococcosis and cysticercosis, which are caused by taeniid cestodes (tapeworms), represent serious public health problems in many countries around the world. Given that there is only a small number of approved anthelmintics for the treatment of cestodiases, and that most of them are not highly effective against larval stages, identifying novel drug targets and their associated compounds is critical. Histone deacetylases (HDACs) are enzymes that produce epigenetic modifications of chromatin, thus modifying cellular gene expression. In this study, we evaluate and characterize a number of HDAC inhibitors on the model cestode Mesocestoides vogae and report the anthelmintic profile of these compounds. Some of the HDAC inhibitors tested showed potent anthelmintic effects, particularly entinostat, TH65 and TH92. These compounds were selected as the most promising candidates due to their high potencies, which were superior to the commercially-available anthelmintic drug albendazole. We also evaluated pairwise drug combinations of HDAC inhibitors and albendazole. The findings of this study provide a starting point for the development of new HDAC-based cestocidal compounds.
Collapse
Affiliation(s)
- Hugo Rolando Vaca
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET). Facultad de Medicina, Paraguay 2155, piso 13, C1121ABG, Buenos Aires, Argentina
- Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana María Celentano
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET). Facultad de Medicina, Paraguay 2155, piso 13, C1121ABG, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Agustina Toscanini
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET). Facultad de Medicina, Paraguay 2155, piso 13, C1121ABG, Buenos Aires, Argentina
| | - Tino Heimburg
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle(Saale), Germany
| | - Ehab Ghazy
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle(Saale), Germany
| | - Patrik Zeyen
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle(Saale), Germany
| | | | | | - María Celina Elissondo
- Laboratorio de Zoonosis Parasitarias, Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle(Saale), Germany
| | - Federico Camicia
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET). Facultad de Medicina, Paraguay 2155, piso 13, C1121ABG, Buenos Aires, Argentina
- * E-mail: (FC); (MCR)
| | - Mara Cecilia Rosenzvit
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET). Facultad de Medicina, Paraguay 2155, piso 13, C1121ABG, Buenos Aires, Argentina
- * E-mail: (FC); (MCR)
| |
Collapse
|
8
|
Stelman CR, Smith BM, Chandra B, Roberts-Galbraith RH. CBP/p300 homologs CBP2 and CBP3 play distinct roles in planarian stem cell function. Dev Biol 2021; 473:130-143. [PMID: 33607113 DOI: 10.1016/j.ydbio.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Chromatin modifications function as critical regulators of gene expression and cellular identity, especially in the regulation and maintenance of the pluripotent state. However, many studies of chromatin modification in stem cells-and pluripotent stem cells in particular-are performed in mammalian stem cell culture, an in vitro condition mimicking a very transient state during mammalian development. Thus, new models for studying pluripotent stem cells in vivo could be helpful for understanding the roles of chromatin modification, for confirming prior in vitro studies, and for exploring evolution of the pluripotent state. The freshwater flatworm, Schmidtea mediterranea, is an excellent model for studying adult pluripotent stem cells, particularly in the context of robust, whole-body regeneration. To identify chromatin modifying and remodeling enzymes critical for planarian regeneration and stem cell maintenance, we took a candidate approach and screened planarian homologs of 25 genes known to regulate chromatin biology in other organisms. Through our study, we identified six genes with novel functions in planarian homeostasis, regeneration, and behavior. Of the list of genes characterized, we identified five planarian homologs of the mammalian CREB-Binding Protein (CBP) and p300 family of histone acetyltransferases, representing an expansion of this family in planarians. We find that two planarian CBP family members are required for planarian survival, with knockdown of Smed-CBP2 and Smed-CBP3 causing distinct defects in stem cell maintenance or function. Loss of CBP2 causes a quick, dramatic loss of stem cells, while knockdown of CBP3 affects stem cells more narrowly, influencing differentiation of several cell types that include neuronal subtypes and cells of the eye. Further, we find that Smed-CBP1 is required for planarian fissioning behavior. We propose that the division of labor among a diversified CBP family in planarians presents an opportunity to dissect specific functions of a broadly important histone acetyltransferase family.
Collapse
Affiliation(s)
- Clara R Stelman
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Britessia M Smith
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Bidushi Chandra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Rachel H Roberts-Galbraith
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Zondag L, M Clarke R, Wilson MJ. Histone deacetylase activity is required for Botrylloides leachii whole-body regeneration. ACTA ACUST UNITED AC 2019; 222:jeb.203620. [PMID: 31253711 DOI: 10.1242/jeb.203620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
The colonial tunicate Botrylloides leachii is exceptional at regenerating from a piece of vascular tunic after loss of all adults from the colony. Previous transcriptome analyses indicate a brief period of healing before regeneration of a new adult (zooid) in as little as 8-10 days. However, there is little understanding of how the resulting changes to gene expression, required to drive regeneration, are initiated and how the overall process is regulated. Rapid changes to transcription often occur in response to chromatin changes, mediated by histone modifications such as histone acetylation. Here, we investigated a group of key epigenetic modifiers, histone deacetylases (HDAC), which are known to play an important role in many biological processes such as development, healing and regeneration. Through our transcriptome data, we identified and quantified the expression levels of HDAC and histone acetyltransferase enzymes during whole-body regeneration (WBR). To determine whether HDAC activity is required for WBR, we inhibited its action using valproic acid and trichostatin A. HDAC inhibition prevented the final morphological changes normally associated with WBR and resulted in aberrant gene expression. Botrylloides leachii genes including Slit2, TGF-β, Piwi and Fzd4 all showed altered mRNA levels upon HDAC inhibition in comparison with the control samples. Additionally, atypical expression of Bl_Piwi was found in immunocytes upon HDAC inhibition. Together, these results show that HDAC function, specifically HDAC I/IIa class enzymes, are vital for B. leachii to undergo WBR successfully.
Collapse
Affiliation(s)
- Lisa Zondag
- Developmental Biology and Genomics Laboratory, Department of Anatomy, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Rebecca M Clarke
- Developmental Biology and Genomics Laboratory, Department of Anatomy, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Megan J Wilson
- Developmental Biology and Genomics Laboratory, Department of Anatomy, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
10
|
Vaca HR, Celentano AM, Macchiaroli N, Kamenetzky L, Camicia F, Rosenzvit MC. Histone deacetylase enzymes as potential drug targets of Neglected Tropical Diseases caused by cestodes. Int J Parasitol Drugs Drug Resist 2019; 9:120-132. [PMID: 30897528 PMCID: PMC6426703 DOI: 10.1016/j.ijpddr.2019.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
Cestode parasites cause neglected diseases, such as echinococcosis and cysticercosis, which represent a significant problem in human and animal health. Benzimidazoles and praziquantel are the only available drugs for chemotherapy and it is therefore important to identify new alternative drugs against cestode parasites. Histone deacetylases (HDACs) are validated drug targets for the treatment of cancer and other diseases, including neglected diseases. However, knowledge of HDACs in cestodes is very scarce. In this work, we investigated cestode HDACs as potential drug targets to develop new therapies against neglected diseases caused by cestodes. Here we showed the full repertoire of HDAC coding genes in several members of the class Cestoda. Between 6 and 7 zinc-dependent HDAC coding genes were identified in the genomes of species from Echinococcus, Taenia, Mesocestoides and Hymenolepis genera. We classified them as Class I and II HDACs and analyzed their transcriptional expression levels throughout developmental stages of Echinococcus spp. We confirmed for the first time the complete HDAC8 nucleotide sequences from Echinococcus canadensis G7 and Mesocestoides corti. Homology models for these proteins showed particular structural features which differentiate them from HDAC8 from Homo sapiens. Furthermore, we showed that Trichostatin A (TSA), a pan-HDAC inhibitor, decreases the viability of M. corti, alters its tegument and morphology and produces an increment of the total amount of acetylated proteins, including acetylated histone H4. These results suggest that HDAC from cestodes are functional and might play important roles on survival and development. The particular structural features observed in cestode HDAC8 proteins suggest that these enzymes could be selectively targeted. This report provides the basis for further studies on cestode HDAC enzymes and for discovery of new HDAC inhibitors for the treatment of neglected diseases caused by cestode parasites.
Collapse
Affiliation(s)
- Hugo R Vaca
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 13, Paraguay 2155, CP1121, Buenos Aires, Argentina
| | - Ana M Celentano
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 13, Paraguay 2155, CP1121, Buenos Aires, Argentina; Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Piso 13, Paraguay 2155, CP1121, Buenos Aires, Argentina
| | - Natalia Macchiaroli
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 13, Paraguay 2155, CP1121, Buenos Aires, Argentina
| | - Laura Kamenetzky
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 13, Paraguay 2155, CP1121, Buenos Aires, Argentina
| | - Federico Camicia
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 13, Paraguay 2155, CP1121, Buenos Aires, Argentina.
| | - Mara C Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Piso 13, Paraguay 2155, CP1121, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Levin M, Pietak AM, Bischof J. Planarian regeneration as a model of anatomical homeostasis: Recent progress in biophysical and computational approaches. Semin Cell Dev Biol 2019; 87:125-144. [PMID: 29635019 PMCID: PMC6234102 DOI: 10.1016/j.semcdb.2018.04.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/22/2022]
Abstract
Planarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field. We then review recent progress in understanding of the physiological control of an endogenous, bioelectric pattern memory that guides regeneration, and how modulating this memory can permanently alter the flatworm's target morphology. Finally, we focus on computational approaches that complement reductive pathway analysis with synthetic, systems-level understanding of morphological decision-making. We analyze existing models of planarian pattern control and highlight recent successes and remaining knowledge gaps in this interdisciplinary frontier field.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States.
| | - Alexis M Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, MA 02155, United States; Biology Department, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
12
|
Strand NS, Allen JM, Zayas RM. Post-translational regulation of planarian regeneration. Semin Cell Dev Biol 2018; 87:58-68. [PMID: 29705300 DOI: 10.1016/j.semcdb.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023]
Abstract
Most mammals cannot easily overcome degenerative disease or traumatic injuries. In contrast, an innate ability to regenerate is observed across animal phyla. Freshwater planarians are amongst the organisms that are capable of stem cell-mediated whole-body regeneration and have served as an exemplary model to study how pluripotency is maintained and regulated in vivo. Here, we review findings on the role of post-translational modifications and the genes regulating phosphorylation, ubiquitylation, and chromatin remodeling in planarian regeneration. Furthermore, we discuss how technological advances for identifying cellular targets of these processes will fill gaps in our knowledge of the signaling mechanisms that underlie regeneration in planarians, which should inform how tissue repair can be stimulated in non-regenerative model organisms and in humans.
Collapse
Affiliation(s)
- Nicholas S Strand
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - John M Allen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
13
|
Dattani A, Sridhar D, Aziz Aboobaker A. Planarian flatworms as a new model system for understanding the epigenetic regulation of stem cell pluripotency and differentiation. Semin Cell Dev Biol 2018; 87:79-94. [PMID: 29694837 DOI: 10.1016/j.semcdb.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/21/2018] [Indexed: 12/11/2022]
Abstract
Planarian flatworms possess pluripotent stem cells (neoblasts) that are able to differentiate into all cell types that constitute the adult body plan. Consequently, planarians possess remarkable regenerative capabilities. Transcriptomic studies have revealed that gene expression is coordinated to maintain neoblast pluripotency, and ensure correct lineage specification during differentiation. But as yet they have not revealed how this regulation of expression is controlled. In this review, we propose that planarians represent a unique and effective system to study the epigenetic regulation of these processes in an in vivo context. We consolidate evidence suggesting that although DNA methylation is likely present in some flatworm lineages, it does not regulate neoblast function in Schmidtea mediterranea. A number of phenotypic studies have documented the role of histone modification and chromatin remodelling complexes in regulating distinct neoblast processes, and we focus on four important examples of planarian epigenetic regulators: Nucleosome Remodeling Deacetylase (NuRD) complex, Polycomb Repressive Complex (PRC), the SET1/MLL methyltransferases, and the nuclear PIWI/piRNA complex. Given the recent advent of ChIP-seq in planarians, we propose future avenues of research that will identify the genomic targets of these complexes allowing for a clearer picture of how neoblast processes are coordinated at the epigenetic level. These insights into neoblast biology may be directly relevant to mammalian stem cells and disease. The unique biology of planarians will also allow us to investigate how extracellular signals feed into epigenetic regulatory networks to govern concerted neoblast responses during regenerative polarity, tissue patterning, and remodelling.
Collapse
Affiliation(s)
- Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| | - Divya Sridhar
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, OX1 3PS, UK.
| |
Collapse
|
14
|
McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol 2018; 433:177-189. [PMID: 29291972 PMCID: PMC5753428 DOI: 10.1016/j.ydbio.2017.08.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.
Collapse
Affiliation(s)
- Kelly A McLaughlin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
| | - Michael Levin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States
| |
Collapse
|
15
|
Torre C, Abnave P, Tsoumtsa LL, Mottola G, Lepolard C, Trouplin V, Gimenez G, Desrousseaux J, Gempp S, Levasseur A, Padovani L, Lemichez E, Ghigo E. Staphylococcus aureus Promotes Smed-PGRP-2/Smed-setd8-1 Methyltransferase Signalling in Planarian Neoblasts to Sensitize Anti-bacterial Gene Responses During Re-infection. EBioMedicine 2017; 20:150-160. [PMID: 28456423 PMCID: PMC5478204 DOI: 10.1016/j.ebiom.2017.04.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
Little is known about how organisms exposed to recurrent infections adapt their innate immune responses. Here, we report that planarians display a form of instructed immunity to primo-infection by Staphylococcus aureus that consists of a transient state of heightened resistance to re-infection that persists for approximately 30 days after primo-infection. We established the involvement of stem cell-like neoblasts in this instructed immunity using the complementary approaches of RNA-interference-mediated cell depletion and tissue grafting-mediated gain of function. Mechanistically, primo-infection leads to expression of the peptidoglycan receptor Smed-PGRP-2, which in turn promotes Smed-setd8-1 histone methyltransferase expression and increases levels of lysine methylation in neoblasts. Depletion of neoblasts did not affect S. aureus clearance in primo-infection but, in re-infection, abrogated the heightened elimination of bacteria and reduced Smed-PGRP-2 and Smed-setd8-1 expression. Smed-PGRP-2 and Smed-setd8-1 sensitize animals to heightened expression of Smed-p38 MAPK and Smed-morn2, which are downstream components of anti-bacterial responses. Our study reveals a central role of neoblasts in innate immunity against S. aureus to establish a resistance state facilitating Smed-sted8-1-dependent expression of anti-bacterial genes during re-infection. Planarians initiate a genetic program of instructed immunity during S. aureus infection. Planarians neoblasts have a critical function in controlling the heightened expression of Smed-PGRP-2 and Smed-setd8-1. Instructed immunity can be grafted onto naive animals.
Research in context Little is known about how organisms exposed to recurrent infections adapt their innate immune responses. Most studies addressing this question in vertebrates have been performed on immune cells which are already trained for immune function. We established that planarians are endowed with instructed immunity allowing them to clear S. aureus with a higher efficacy during re-infection. We define the central role of neoblasts and Smed-PGRP-2 for establishing a resistance state against S. aureus that is controlled by Smed-sted8 for facilitated expression of anti-bacterial genes during re-infection. This shed light on the role of stem cells and epigenetic determinant in controlling innate immune memory.
Collapse
Affiliation(s)
- Cedric Torre
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Prasad Abnave
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Landry Laure Tsoumtsa
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Giovanna Mottola
- UMR MD2, Faculté de Médecine Nord, Aix Marseille University and Institute of Research in Biology of the French Army Marseille, France; Laboratory of Biochemistry, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Catherine Lepolard
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Virginie Trouplin
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Gregory Gimenez
- Otago Genomics & Bioinformatics Facility, Department of Biochemistry, University of Otago, PO Box 56, 710 Cumberland Street, Dunedin 9054, New Zealand
| | - Julie Desrousseaux
- APHM, Timone Hospital, Department of Radiotherapy, Marseille 13005, France
| | - Stephanie Gempp
- APHM, Timone Hospital, Department of Radiotherapy, Marseille 13005, France
| | - Anthony Levasseur
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France
| | - Laetitia Padovani
- APHM, Timone Hospital, Department of Radiotherapy, Marseille 13005, France
| | - Emmanuel Lemichez
- UCA, Inserm, U1065, C3M, Université de Nice Sophia-Antipolis, Equipe labellisée Ligue Contre le Cancer, 06204 Nice Cedex 3, France
| | - Eric Ghigo
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin 13385, Marseille, Cedex 05, France.
| |
Collapse
|
16
|
Neuhof M, Levin M, Rechavi O. Vertically- and horizontally-transmitted memories - the fading boundaries between regeneration and inheritance in planaria. Biol Open 2016; 5:1177-88. [PMID: 27565761 PMCID: PMC5051648 DOI: 10.1242/bio.020149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Weismann barrier postulates that genetic information passes only from the germline to the soma and not in reverse, thus providing an obstacle to the inheritance of acquired traits. Certain organisms such as planaria – flatworms that can reproduce through asymmetric fission – avoid the limitations of this barrier, thus blurring the distinction between the processes of inheritance and development. In this paper, we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria. Biased distribution of epigenetic effects in asymmetrically produced parts of a regenerating organism could increase variation and therefore affect the species' evolution. The maintenance and fixing of somatic experiences, encoded via stable biochemical or physiological states, may contribute to evolutionary processes in the absence of classically defined generations. We discuss different mechanisms that could induce asymmetry between the two organisms that eventually develop from the regenerating parts, including one particularly fascinating source – the potential capacity of the brain to produce long-lasting epigenetic changes. Summary: In this hypothesis paper we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria, an invertebrate model organism which challenges fundamental assumptions regarding reproduction.
Collapse
Affiliation(s)
- Moran Neuhof
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. REGENERATION (OXFORD, ENGLAND) 2016; 3:78-102. [PMID: 27499881 PMCID: PMC4895326 DOI: 10.1002/reg2.54] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Daniel Lobo
- Department of Biological SciencesUniversity of MarylandBaltimore County, 1000 Hilltop CircleBaltimoreMD21250USA
| | - Jennifer Hammelman
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| |
Collapse
|
18
|
Ong TH, Romanova EV, Roberts-Galbraith RH, Yang N, Zimmerman TA, Collins JJ, Lee JE, Kelleher NL, Newmark PA, Sweedler JV. Mass Spectrometry Imaging and Identification of Peptides Associated with Cephalic Ganglia Regeneration in Schmidtea mediterranea. J Biol Chem 2016; 291:8109-20. [PMID: 26884331 PMCID: PMC4825013 DOI: 10.1074/jbc.m115.709196] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Tissue regeneration is a complex process that involves a mosaic of molecules that vary spatially and temporally. Insights into the chemical signaling underlying this process can be achieved with a multiplex and untargeted chemical imaging method such as mass spectrometry imaging (MSI), which can enablede novostudies of nervous system regeneration. A combination of MSI and multivariate statistics was used to differentiate peptide dynamics in the freshwater planarian flatwormSchmidtea mediterraneaat different time points during cephalic ganglia regeneration. A protocol was developed to makeS. mediterraneatissues amenable for MSI. MS ion images of planarian tissue sections allow changes in peptides and unknown compounds to be followed as a function of cephalic ganglia regeneration. In conjunction with fluorescence imaging, our results suggest that even though the cephalic ganglia structure is visible after 6 days of regeneration, the original chemical composition of these regenerated structures is regained only after 12 days. Differences were observed in many peptides, such as those derived from secreted peptide 4 and EYE53-1. Peptidomic analysis further identified multiple peptides from various known prohormones, histone proteins, and DNA- and RNA-binding proteins as being associated with the regeneration process. Mass spectrometry data also facilitated the identification of a new prohormone, which we have named secreted peptide prohormone 20 (SPP-20), and is up-regulated during regeneration in planarians.
Collapse
Affiliation(s)
- Ta-Hsuan Ong
- From the Department of Chemistry, and the Beckman Institute
| | | | - Rachel H Roberts-Galbraith
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Ning Yang
- From the Department of Chemistry, and the Beckman Institute
| | | | - James J Collins
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | - Ji Eun Lee
- From the Department of Chemistry, and the Beckman Institute
| | - Neil L Kelleher
- the Departments of Chemistry and Molecular Biosciences, Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60611
| | - Phillip A Newmark
- the Department of Cell and Developmental Biology, Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, and
| | | |
Collapse
|
19
|
Epigenetics and Shared Molecular Processes in the Regeneration of Complex Structures. Stem Cells Int 2015; 2016:6947395. [PMID: 26681954 PMCID: PMC4670690 DOI: 10.1155/2016/6947395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/30/2015] [Indexed: 12/27/2022] Open
Abstract
The ability to regenerate complex structures is broadly represented in both plant and animal kingdoms. Although regenerative abilities vary significantly amongst metazoans, cumulative studies have identified cellular events that are broadly observed during regenerative events. For example, structural damage is recognized and wound healing initiated upon injury, which is followed by programmed cell death in the vicinity of damaged tissue and a burst in proliferation of progenitor cells. Sustained proliferation and localization of progenitor cells to site of injury give rise to an assembly of differentiating cells known as the regeneration blastema, which fosters the development of new tissue. Finally, preexisting tissue rearranges and integrates with newly differentiated cells to restore proportionality and function. While heterogeneity exists in the basic processes displayed during regenerative events in different species—most notably the cellular source contributing to formation of new tissue—activation of conserved molecular pathways is imperative for proper regulation of cells during regeneration. Perhaps the most fundamental of such molecular processes entails chromatin rearrangements, which prime large changes in gene expression required for differentiation and/or dedifferentiation of progenitor cells. This review provides an overview of known contributions to regenerative processes by noncoding RNAs and chromatin-modifying enzymes involved in epigenetic regulation.
Collapse
|
20
|
Abstract
Epigenetics studies the emergence of different phenotypes from a single genotype. Although these processes are essential to cellular differentiation and transcriptional memory, they are also widely used in all branches of the tree of life by organisms that require plastic but stable adaptation to their physical and social environment. Because of the inherent flexibility of epigenetic regulation, a variety of biological phenomena can be traced back to evolutionary adaptations of few conserved molecular pathways that converge on chromatin. For these reasons chromatin biology and epigenetic research have a rich history of chasing discoveries in a variety of model organisms, including yeast, flies, plants and humans. Many more fascinating examples of epigenetic plasticity lie outside the realm of model organisms and have so far been only sporadically investigated at a molecular level; however, recent progress on sequencing technology and genome editing tools have begun to blur the lines between model and non-model organisms, opening numerous new avenues for investigation. Here, I review examples of epigenetic phenomena in non-model organisms that have emerged as potential experimental systems, including social insects, fish and flatworms, and are becoming accessible to molecular approaches.
Collapse
Affiliation(s)
- Roberto Bonasio
- Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
The link between injury-induced stress and regenerative phenomena: A cellular and genetic synopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:454-61. [PMID: 25088176 DOI: 10.1016/j.bbagrm.2014.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
Injury is an inescapable phenomenon of life that affects animals at every physiological level. Yet, some animals respond to injury by rebuilding the damaged tissues whereas others are limited to scarring. Elucidating how a tissue insult from wounding leads to a regenerative response at the genetic level is essential to make regenerative advantages translational. It has become clear that animals with regenerative abilities recycle developmental programs after injury, reactivating genes that have lied dormant throughout adulthood. The question that is critical to our understanding of regeneration is how a specific set of developmentally important genes can be reactivated only after an acute tissue insult. Here, we review how injury-induced cellular stresses such as hypoxic, oxidative, and mechanical stress may contribute to the genomic and epigenetic changes that promote regeneration in animals. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|
22
|
Petralia RS, Mattson MP, Yao PJ. Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev 2014; 16:66-82. [PMID: 24910306 DOI: 10.1016/j.arr.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/08/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022]
Abstract
Here we review the examples of great longevity and potential immortality in the earliest animal types and contrast and compare these to humans and other higher animals. We start by discussing aging in single-celled organisms such as yeast and ciliates, and the idea of the immortal cell clone. Then we describe how these cell clones could become organized into colonies of different cell types that lead to multicellular animal life. We survey aging and longevity in all of the basal metazoan groups including ctenophores (comb jellies), sponges, placozoans, cnidarians (hydras, jellyfish, corals and sea anemones) and myxozoans. Then we move to the simplest bilaterian animals (with a head, three body cell layers, and bilateral symmetry), the two phyla of flatworms. A key determinant of longevity and immortality in most of these simple animals is the large numbers of pluripotent stem cells that underlie the remarkable abilities of these animals to regenerate and rejuvenate themselves. Finally, we discuss briefly the evolution of the higher bilaterians and how longevity was reduced and immortality lost due to attainment of greater body complexity and cell cycle strategies that protect these complex organisms from developing tumors. We also briefly consider how the evolution of multiple aging-related mechanisms/pathways hinders our ability to understand and modify the aging process in higher organisms.
Collapse
|