1
|
Zhang L, Tang Z, Zheng H, Zhong C, Zhang Q. Comprehensive Analysis of Metabolome and Transcriptome in Fruits and Roots of Kiwifruit. Int J Mol Sci 2023; 24:ijms24021299. [PMID: 36674815 PMCID: PMC9861564 DOI: 10.3390/ijms24021299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Kiwifruit (Actinidia chinensis) roots instead of fruits are widely used as Chinese medicine, but the functional metabolites remain unclear. In this study, we conducted comparative metabolome analysis between root and fruit in kiwifruit. A total of 410 metabolites were identified in the fruit and root tissues, and of them, 135 metabolites were annotated according to the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway. Moreover, 54 differentially expressed metabolites (DEMs) were shared in root and fruit, with 17 DEMs involved in the flavonoid pathway. Of the 17 DEMs, three flavonols (kaempferol-3-rhamnoside, L-Epicatechin and trifolin) and one dihydrochalcone (phloretin) showed the highest differences in the content level, suggesting that flavonols and dihydrochalcones may act as functional components in kiwifruit root. Transcriptome analysis revealed that genes related to flavonols and dihydrochalcones were highly expressed in root. Moreover, two AP2 transcription factors (TFs), AcRAP2-4 and AcAP2-4, were highly expressed in root, while one bHLH TF AcbHLH62 showed extremely low expression in root. The expression profiles of these TFs were similar to those of the genes related to flavonols and dihydrochalcones, suggesting they are key candidate genes controlling the flavonoid accumulation in kiwifruit. Our results provided an insight into the functional metabolites and their regulatory mechanism in kiwifruit root.
Collapse
Affiliation(s)
- Long Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhengmin Tang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Zheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (C.Z.); (Q.Z.)
| | - Qiong Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (C.Z.); (Q.Z.)
| |
Collapse
|
2
|
Kiwifruit and Kiwifruit Extracts for Treatment of Constipation: A Systematic Review and Meta-Analysis. Can J Gastroenterol Hepatol 2022; 2022:7596920. [PMID: 36247043 PMCID: PMC9560827 DOI: 10.1155/2022/7596920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION This systematic review aimed to summarize evidence to determine the effectiveness of kiwifruit or kiwifruit extracts in the treatment of constipation. METHODS Electronic databases were searched from inception to May 2022 without any age or language limitations. Eligible studies enrolled participants with constipation who were randomized to receive kiwifruit or kiwifruit extracts vs. any nonkiwifruit control. Standardized mean difference (SMD) and mean difference (MD) with confidence intervals (CI) were determined for the following outcomes: frequency of spontaneous bowel movements (SBM), abdominal pain and straining, as well as stool type as determined by the Bristol Stool Scale (BSS). The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach was used to rate the certainty of evidence. Our review was registered on PROSPERO (CRD42021239397). RESULTS Seven RCTs, including 399 participants (82% female; mean age: 42 years (SD 14.6)), were included. Compared with placebo (n = 95), kiwifruit extracts might increase the weekly frequency of SBM (MD: 1.36; 95% CI: -0.44, 3.16) with low certainty of evidence; moreover, it had an uncertain effect on BSS (SMD: 1.54; 95% CI: -1.33, 4.41) with very low certainty of evidence. Additionally, compared with placebo (n = 119), kiwifruit or its extracts reduced abdominal pain (SMD: -1.44, 95% CI -2.83, -1.66) with moderate certainty of the evidence and improved frequency of straining (SMD: -0.29; 95% CI: -1.03, 0.47). Compared with psyllium, kiwifruit may increase the weekly frequency of SBM (MD: 1.01; 95% CI: -0.02, 2.04) with moderate certainty evidence, and may increase the value on the BSS (indicating softer stools) (MD: 0.63; 95% CI: 0.01, 1.25)with low certainty of evidence. Compared to placebo, kiwifruit-encapsulated extracts may result in an increase in minor adverse events (relative risk: 4.58; 95% CI: 0.79, 26.4). CONCLUSIONS Among individuals with constipation, there is an overall low certainty of evidence indicating that kiwifruit may increase SBM when compared to placebo or psyllium. Although overall results are promising, establishing the role of kiwifruit in constipation requires large, methodologically rigorous trials. Protocol Registration: PROSPERO registration number CRD42021239397.
Collapse
|
3
|
Antioxidative Properties and Phenolic Profile of the Core, Pulp and Peel of Commercialized Kiwifruit by LC-ESI-QTOF-MS/MS. Processes (Basel) 2022. [DOI: 10.3390/pr10091811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kiwifruit is cultivated globally due to its diversity of phytochemicals, especially phenolic compounds, which have antioxidant, anti-inflammatory and anti-cancer medical effects. However, only the pulp of the kiwifruit is consumed, while the peels and cores—which are also rich in phytochemicals—are usually wasted. Meanwhile, detailed information on the comparison among the three parts is still limited. In this study, the antioxidant potentials in the core, pulp, and peel of the three most commercialized kiwifruit cultivars (Australian-grown Hayward kiwifruit, New Zealand-grown Zesy002 kiwifruit, and New Zealand-grown organic Hayward kiwifruit) were selected. Their antioxidant capacities were tested, and their phenolic profiles were identified and characterized by liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS). The antioxidant results showed that the peel of New Zealand-grown organic Hayward kiwifruit contained the highest total phenolic content (9.65 mg gallic acid equivalent (GAE) mg/g) and total antioxidant capacity (4.43 mg ascorbic acid equivalent (AAE) mg/g), respectively. In addition, the antioxidant capacity of the peel is generally higher than that of the pulp and cores in all species, especially ABTS (2,2-Azino-bis-3ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging ability), ranging from 13.25 mg AAE/g to 18.31 mg AAE/g. The LC-ESI-QTOF-MS/MS tentatively identified the phenolic compounds present in the three kiwifruit species, including 118 unique compounds in kiwifruit peel, 12 unique compounds in the kiwifruit cores, and three unique compounds in kiwifruit pulp. The comprehensive characterization of the phenolics in the kiwifruits’ parts indicates the importance of their waste part as a promising source of phenolics with antioxidant properties. Therefore, this study can guide the industry with meaningful information on kiwifruit waste, and can provide it with the utilization of food and pharmacological aspects.
Collapse
|
4
|
Caballero N, Benslaiman B, Ansell J, Serra J. The effect of green kiwifruit on gas transit and tolerance in healthy humans. Neurogastroenterol Motil 2020; 32:e13874. [PMID: 32431019 PMCID: PMC7507131 DOI: 10.1111/nmo.13874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Green kiwifruit is a fiber-rich fruit that has been shown effective for treatment of constipation. However, fermentation of fibers by colonic bacteria may worsen commonly associated gas-related abdominal symptoms. AIM To determine the effect of green kiwifruit on transit and tolerance to intestinal gas in humans. METHODS In 11 healthy individuals, two gas challenge tests were performed (a) after 2 weeks on a low-flatulogenic diet and daily intake of 2 green kiwifruits and (b) after 2 weeks on a similar diet without intake of kiwifruits. The gas challenge test consisted in continuous infusion of a mixture of gases into the jejunum at 12 mL/min for 2 hours while measuring rectal gas evacuation, abdominal symptoms, and abdominal distension. During the 2 weeks prior to each gas challenge test (on-kiwifruit and off-kiwifruit), the number and consistency of stools, and abdominal symptoms were registered. KEY RESULTS Intake of kiwifruits was associated with more bowel movements per day (1.8 ± 0.1 vs 1.5 ± 0.1 off-kiwifruit; P = .001) and somewhat looser stools (Bristol score 3.3 ± 0.2 vs 2.8 ± 0.1 off-kiwifruit; P = .072) without relevant abdominal symptoms. Gas infusion produced similar gas evacuation (1238 ± 254 mL and 1172 ± 290 mL; P = .4355), perception of symptoms (score 1.2 ± 0.2 and 1.3 ± 0.3; P = .2367), and abdominal distension (17 ± 7 mm and 17 ± 6 mm; P = .4704) while on-kiwifruit or off-kiwifruit. CONCLUSIONS AND INFERENCES In healthy subjects, green kiwifruit increases stool frequency without relevant effects on intestinal gas transit and tolerance. If confirmed in patients, these fruits may provide a natural and well-tolerated treatment alternative for constipation.
Collapse
Affiliation(s)
- Noemi Caballero
- Motility and Functional Gut Disorders UnitCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)University Hospital Germans Trias i PujolBadalonaSpain
- Department of MedicineAutonomous University of BarcelonaBadalonaSpain
| | - Bouchra Benslaiman
- Motility and Functional Gut Disorders UnitCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)University Hospital Germans Trias i PujolBadalonaSpain
- Department of MedicineAutonomous University of BarcelonaBadalonaSpain
| | | | - Jordi Serra
- Motility and Functional Gut Disorders UnitCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)University Hospital Germans Trias i PujolBadalonaSpain
- Department of MedicineAutonomous University of BarcelonaBadalonaSpain
| |
Collapse
|
5
|
Abbasalizadeh S, Ebrahimi B, Azizi A, Dargahi R, Tayebali M, Ghadim ST, Foroumandi E, Aliasghari F, Javadi M, Izadi A, Banifatemeh L, Pourjafar H, Khalili L, Ghalichi F, Houshmandi S, Rad AH. Review of Constipation Treatment Methods with Emphasis on Laxative Foods. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666191002164336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constipation is a common public health concern experienced by all individuals during
their life affecting the quality of life. In this paper, we aimed to provide an overview of the existing
evidence regarding the role of food ingredients, including bran, prune, fig, kiwifruit, and flax-seed in
constipation treatment. We searched Scopus, Pub Med, and Science Direct by using the keywords,
“laxative foods” and “constipation”, for searching studies assessing laxative food ingredients and
their beneficial effects on constipation treatment and/or control. Lifestyle modifications such as increasing
dietary fiber and fluid intake and daily exercise are the proposed first line treatments for
constipation. Optimizing ‘diet’ as an efficient lifestyle factor may contribute to the well-being of patients.
The use of laxative food ingredients including bran, prune, fig, kiwifruit, flax-seed, probiotics,
and prebiotics is a convenient alternative to cope with constipation. According to previous findings,
laxative food ingredients could be considered as effective treatments for subjects suffering from constipation.
Many studies have assessed the pharmacological and non-pharmacological roles of these
ingredients in treating constipation, however, their importance has not been thoroughly investigated.
Collapse
Affiliation(s)
- Shamsi Abbasalizadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Aslan Azizi
- Agricultural Engineering Research Institute, Ministry of Jihad Agriculture, Karaj, Iran
| | - Rogaye Dargahi
- Obstetrics and Gynecology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Tayebali
- Department of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Sepideh T. Ghadim
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Foroumandi
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
| | - Fereshteh Aliasghari
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Javadi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azimeh Izadi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Banifatemeh
- Department of Food Science & Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Leila Khalili
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Ghalichi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sousan Houshmandi
- Faculty of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz H. Rad
- Department of Food Science & Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
The Manufacturing Process of Kiwifruit Fruit Powder with High Dietary Fiber and Its Laxative Effect. Molecules 2019; 24:molecules24213813. [PMID: 31652679 PMCID: PMC6864858 DOI: 10.3390/molecules24213813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/14/2022] Open
Abstract
Kiwifruit is rich in vitamins, minerals, dietary fiber and other functional components, and it has long been used as a functional food to treat intestinal ailments such as constipation. The current research made full use of the kiwifruit, the juice was prepared by microencapsulation, and the dietary fiber in kiwifruit pomace was modified by enzymatic hydrolysis and grinding, then, the two were mixed to obtain an ultra-micro kiwifruit powder (UKP). In addition, the laxative effect of the UKP was verified by a diphenoxylate induced constipated mice model. The results demonstrated that compared with the raw samples, the retention rate of vitamin C, lutein and catechin in UKP were 83.3%, 81.9% and 88.3%, respectively, thus effectively avoiding the loss of functional components during the processing of kiwifruit. Moreover, α-amylase, protease and the ball milling process effectively reduced the size of dietary fiber in kiwifruit pomace, and its water-holding capacity (WHC), oil-holding capacity (OHC) and swelling capacity (SWC) were enhanced by 1.26, 1.65 and 1.10 times, respectively. Furthermore, to analyze the laxative effect of the UKP, a constipation mice model was established by diphenoxylate treatment (5 mg·kg−1, i.g.) for the last week, with or without UKP supplementation (2.4 g·kg−1 B.W. per day) for 4 weeks. The results demonstrated that UKP significantly increased feces condition (fecal output and dejecta moisture content, gut transit (the intestinal propulsion rates) and substance P (SP) levels in portal vein plasma, and it decreased the whole gut transit time and mucinogen granules secreted by goblet cell in constipated mice.
Collapse
|
7
|
Bayer SB, Gearry RB, Drummond LN. Putative mechanisms of kiwifruit on maintenance of normal gastrointestinal function. Crit Rev Food Sci Nutr 2017; 58:2432-2452. [PMID: 28557573 DOI: 10.1080/10408398.2017.1327841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kiwifruits are recognized as providing relief from constipation and symptoms of constipation-predominant irritable bowel syndrome (IBS-C). However, the underlying mechanisms, specifically in regards to gastrointestinal transit time and motility, are still not completely understood. This review provides an overview on the physiological and pathophysiological processes underlying constipation and IBS-C, the composition of kiwifruit, and recent advances in the research of kiwifruit and abdominal comfort. In addition, gaps in the research are highlighted and scientific studies of other foods with known effects on the gastrointestinal tract are consulted to find likely mechanisms of action. While the effects of kiwifruit fiber are well documented, observed increases in gastrointestinal motility caused by kiwifruit are not fully characterized. There are a number of identified mechanisms that may be activated by kiwifruit compounds, such as the induction of motility via protease-activated signaling, modulation of microflora, changes in colonic methane status, bile flux, or mediation of inflammatory processes.
Collapse
Affiliation(s)
- Simone Birgit Bayer
- a Department of Pathology , Center for Free Radical Research, University of Otago , 2 Riccarton Avenue, PO Box 4345, Christchurch , New Zealand
| | - Richard Blair Gearry
- b Department of Medicine , University of Otago , 2 Riccarton Avenue, PO Box 4345, Christchurch , New Zealand
| | - Lynley Ngaio Drummond
- c Drummond Food Science Advisory Ltd. , 1137 Drain Road, Killinchy RD 2, Leeston , New Zealand
| |
Collapse
|
8
|
Monro JA, Paturi G, Mishra S. Effects of kiwifruit and mixed dietary fibre on faecal properties and microbiota in rats: a dose-response analysis. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- John A. Monro
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 11600 Palmerston North 4442 New Zealand
| | - Gunaranjan Paturi
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 92169 Auckland 1142 New Zealand
| | - Suman Mishra
- The New Zealand Institute for Plant and Food Research Limited; Private Bag 11600 Palmerston North 4442 New Zealand
| |
Collapse
|
9
|
Yang XJ, Zhang M, Zhu HM, Tang Z, Zhao DD, Li BY, Gabriel A. Epidemiological study: Correlation between diet habits and constipation among elderly in Beijing region. World J Gastroenterol 2016; 22:8806-8811. [PMID: 27818596 PMCID: PMC5075555 DOI: 10.3748/wjg.v22.i39.8806] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate correlations between diet and prevalence of constipation among elderly people in Beijing.
METHODS A total of 2776 (≥ 60 years) were selected in Beijing region for investigation. Data regarding constipation and diet habits was collected via hierarchical status, segmentation and random cluster sampling. Investigation included constipation-related demographic indicators and diet habits. Door-to-door questionnaires and surveys included daily staple food intakes, frequency of fish, egg, fruits and vegetables consumption. Constipation was defined according to the China Chronic Constipation Diagnosis and Treatment Guideline (2013), with the following constipation judgment indicators: decreased defecation frequency, dry and hard stool, and difficulty in defecation.
RESULTS The prevalence of constipation among elderly people in Beijing region was 13%. There was a positive correlation between prevalence of constipation and age, but negative correlations between prevalence of constipation and staple food, fish and dietary fibres (fruits and vegetables) intakes. These differences were all statistically significant.
CONCLUSION The prevalence of elderly constipation in Beijing region is closely related to diet habits, and is significantly decreased by high staple foods intake, fish eating and high dietary fibres (fruits and vegetables) consumption.
Collapse
|
10
|
Abstract
Chronic constipation is a very common disease in children. Successful treatment of constipation can be achieved not only with medication but also with lifestyle changes, including a proper diet. Diets including fruits, fluids, and probiotics are good for constipation. Some dietary components are helpful for constipation, and some are harmful. In this study, we present diets related to constipation from the literature, and propose some perspectives regarding diets related to constipation.
Collapse
Affiliation(s)
- Sun Hwan Bae
- Department of Pediatrics, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Chang FY. Irritable bowel syndrome: The evolution of multi-dimensional looking and multidisciplinary treatments. World J Gastroenterol 2014; 20:2499-2514. [PMID: 24627587 PMCID: PMC3949260 DOI: 10.3748/wjg.v20.i10.2499] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/16/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is common in the society. Among the putative pathogeneses, gut dysmotility results in pain and disturbed defecation. The latter is probably caused by the effect of abnormal gut water secretion. The interaction between abnormal gas accumulation, abdominal pain and bloating remains controversial. Visceral hypersensitivity and its modification along with the central transmission are the characteristics of IBS patients. The identification of biologic markers based on genetic polymorphisms is undetermined. Imbalanced gut microbiota may alter epithelial permeability to activate nociceptive sensory pathways which in turn lead to IBS. Certain food constituents may exacerbate bowel symptoms. The impact of adult and childhood abuses on IBS is underestimated. Using the concept of biopsychosocial dysfunction can integrate multidimensional pathogeneses. Antispasmodics plus stool consistency modifiers to treat the major symptoms and defecation are the first-line drug treatment. New drugs targeting receptors governing bowel motility, sensation and secretion can be considered, but clinicians must be aware of their potential serious side effects. Psychiatric drugs and modalities may be the final options for treating intractable subjects. Probiotics of multi-species preparations are safe and worth to be considered for the treatment. Antibiotics are promising but their long-term safety and effectiveness are unknown. Diet therapy including exclusion of certain food constituents is an economic measure. Using relatively safe complementary and alternative medicines (CAMs) may be optional to those patients who failed classical treatment. In conclusion, IBS is a heterogeneous disorder with multidimensional pathogeneses. Personalized medicines with multidisciplinary approaches using different classes of drugs, psychiatric measures, probiotics and antibiotics, dietary therapy, and finally CAMs, can be considered.
Collapse
|