1
|
Noman AA, Islam MK, Feroz T, Hossain MM, Shakil MSK. A Systems Biology Approach for Investigating Significant Biomarkers and Drug Targets Common Among Patients with Gonorrhea, Chlamydia, and Prostate Cancer: A Pilot Study. Bioinform Biol Insights 2023; 17:11779322231214445. [PMID: 38033384 PMCID: PMC10683397 DOI: 10.1177/11779322231214445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Having a previous history of sexually transmitted diseases (STDs) such as gonorrhea and chlamydia increases the chance of developing prostate cancer, the second most frequent malignant cancer among men. However, the molecular functions that cause the development of prostate cancer in persons with gonorrhea and chlamydia are yet unknown. In this study, we studied RNA-seq gene expression profiles using computational biology methods to find out potential biomarkers that could help us in understanding the patho-biological mechanisms of gonorrhea, chlamydia, and prostate cancer. Using statistical methods on the Gene Expression Omnibus (GEO) data sets, it was found that a total of 22 distinct differentially expressed genes were shared among these 3 diseases of which 14 were up-regulated (PGRMC1, TSC22D1, SH3BGRL, NNT, CTSC, FRMD3, CCR2, FAM210B, VCL, PTGS1, SLFN11, SLC40A1, PROS1, and DSE) and the remaining 8 genes were down-regulated (PRNP, HINT3, MARCKSL1, TMED10, SH3KBP1, ENSA, DERL1, and KMT2B). Investigation on these 22 unique dysregulated genes using Gene Ontology, BioCarta, KEGG, and Reactome revealed multiple altered molecular pathways, including regulation of amyloid precursor protein catabolic process, ferroptosis, effects on gene expression of Homo sapiens PPAR pathway, and innate immune system R-HSA-168249. Four significant hub proteins namely VCL, SH3KBP1, PRNP, and PGRMC1 were revealed by protein-protein interaction network analysis. By analyzing gene-transcription factors and gene-miRNAs interactions, significant transcription factors (POU2F2, POU2F1, GATA6, and HIVEP1) and posttranscriptional regulator microRNAs (hsa-miR-7-5p) were also identified. Three potential therapeutic compounds namely INCB3284, CCX915, and MLN-1202 were found to interact with up-regulated protein C-C chemokine receptor type 2 (CCR2) in protein-drug interaction analysis. The proposed biomarkers and therapeutic potential molecules could be investigated for potential pharmacological targets and activity in the fight against in patients with gonorrhea, chlamydia, and prostate cancer.
Collapse
Affiliation(s)
- Abdulla Al Noman
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Kobirul Islam
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Tasmiah Feroz
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Monir Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Shahariar Kabir Shakil
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
2
|
Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
|
3
|
Yu Y, Gao L, Wang Y, Xu B, Maswikiti EP, Li H, Zheng P, Tao P, Xiang L, Gu B, Lucas A, Chen H. A Forgotten Corner in Cancer Immunotherapy: The Role of Lipids. Front Oncol 2021; 11:751086. [PMID: 34722305 PMCID: PMC8551635 DOI: 10.3389/fonc.2021.751086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 01/06/2023] Open
Abstract
In the past decade, cancer immunotherapy has achieved great success owing to the unravelling of unknown molecular forces in cancer immunity. However, it is critical that we address the limitations of current immunotherapy, including immune-related adverse events and drug resistance, and further enhance current immunotherapy. Lipids are reported to play important roles in modulating immune responses in cancer. Cancer cells use lipids to support their aggressive behaviour and allow immune evasion. Metabolic reprogramming of cancer cells destroys the equilibrium between lipid anabolism and catabolism, resulting in lipid accumulation within the tumour microenvironment (TME). Consequently, ubiquitous lipids, mainly fatty acids, within the TME can impact the function and phenotype of infiltrating immune cells. Determining the complex roles of lipids and their interactions with the TME will provide new insight for improving anti-tumour immune responses by targeting lipids. Herein, we present a review of recent literature that has demonstrated how lipid metabolism reprogramming occurs in cancer cells and influences cancer immunity. We also summarise the potential for lipid-based clinical translation to modify immune treatment.
Collapse
Affiliation(s)
- Yang Yu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yunpeng Wang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Xu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ewetse Paul Maswikiti
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Haiyuan Li
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Peng Zheng
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengxian Tao
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Lin Xiang
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Baohong Gu
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Alexandra Lucas
- Center for Personalized Diagnostics and Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Hao Chen
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Cabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, Mattellone A, Tolomelli A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front Mol Biosci 2021; 8:697586. [PMID: 34195230 PMCID: PMC8236712 DOI: 10.3389/fmolb.2021.697586] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Targeting protein-protein interactions (PPIs) has been recently recognized as an emerging therapeutic approach for several diseases. Up today, more than half a million PPI dysregulations have been found to be involved in pathological events. The dynamic nature of these processes and the involvement of large protein surfaces discouraged anyway the scientific community in considering them promising therapeutic targets. More recently peptide drugs received renewed attention since drug discovery has offered a broad range of structural diverse sequences, moving from traditionally endogenous peptides to sequences possessing improved pharmaceutical profiles. About 70 peptides are currently on the marked but several others are in clinical development. In this review we want to report the update on these novel APIs, focusing our attention on the molecules in clinical development, representing the direct consequence of the drug discovery process of the last 10 years. The comprehensive collection will be classified in function of the structural characteristics (native, analogous, heterologous) and on the basis of the therapeutic targets. The mechanism of interference on PPI will also be reported to offer useful information for novel peptide design.
Collapse
Affiliation(s)
- Walter Cabri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | - Alessandra Tolomelli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Sareen N, Srivastava A, Dhingra S. Role of prostaglandin E2 in allogeneic mesenchymal stem cell therapy for cardiac repair. Can J Physiol Pharmacol 2021; 99:140-150. [PMID: 33559528 DOI: 10.1139/cjpp-2020-0413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease is among the primary causes of cardiovascular-related deaths worldwide. Conventional treatments including surgical interventions and medical therapies aid in preventing further damage to heart muscle but are unable to provide a permanent solution. In recent years, stem cell therapy has emerged as an attractive alternative to restore damaged myocardium after myocardial injury. Allogeneic (donor-derived) mesenchymal stem cells (MSCs) have shown great promise in preclinical and clinical studies, making them the most widely accepted candidates for cardiac cell therapy. MSCs promote cardiac repair by modulating host immune system and secreting various soluble factors, of which prostaglandin E2 (PGE2) is an important one. PGE2 plays a significant role in regulating cardiac remodeling following myocardial injury. In this review, we provide an overview of allogeneic MSCs as candidates for myocardial regeneration with a focus on the role of the PGE2/cyclooxygenase-2 (COX2) pathway in mediating these effects.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Tang X, Brindley DN. Lipid Phosphate Phosphatases and Cancer. Biomolecules 2020; 10:biom10091263. [PMID: 32887262 PMCID: PMC7564803 DOI: 10.3390/biom10091263] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1–3) that belong to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins, which are localized on plasma membranes and intracellular membranes, including the endoplasmic reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate different effects in cancer progression through the breakdown of extracellular LPA and S1P and other intracellular substrates. This review is intended to summarize an up-to-date understanding about the functions of LPPs in cancers.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David N. Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence:
| |
Collapse
|
7
|
Saha SK, Choi HY, Yang GM, Biswas PK, Kim K, Kang GH, Gil M, Cho SG. GPR50 Promotes Hepatocellular Carcinoma Progression via the Notch Signaling Pathway through Direct Interaction with ADAM17. Mol Ther Oncolytics 2020; 17:332-349. [PMID: 32405532 PMCID: PMC7210388 DOI: 10.1016/j.omto.2020.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and it is thus critical to identify novel molecular biomarkers of HCC prognosis and elucidate the molecular mechanisms underlying HCC progression. Here, we show that G-protein-coupled receptor 50 (GPR50) in HCC is overexpressed and that GPR50 knockdown may downregulate cancer cell progression through attenuation of the Notch signaling pathway. GPR50 knockdown was found to reduce HCC progression by inactivating Notch signaling in a ligand-independent manner through a disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM17), a proteolytic enzyme that cleaves the Notch receptor, which was corroborated by GPR50 overexpression in hepatocytes. GPR50 silencing also downregulated transcription and translation of ADAM17 through the AKT/specificity protein-1 (SP1) signaling axis. Notably, GPR50 was found to directly interact with ADAM17. Overall, we demonstrate a novel GPR50-mediated regulation of the ADAM17-Notch signaling pathway, which can provide insights into HCC progression and prognosis and development of Notch-based HCC treatment strategies.
Collapse
Affiliation(s)
- Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Polash Kumar Biswas
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Geun-Ho Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minchan Gil
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Tang X, Benesch MGK, Brindley DN. Role of the autotaxin-lysophosphatidate axis in the development of resistance to cancer therapy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158716. [PMID: 32305571 DOI: 10.1016/j.bbalip.2020.158716] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022]
Abstract
Autotaxin (ATX) is a secreted enzyme that hydrolyzes lysophosphatidylcholine to produce lysophosphatidate (LPA), which signals through six G-protein coupled receptors (GPCRs). Signaling through LPA is terminated by its degradation by a family of three lipid phosphate phosphatases (LPPs). LPP1 also attenuates signaling downstream of the activation of LPA receptors and some other GPCRs. The ATX-LPA axis mediates a plethora of activities such as cell proliferation, survival, migration, angiogenesis and inflammation, which perform an important role in facilitating wound healing. This wound healing response is hijacked by cancers where there is decreased expression of LPP1 and LPP3 and increased expression of ATX. This maladaptive regulation of LPA signaling also causes chronic inflammation, which has been recognized as one of the hallmarks in cancer. The increased LPA signaling promotes cell survival and migration and attenuates apoptosis, which stimulates tumor growth and metastasis. The wound healing functions of increased LPA signaling also protect cancer cells from effects of chemotherapy and radiotherapy. In this review, we will summarize knowledge of the ATX-LPA axis and its role in the development of resistance to chemotherapy and radiotherapy. We will also offer insights for developing strategies of targeting ATX-LPA axis as a novel part of cancer treatment. This article is part of a Special Issue entitled Lysophospholipids and their receptors: New data and new insights into their function edited by Susan Smyth, Viswanathan Natarajan and Colleen McMullen.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada
| | - Matthew G K Benesch
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada; Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3V6, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2S2, Canada.
| |
Collapse
|
9
|
Thirunavukkarasan M, Wang C, Rao A, Hind T, Teo YR, Siddiquee AAM, Goghari MAI, Kumar AP, Herr DR. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS One 2017; 12:e0186334. [PMID: 29049318 PMCID: PMC5648159 DOI: 10.1371/journal.pone.0186334] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Short chain fatty acids (2 to 6 carbons in length) are ubiquitous lipids that are present in human plasma at micromolar concentrations. In addition to serving as metabolic precursors for lipid and carbohydrate synthesis, they also act as cognate ligands for two known G protein-coupled receptors (GPCRs), FFAR2 and FFAR3. While there is evidence that these receptors may inhibit the progression of colorectal cancer, their roles in breast cancer cells are largely unknown. We evaluated the effects of enforced overexpression of these receptors in two phenotypically distinct breast cancer cell lines: MCF7 and MDA-MD-231. Our results demonstrate that both receptors inhibit cell invasiveness, but through different signaling processes. In invasive, mesenchymal-like MDA-MB-231 cells, FFAR2 inhibits the Hippo-Yap pathway and increases expression of adhesion protein E-cadherin, while FFAR3 inhibits MAPK signaling. Both receptors have the net effect of reducing actin polymerization and invasion of cells through a Matrigel matrix. These effects were absent in the less invasive, epithelial-like MCF7 cells. Correspondingly, there is reduced expression of both receptors in invasive breast carcinoma and in aggressive triple-negative breast tumors, relative to normal breast tissue. Cumulatively, our data suggest that the activation of cognate receptors by short chain fatty acids drives breast cancer cells toward a non-invasive phenotype and therefore may inhibit metastasis.
Collapse
Affiliation(s)
| | - Chao Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Angad Rao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tatsuma Hind
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Ru Teo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Abrar Al-Mahmood Siddiquee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- National University Cancer Institute, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
| | - Deron R. Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
10
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
11
|
Vestri A, Pierucci F, Frati A, Monaco L, Meacci E. Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis? Front Pharmacol 2017. [PMID: 28626422 PMCID: PMC5454082 DOI: 10.3389/fphar.2017.00296] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is characterized by a peculiar mechanism of action. In fact, S1P, which is produced inside the cell, can act as an intracellular mediator, whereas after its export outside the cell, it can act as ligand of specific G-protein coupled receptors, which were initially named endothelial differentiation gene (Edg) and eventually renamed sphingosine 1-phosphate receptors (S1PRs). Among the five S1PR subtypes, S1PR1, S1PR2 and S1PR3 isoforms show broad tissue gene expression, while S1PR4 is primarily expressed in immune system cells, and S1PR5 is expressed in the central nervous system. There is accumulating evidence for the important role of S1P as a mediator of many processes, such as angiogenesis, carcinogenesis and immunity, and, ultimately, fibrosis. After a tissue injury, the imbalance between the production of extracellular matrix (ECM) and its degradation, which occurs due to chronic inflammatory conditions, leads to an accumulation of ECM and, consequential, organ dysfunction. In these pathological conditions, many factors have been described to act as pro- and anti-fibrotic agents, including S1P. This bioactive lipid exhibits both pro- and anti-fibrotic effects, depending on its site of action. In this review, after a brief description of sphingolipid metabolism and signaling, we emphasize the involvement of the S1P/S1PR axis and the downstream signaling pathways in the development of fibrosis. The current knowledge of the therapeutic potential of S1PR subtype modulators in the treatment of the cardiac functions and fibrinogenesis are also examined.
Collapse
Affiliation(s)
- Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of RomeRome, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| |
Collapse
|
12
|
Rao A, Herr DR. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1318-1327. [PMID: 28476646 DOI: 10.1016/j.bbamcr.2017.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/04/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Dysregulation of G protein-coupled receptors (GPCRs) is known to be involved in the pathogenesis of a variety of diseases, including cancer initiation and progression. Within this family, approximately 140 GPCRs have no known endogenous ligands and these "orphan" GPCRs remain poorly characterized. The orphan GPCR GPR19 was identified and cloned 2 decades ago, but relatively little is known about its physio-pathological relevance. We observed its expression to be elevated in breast cancers and therefore sought to investigate its potential role in breast cancer pathology. In this work, we show that overexpression of GPR19 drives mesenchymal-like breast cancer cells to adopt an epithelial-like phenotype, as demonstrated by the upregulation in E-cadherin expression and changes in functional behavior. We confirm a previous report that a peptide, adropin, is an endogenous ligand for GPR19. We further show that adropin-mediated activation of GPR19 activates the MAPK/ERK1/2 pathway, which is essential for the observed upregulation in E-cadherin and accompanying phenotypic changes. The recapitulation of epithelial characteristics at the secondary tumor sites is now understood to be an essential step in the colonization process. Taken together our work shows for the first time that GPR19 plays a potential role in metastasis by promoting the mesenchymal-epithelial transition (MET) through the ERK/MAPK pathway, thus facilitating colonization of metastatic breast tumor cells.
Collapse
Affiliation(s)
- Angad Rao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
13
|
Chew WS, Wang W, Herr DR. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacol Res 2016; 113:521-532. [DOI: 10.1016/j.phrs.2016.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023]
|
14
|
Griffiths K, Dolezal O, Cao B, Nilsson SK, See HB, Pfleger KDG, Roche M, Gorry PR, Pow A, Viduka K, Lim K, Lu BGC, Chang DHC, Murray-Rust T, Kvansakul M, Perugini MA, Dogovski C, Doerflinger M, Zhang Y, Parisi K, Casey JL, Nuttall SD, Foley M. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4. J Biol Chem 2016; 291:12641-12657. [PMID: 27036939 DOI: 10.1074/jbc.m116.721050] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 01/20/2023] Open
Abstract
CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor.
Collapse
Affiliation(s)
| | - Olan Dolezal
- Biomedical Manufacturing, CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052
| | - Benjamin Cao
- the Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3800,; Biomedical Manufacturing, CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168
| | - Susan K Nilsson
- the Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, Victoria 3800,; Biomedical Manufacturing, CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3168
| | - Heng B See
- the Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009,; the Centre for Medical Research, University of Western Australia, Crawley, Western Australia 6009
| | - Kevin D G Pfleger
- the Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009,; the Centre for Medical Research, University of Western Australia, Crawley, Western Australia 6009,; Dimerix Bioscience Ltd., Nedlands, Western Australia 6009
| | - Michael Roche
- the Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000,; the Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004
| | - Paul R Gorry
- the School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3001
| | - Andrew Pow
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Katerina Viduka
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Kevin Lim
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | | | | | | | - Marc Kvansakul
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Matthew A Perugini
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Con Dogovski
- the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | | | - Yuan Zhang
- the Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Kathy Parisi
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083,; the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and
| | - Joanne L Casey
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083
| | - Stewart D Nuttall
- Biomedical Manufacturing, CSIRO Manufacturing, 343 Royal Parade, Parkville, Victoria 3052
| | - Michael Foley
- From AdAlta Pty. Ltd., 15/2 Park Dr., Bundoora, Victoria 3083,; the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, and.
| |
Collapse
|
15
|
Chu R, Reczek D, Brondyk W. Capture-stabilize approach for membrane protein SPR assays. Sci Rep 2014; 4:7360. [PMID: 25484112 PMCID: PMC5154539 DOI: 10.1038/srep07360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/19/2014] [Indexed: 02/01/2023] Open
Abstract
Measuring the binding kinetics of antibodies to intact membrane proteins by surface plasmon resonance has been challenging largely because of the inherent difficulties in capturing membrane proteins on chip surfaces while retaining their native conformation. Here we describe a method in which His-tagged CXCR5, a GPCR, was purified and captured on a Biacore chip surface via the affinity tag. The captured receptor protein was then stabilized on the chip surface by limited cross-linking. The resulting chip surface retained ligand binding activity and was used for monoclonal antibody kinetics assays by a standard Biacore kinetics assay method with a simple low pH regeneration step. We demonstrate the advantages of this whole receptor assay when compared to available peptide-based binding assays. We further extended the application of the capture-stabilize approach to virus-like particles and demonstrated its utility analyzing antibodies against CD52, a GPI-anchored protein, in its native membrane environment. The results are the first demonstration of chemically stabilized chip surfaces for membrane protein SPR assays.
Collapse
Affiliation(s)
- Ruiyin Chu
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| | - David Reczek
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| | - William Brondyk
- Genzyme Corporation, 49 New York Avenue, Framingham, MA 01701, USA
| |
Collapse
|
16
|
Hutchings CJ, Cseke G, Osborne G, Woolard J, Zhukov A, Koglin M, Jazayeri A, Pandya-Pathak J, Langmead CJ, Hill SJ, Weir M, Marshall FH. Monoclonal anti-β1-adrenergic receptor antibodies activate G protein signaling in the absence of β-arrestin recruitment. MAbs 2014; 6:246-61. [PMID: 24253107 DOI: 10.4161/mabs.27226] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thermostabilized G protein-coupled receptors used as antigens for in vivo immunization have resulted in the generation of functional agonistic anti-β1-adrenergic (β1AR) receptor monoclonal antibodies (mAbs). The focus of this study was to examine the pharmacology of these antibodies to evaluate their mechanistic activity at β1AR. Immunization with the β1AR stabilized receptor yielded five stable hybridoma clones, four of which expressed functional IgG, as determined in cell-based assays used to evaluate cAMP stimulation. The antibodies bind diverse epitopes associated with low nanomolar agonist activity at β1AR, and they appeared to show some degree of biased signaling as they were inactive in an assay measuring signaling through β-arrestin. In vitro characterization also verified different antibody receptor interactions reflecting the different epitopes on the extracellular surface of β1AR to which the mAbs bind. The anti-β1AR mAbs only demonstrated agonist activity when in dimeric antibody format, but not as the monomeric Fab format, suggesting that agonist activation may be mediated through promoting receptor dimerization. Finally, we have also shown that at least one of these antibodies exhibits in vivo functional activity at a therapeutically-relevant dose producing an increase in heart rate consistent with β1AR agonism.
Collapse
|
17
|
Hazen M, Bhakta S, Vij R, Randle S, Kallop D, Chiang V, Hötzel I, Jaiswal BS, Ervin KE, Li B, Weimer RM, Polakis P, Scheller RH, Junutula JR, Hongo JAS. An improved and robust DNA immunization method to develop antibodies against extracellular loops of multi-transmembrane proteins. MAbs 2014; 6:95-107. [PMID: 24121517 DOI: 10.4161/mabs.26761] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multi-transmembrane proteins are especially difficult targets for antibody generation largely due to the challenge of producing a protein that maintains its native conformation in the absence of a stabilizing membrane. Here, we describe an immunization strategy that successfully resulted in the identification of monoclonal antibodies that bind specifically to extracellular epitopes of a 12 transmembrane protein, multi-drug resistant protein 4 (MRP4). These monoclonal antibodies were developed following hydrodynamic tail vein immunization with a cytomegalovirus (CMV) promoter-based plasmid expressing MRP4 cDNA and were characterized by flow cytometry. As expected, the use of the immune modulators fetal liver tyrosine kinase 3 ligand (Flt3L) and granulocyte-macrophage colony-stimulating factor positively enhanced the immune response against MRP4. Imaging studies using CMV-based plasmids expressing luciferase showed that the in vivo half-life of the target antigen was less than 48 h using CMV-based plasmids, thus necessitating frequent boosting with DNA to achieve an adequate immune response. We also describe a comparison of plasmids, which contained MRP4 cDNA with either the CMV or CAG promoters, used for immunizations. The observed luciferase activity in this comparison demonstrated that the CAG promoter-containing plasmid pCAGGS induced prolonged constitutive expression of MRP4 and an increased anti-MRP4 specific immune response even when the plasmid was injected less frequently. The method described here is one that can be broadly applicable as a general immunization strategy to develop antibodies against multi-transmembrane proteins, as well as target antigens that are difficult to express or purify in native and functionally active conformation.
Collapse
|
18
|
Fève M, Saliou JM, Zeniou M, Lennon S, Carapito C, Dong J, Van Dorsselaer A, Junier MP, Chneiweiss H, Cianférani S, Haiech J, Kilhoffer MC. Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets. PLoS One 2014; 9:e91519. [PMID: 24662753 PMCID: PMC3963860 DOI: 10.1371/journal.pone.0091519] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/10/2014] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.
Collapse
Affiliation(s)
- Marie Fève
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Jean-Michel Saliou
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Maria Zeniou
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Sarah Lennon
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Jihu Dong
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Marie-Pierre Junier
- Neuroscience Paris Seine, UMR8246, Inserm U1130, Institut de Biologie Paris Seine, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Hervé Chneiweiss
- Neuroscience Paris Seine, UMR8246, Inserm U1130, Institut de Biologie Paris Seine, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, UMR7178, CNRS, Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Strasbourg, France
| | - Jacques Haiech
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, UMR7200, Laboratoire d'Excellence Medalis, CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| |
Collapse
|
19
|
Ray-Saha S, Huber T, Sakmar TP. Antibody epitopes on g protein-coupled receptors mapped with genetically encoded photoactivatable cross-linkers. Biochemistry 2014; 53:1302-10. [PMID: 24490954 PMCID: PMC3985944 DOI: 10.1021/bi401289p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
We
developed a strategy for creating epitope maps of monoclonal
antibodies (mAbs) that bind to G protein-coupled receptors (GPCRs)
containing photo-cross-linkers. Using human CXC chemokine receptor
4 (CXCR4) as a model system, we genetically incorporated the photolabile
unnatural amino acid p-azido-l-phenylalanine
(azF) at various positions within extracellular loop 2 (EC2). We then
mapped the interactions of the azF-CXCR4 variants with mAb 12G5 using
targeted loss-of-function studies and photo-cross-linking in whole
cells in a microplate-based format. We used a novel variation of a
whole cell enzyme-linked immunosorbent assay to quantitate cross-linking
efficiency. 12G5 cross-linked primarily to residues 184, 178, and
189 in EC2 of CXCR4. Mapping of the data to the crystal structure
of CXCR4 showed a distinct mAb epitope footprint with the photo-cross-linked
residues clustered around the loss-of-function sites. We also used
the targeted photo-cross-linking approach to study the interaction
of human CC chemokine receptor 5 (CCR5) with PRO 140, a humanized
mAb that inhibits human immunodeficiency virus-1 cellular entry, and
2D7. The mAbs produced distinct cross-linking patterns on EC2 of CCR5.
PRO 140 cross-linked primarily to residues 174 and 175 at the amino-terminal
end of EC2, and 2D7 cross-linked mainly to residues 170, 176, and
184. These results were mapped to the recent crystal structure of
CCR5 in complex with maraviroc, showing cross-linked residues at the
tip of the maraviroc binding crevice formed by EC2. As a strategy
for mapping mAb epitopes on GPCRs, our targeted photo-cross-linking
method is complementary to loss-of-function mutagenesis results and
should be especially useful for studying mAbs with discontinuous epitopes.
Collapse
Affiliation(s)
- Sarmistha Ray-Saha
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
20
|
Molecular signatures of G-protein-coupled receptors. Nature 2013; 494:185-94. [PMID: 23407534 DOI: 10.1038/nature11896] [Citation(s) in RCA: 1115] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are physiologically important membrane proteins that sense signalling molecules such as hormones and neurotransmitters, and are the targets of several prescribed drugs. Recent exciting developments are providing unprecedented insights into the structure and function of several medically important GPCRs. Here, through a systematic analysis of high-resolution GPCR structures, we uncover a conserved network of non-covalent contacts that defines the GPCR fold. Furthermore, our comparative analysis reveals characteristic features of ligand binding and conformational changes during receptor activation. A holistic understanding that integrates molecular and systems biology of GPCRs holds promise for new therapeutics and personalized medicine.
Collapse
|
21
|
Yin F, Liu X, Li D, Wang Q, Zhang W, Li L. Bioinformatic analysis of chemokine (C-C motif) ligand 21 and SPARC-like protein 1 revealing their associations with drug resistance in ovarian cancer. Int J Oncol 2013; 42:1305-16. [PMID: 23404140 DOI: 10.3892/ijo.2013.1819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/14/2013] [Indexed: 11/06/2022] Open
Abstract
Chemokine (C-C motif) ligand 21 (CCL21) and SPARC-like protein 1 (SPARCL1/MAST9/hevin/SC-1) are associated with various biological behavior in the development of cancers. Although the expression of CCL21 and SPARCL1 is downregulated in many solid tumors, their roles in ovarian cancer and their associations with drug resistance have rarely been studied. We performed a comprehensive bioinformatic analysis consisting of motif analysis, literature co-occurrence, gene/protein-gene/protein interaction network, protein-small molecule interaction network, and microRNAs enrichments which revealed that CCL21 and SPARCL1 directly or indirectly interact with a number of genes, proteins, small molecules and pathways associated with drug resistance in ovarian and other cancers. These results suggested that CCL21 and SPARCL1 may contribute to drug resistance in ovarian cancer. This study provided important information for further investigation of drug resistance-related functions of CCL21 and SPARCL1 in ovarian cancer.
Collapse
Affiliation(s)
- Fuqiang Yin
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | |
Collapse
|