1
|
Wang B, Yin Z, Liu J, Tang C, Zhang Y, Wang L, Li H, Luo Y. Diquat Induces Cell Death and dopamine Neuron Loss via Reactive Oxygen Species Generation in Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:152-162. [PMID: 39745087 PMCID: PMC11740995 DOI: 10.1021/acs.est.4c07783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Diquat (DQ), a contact herbicide extensively utilized in both agricultural and nonagricultural domains, exhibits a high correlation with neuronal disorders. Nevertheless, the toxicity and underlying mechanisms associated with exposure to environmental concentrations of DQ remain ambiguous. Here, we report dose-dependent cellular neurotoxicity of DQ in Caenorhabditis elegans. First, DQ significantly compromised the development and brood size of worms, shortened the lifespan, and caused epidermal abnormalities. An unbiased transcriptomic analysis disclosed several pathways related to cell death and peroxisome homeostasis underlying this organismal-level toxicity. Moreover, exposure of DQ to C. elegans led to a notable increase of embryonic cell death. Concurrently, DQ exposure specifically caused the loss of dopamine neurons but not two other types of neurons in adulthood, which is in accordance with DQ-induced muscle-related defects such as pharyngeal pumping, body bends, and head thrashes. Mechanistically, DQ exposure induces the generation of reactive oxygen species (ROS) and enhances glutathione-related ROS scavenging pathway. Protein levels and activities of mitochondrial electron transport chain complexes were specifically impaired in the DQ-treated worms. Collectively, this study suggests an ROS-mediated cell death pathway involving the neuronal and behavioral toxicity of DQ, which offers a novel mitochondria-related perspective to elucidate the general toxicity caused by a widely distributed herbicide, DQ, at near-environment concentrations.
Collapse
Affiliation(s)
- Bing Wang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Zibo Yin
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Jusong Liu
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Cheng Tang
- School
of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yunfei Zhang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Lanying Wang
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| | - Hanzeng Li
- School
of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanping Luo
- School
of Tropical Agriculture and Forestry, Hainan
University, Haikou 570228, China
| |
Collapse
|
2
|
Qi W, Shen F, Wang C, Wen J, Pan X, Zhao Z, Xiao L, Feng Y, Yuan D. Nb-FAR-1: A key developmental protein affects lipid droplet accumulation and cuticle formation in Nippostrongylus brasiliensis. PLoS Negl Trop Dis 2025; 19:e0012769. [PMID: 39823413 PMCID: PMC11741380 DOI: 10.1371/journal.pntd.0012769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/09/2024] [Indexed: 01/19/2025] Open
Abstract
Fatty acid and retinol binding proteins (FARs) are lipid-binding protein that may be associated with modulating nematode pathogenicity to their hosts. However, the functional mechanism of FARs remains elusive. We attempt to study the function of a certain FAR that may be important in the development of Nippostrongylus brasiliensis. Nb-FAR-1 was highly expressed throughout developmental stages by RNA-seq data and qPCR analyses, and Nb-FAR-1 was a secretory protein and abundant in the excretory-secretory products. Nb-FAR-1 could bind fatty acids and retinol. Fatty acid pattern of parasitic adults was more similar to rat intestine than to free-living L3s, indicating that N. brasiliensis may be dependent on the host to obtain fatty acids. Lentivirus-mediated RNAi was performed on L3s, resulting in a reduction in the expression of Nb-far-1 gene. Furthermore, these RNAi effects could be maintained in several generations. The offspring L3s in Nb-far-1 RNAi group had a reduction in lipid droplets within the subcuticle and the swelling of the perioral epidermis, accompanied with down-regulated expression of enzymes in amino acid and glycerolipid metabolism and glycometabolism for growth by RNA-seq data. Adults in Nb-far-1 RNAi group had the crumpled epidermis loosely attached to the basal membrane of body surface and the breakage of mouth epidermis, accompanied with a decrease in adult egg-shedding and an appearance of abnormal eggs. In vitro culture of eggs showed decreased efficiency of egg hatchability and larval development in the Nb-far-1 RNAi group. Transcriptomic analysis showed that interference with Nb-far-1 expression induced downregulated expression of major sperm protein and serpin for reproduction, and collagen for epidermis formation in adults, most of which were relatively high expression in adults but low expression in L3s in the WT group. Thus, Nb-FAR-1 may affect the reproduction, growth, and development of N. brasiliensis by regulating the level of lipids.
Collapse
Affiliation(s)
- Wenmin Qi
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fei Shen
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chuyue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Juan Wen
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xi Pan
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dongjuan Yuan
- State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Abstract
In most organisms, the whole genome is maintained throughout the life span. However, exceptions occur in some species where the genome is reduced during development through a process known as programmed DNA elimination (PDE). In the human and pig parasite Ascaris, PDE occurs during the 4 to 16 cell stages of embryogenesis, when germline chromosomes are fragmented and specific DNA sequences are reproducibly lost in all somatic cells. PDE was identified in Ascaris over 120 years ago, but little was known about its molecular details until recently. Genome sequencing revealed that approximately 1,000 germline-expressed genes are eliminated in Ascaris, suggesting PDE is a gene silencing mechanism. All germline chromosome ends are removed and remodeled during PDE. In addition, PDE increases the number of chromosomes in the somatic genome by splitting many germline chromosomes. Comparative genomics indicates that these germline chromosomes arose from fusion events. PDE separates these chromosomes at the fusion sites. These observations indicate that PDE plays a role in chromosome karyotype and evolution. Furthermore, comparative analysis of PDE in other parasitic and free-living nematodes illustrates conserved features of PDE, suggesting it has important biological significance. We summarize what is known about PDE in Ascaris and its relatives. We also discuss other potential functions, mechanisms, and the evolution of PDE in these parasites of humans and animals of veterinary importance.
Collapse
|
4
|
Dulovic A, Koch I, Hipp K, Streit A. Strongyloides spp. eliminate male-determining sperm post-meiotically. Mol Biochem Parasitol 2022; 251:111509. [PMID: 35985494 DOI: 10.1016/j.molbiopara.2022.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
If normal male meiosis occurs, it would be expected that 50 % of sperm lack an X chromosome (nullo X) and hence upon fertilisation, result in male progeny. However, for sexual reproduction within the free-living stages of Strongyloides spp. male offspring are absent. We had shown earlier by quantitative whole genome sequencing that within Strongyloides spp., nullo-X sperm are either absent (S. papillosus) or underrepresented (S. ratti) among mature sperm. To investigate how and when this elimination of male-determining sperm occurs, we characterised spermatogenesis and the dynamic localisation of important molecular players such as tubulin, actin and major sperm protein by DIC microscopy, immunohistochemistry, and fluorescent in situ hybridization (FISH) in S. ratti, S. papillosus and Parastrongyloides trichosuri. We found that meiotic divisions in these parasites proceeded as expected for organisms with XO males, resulting in four equally sized spermatocytes, two with and two without an X chromosome. However, mature sperm were found to almost always contain an X chromosome. We also observed structures that contained protein constituents of sperm, such as actin and major sperm protein (MSP) but no DNA. These structures resemble C. elegans residual bodies in appearance and may assume their function. We hypothesize that spermatocytes without an X-chromosome undergo some form of programmed cell death and transform into these residual body-like structures. As in C. elegans, MSP is found in fibrous body-membranous organelles (FB-MOs). Knocking down MSP by RNAi showed that MSP is essential for fertility in S. ratti, as it is in C. elegans.
Collapse
Affiliation(s)
- Alex Dulovic
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Iris Koch
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Adrian Streit
- Department of Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
Banerjee RP, Srayko M. Sperm-specific glycogen synthase kinase 3 is required for sperm motility and the post-fertilization signal for female meiosis II in Caenorhabditis elegans. Development 2022; 149:275553. [DOI: 10.1242/dev.200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.
Collapse
Affiliation(s)
| | - Martin Srayko
- University of Alberta Department of Biological Sciences , , Edmonton, AB T6G 2E9 , Canada
| |
Collapse
|
6
|
Peterson JJ, Tocheny CE, Prajapati G, LaMunyon CW, Shakes DC. Subcellular patterns of SPE-6 localization reveal unexpected complexities in Caenorhabditis elegans sperm activation and sperm function. G3 (BETHESDA, MD.) 2021; 11:jkab288. [PMID: 34849789 PMCID: PMC8527485 DOI: 10.1093/g3journal/jkab288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022]
Abstract
To acquire and maintain directed cell motility, Caenorhabditis elegans sperm must undergo extensive, regulated cellular remodeling, in the absence of new transcription or translation. To regulate sperm function, nematode sperm employ large numbers of protein kinases and phosphatases, including SPE-6, a member of C. elegans' highly expanded casein kinase 1 superfamily. SPE-6 functions during multiple steps of spermatogenesis, including functioning as a "brake" to prevent premature sperm activation in the absence of normal extracellular signals. Here, we describe the subcellular localization patterns of SPE-6 during wild-type C. elegans sperm development and in various sperm activation mutants. While other members of the sperm activation pathway associate with the plasma membrane or localize to the sperm's membranous organelles, SPE-6 surrounds the chromatin mass of unactivated sperm. During sperm activation by either of two semiautonomous signaling pathways, SPE-6 redistributes to the front, central region of the sperm's pseudopod. When disrupted by reduction-of-function alleles, SPE-6 protein is either diminished in a temperature-sensitive manner (hc187) or is mislocalized in a stage-specific manner (hc163). During the multistep process of sperm activation, SPE-6 is released from its perinuclear location after the spike stage in a process that does not require the fusion of membranous organelles with the plasma membrane. After activation, spermatozoa exhibit variable proportions of perinuclear and pseudopod-localized SPE-6, depending on their location within the female reproductive tract. These findings provide new insights regarding SPE-6's role in sperm activation and suggest that extracellular signals during sperm migration may further modulate SPE-6 localization and function.
Collapse
Affiliation(s)
| | - Claire E Tocheny
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Gaurav Prajapati
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
7
|
Zograf JK, Trebukhova YA, Yushin VV, Yakovlev KV. Analysis of major sperm proteins in two nematode species from two classes, Enoplus brevis (Enoplea, Enoplida) and Panagrellus redivivus (Chromadorea, Rhabditida), reveals similar localization, but less homology of protein sequences than expected for Nematoda phylum. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Transcriptional profiles in Strongyloides stercoralis males reveal deviations from the Caenorhabditis sex determination model. Sci Rep 2021; 11:8254. [PMID: 33859232 PMCID: PMC8050236 DOI: 10.1038/s41598-021-87478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
The human and canine parasitic nematode Strongyloides stercoralis utilizes an XX/XO sex determination system, with parasitic females reproducing by mitotic parthenogenesis and free-living males and females reproducing sexually. However, the genes controlling S. stercoralis sex determination and male development are unknown. We observed precocious development of rhabditiform males in permissive hosts treated with corticosteroids, suggesting that steroid hormones can regulate male development. To examine differences in transcript abundance between free-living adult males and other developmental stages, we utilized RNA-Seq. We found two clusters of S. stercoralis-specific genes encoding predicted transmembrane proteins that are only expressed in free-living males. We additionally identified homologs of several genes important for sex determination in Caenorhabditis species, including mab-3, tra-1, fem-2, and sex-1, which may have similar functions. However, we identified three paralogs of gld-1; Ss-qki-1 transcripts were highly abundant in adult males, while Ss-qki-2 and Ss-qki-3 transcripts were highly abundant in adult females. We also identified paralogs of pumilio domain-containing proteins with sex-specific transcripts. Intriguingly, her-1 appears to have been lost in several parasite lineages, and we were unable to identify homologs of tra-2 outside of Caenorhabditis species. Together, our data suggest that different mechanisms control male development in S. stercoralis and Caenorhabditis species.
Collapse
|
9
|
Goodson HV, Kelley JB, Brawley SH. Cytoskeletal diversification across 1 billion years: What red algae can teach us about the cytoskeleton, and vice versa. Bioessays 2021; 43:e2000278. [PMID: 33797088 DOI: 10.1002/bies.202000278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/05/2022]
Abstract
The cytoskeleton has a central role in eukaryotic biology, enabling cells to organize internally, polarize, and translocate. Studying cytoskeletal machinery across the tree of life can identify common elements, illuminate fundamental mechanisms, and provide insight into processes specific to less-characterized organisms. Red algae represent an ancient lineage that is diverse, ecologically significant, and biomedically relevant. Recent genomic analysis shows that red algae have a surprising paucity of cytoskeletal elements, particularly molecular motors. Here, we review the genomic and cell biological evidence and propose testable models of how red algal cells might perform processes including cell motility, cytokinesis, intracellular transport, and secretion, given their reduced cytoskeletons. In addition to enhancing understanding of red algae and lineages that evolved from red algal endosymbioses (e.g., apicomplexan parasites), these ideas may also provide insight into cytoskeletal processes in animal cells.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry and Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, Maine, USA
| |
Collapse
|
10
|
Wang J. Genomics of the Parasitic Nematode Ascaris and Its Relatives. Genes (Basel) 2021; 12:493. [PMID: 33800545 PMCID: PMC8065839 DOI: 10.3390/genes12040493] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Nematodes of the genus Ascaris are important parasites of humans and swine, and the phylogenetically related genera (Parascaris, Toxocara, and Baylisascaris) infect mammals of veterinary interest. Over the last decade, considerable genomic resources have been established for Ascaris, including complete germline and somatic genomes, comprehensive mRNA and small RNA transcriptomes, as well as genome-wide histone and chromatin data. These datasets provide a major resource for studies on the basic biology of these parasites and the host-parasite relationship. Ascaris and its relatives undergo programmed DNA elimination, a highly regulated process where chromosomes are fragmented and portions of the genome are lost in embryonic cells destined to adopt a somatic fate, whereas the genome remains intact in germ cells. Unlike many model organisms, Ascaris transcription drives early development beginning prior to pronuclear fusion. Studies on Ascaris demonstrated a complex small RNA network even in the absence of a piRNA pathway. Comparative genomics of these ascarids has provided perspectives on nematode sex chromosome evolution, programmed DNA elimination, and host-parasite coevolution. The genomic resources enable comparison of proteins across diverse species, revealing many new potential drug targets that could be used to control these parasitic nematodes.
Collapse
Affiliation(s)
- Jianbin Wang
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
- UT-Oak Ridge National Laboratory Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Price KL, Presler M, Uyehara CM, Shakes DC. The intrinsically disordered protein SPE-18 promotes localized assembly of MSP in Caenorhabditis elegans spermatocytes. Development 2021; 148:dev195875. [PMID: 33558389 PMCID: PMC7938801 DOI: 10.1242/dev.195875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/02/2021] [Indexed: 01/26/2023]
Abstract
Many specialized cells use unconventional strategies of cytoskeletal control. Nematode spermatocytes discard their actin and tubulin following meiosis, and instead employ the regulated assembly/disassembly of the Major Sperm Protein (MSP) to drive sperm motility. However, prior to the meiotic divisions, MSP is sequestered through its assembly into paracrystalline structures called fibrous bodies (FBs). The accessory proteins that direct this sequestration process have remained mysterious. This study reveals SPE-18 as an intrinsically disordered protein that is essential for MSP assembly within FBs. In spe-18 mutant spermatocytes, MSP forms disorganized cortical fibers, and the cells arrest in meiosis without forming haploid sperm. In wild-type spermatocytes, SPE-18 localizes to pre-FB complexes and functions with the kinase SPE-6 to localize MSP assembly. Changing patterns of SPE-18 localization uncover previously unappreciated complexities in FB maturation. Later, within newly individualized spermatids, SPE-18 is rapidly lost, yet SPE-18 loss alone is insufficient for MSP disassembly. Our findings reveal an alternative strategy for sequestering cytoskeletal elements, not as monomers but in localized, bundled polymers. Additionally, these studies provide an important example of disordered proteins promoting ordered cellular structures.
Collapse
Affiliation(s)
- Kari L Price
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Marc Presler
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | | | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
12
|
Phani V, Somvanshi VS, Shukla RN, Davies KG, Rao U. A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita. BMC Genomics 2018; 19:850. [PMID: 30486772 PMCID: PMC6263062 DOI: 10.1186/s12864-018-5230-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. RESULTS A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. CONCLUSIONS Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.
Collapse
Affiliation(s)
- Victor Phani
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vishal S Somvanshi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rohit N Shukla
- Bionivid Technology Private Limited, 209, 4th Cross, Kasturi Nagar, Bangalore, India
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, UK. .,Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115 NO-1431, Ås, Norway.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
13
|
Schultz J, Lee SJ, Cole T, Hoang HD, Vibbert J, Cottee PA, Miller MA, Han SM. The secreted MSP domain of C. elegans VAPB homolog VPR-1 patterns the adult striated muscle mitochondrial reticulum via SMN-1. Development 2017. [PMID: 28634272 PMCID: PMC5482996 DOI: 10.1242/dev.152025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major sperm protein domain (MSPd) has an extracellular signaling function implicated in amyotrophic lateral sclerosis. Secreted MSPds derived from the C. elegans VAPB homolog VPR-1 promote mitochondrial localization to actin-rich I-bands in body wall muscle. Here we show that the nervous system and germ line are key MSPd secretion tissues. MSPd signals are transduced through the CLR-1 Lar-like tyrosine phosphatase receptor. We show that CLR-1 is expressed throughout the muscle plasma membrane, where it is accessible to MSPd within the pseudocoelomic fluid. MSPd signaling is sufficient to remodel the muscle mitochondrial reticulum during adulthood. An RNAi suppressor screen identified survival of motor neuron 1 (SMN-1) as a downstream effector. SMN-1 acts in muscle, where it colocalizes at myofilaments with ARX-2, a component of the Arp2/3 actin-nucleation complex. Genetic studies suggest that SMN-1 promotes Arp2/3 activity important for localizing mitochondria to I-bands. Our results support the model that VAPB homologs are circulating hormones that pattern the striated muscle mitochondrial reticulum. This function is crucial in adults and requires SMN-1 in muscle, likely independent of its role in pre-mRNA splicing.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Se-Jin Lee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim Cole
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack Vibbert
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pauline A Cottee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sung Min Han
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
14
|
Cottee PA, Cole T, Schultz J, Hoang HD, Vibbert J, Han SM, Miller MA. The C. elegans VAPB homolog VPR-1 is a permissive signal for gonad development. Development 2017. [PMID: 28634273 PMCID: PMC5482997 DOI: 10.1242/dev.152207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
VAMP/synaptobrevin-associated proteins (VAPs) contain an N-terminal major sperm protein domain (MSPd) that is associated with amyotrophic lateral sclerosis. VAPs have an intracellular housekeeping function, as well as an extracellular signaling function mediated by the secreted MSPd. Here we show that the C. elegans VAP homolog VPR-1 is essential for gonad development. vpr-1 null mutants are maternal effect sterile due to arrested gonadogenesis following embryo hatching. Somatic gonadal precursor cells and germ cells fail to proliferate fully and complete their respective differentiation programs. Maternal or zygotic vpr-1 expression is sufficient to induce gonadogenesis and fertility. Genetic mosaic and cell type-specific expression studies indicate that vpr-1 activity is important in the nervous system, germ line and intestine. VPR-1 acts in parallel to Notch signaling, a key regulator of germline stem cell proliferation and differentiation. Neuronal vpr-1 expression is sufficient for gonadogenesis induction during a limited time period shortly after hatching. These results support the model that the secreted VPR-1 MSPd acts at least in part on gonadal sheath cell precursors in L1 to early L2 stage hermaphrodites to permit gonadogenesis. Highlighted Article:vpr-1 null mutants are sterile upon hatching, a defect rescued by the expression of MSPd from almost any tissue except for the somatic gonad itself. See also the companion paper by Schultz et al.
Collapse
Affiliation(s)
- Pauline A Cottee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim Cole
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jack Vibbert
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sung Min Han
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
15
|
Abstract
Fertilization, the union of an oocyte and a sperm, is a fundamental process that restores the diploid genome and initiates embryonic development. For the sperm, fertilization is the end of a long journey, one that starts in the male testis before transitioning to the female reproductive tract's convoluted tubule architecture. Historically, motile sperm were thought to complete this journey using luck and numbers. A different picture of sperm has emerged recently as cells that integrate complex sensory information for navigation. Chemical, physical, and thermal cues have been proposed to help guide sperm to the waiting oocyte. Molecular mechanisms are being delineated in animal models and humans, revealing common features, as well as important differences. Exposure to pheromones and nutritional signals can modulate guidance mechanisms, indirectly impacting sperm motility performance and fertility. These studies highlight the importance of sensory information and signal transduction in fertilization.
Collapse
Affiliation(s)
- Hieu D Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
16
|
Claeys M, Yushin VV, Leunissen JL, Claeys J, Bert W. Self-Pressurised Rapid Freezing (SPRF): an easy-to-use and low-cost alternative cryo-fixation method for nematodes. NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Self-Pressurised Rapid Freezing (SPRF), an easy-to-use and low-cost alternative cryo-fixation method, was evaluated based on a comparative analysis of the ultrastructure of spermatozoa of the nematodes Acrobeles complexus and Caenorhabditis elegans. Sealed copper tubes, packed with active nematodes in water, were plunged into nitrogen slush, a semi-solid form of nitrogen. The water inside the capillary copper tube expands upon cooling due to the formation of hexagonal ice, thereby generating high pressure intrinsically for cryo-fixation of the sample. For sperm cells cryo-fixed by SPRF, the preservation of the ultrastructure was comparable to that achieved with high pressure freezing. This was evidenced by the clear details in mitochondria, membranous organelles and cytoskeleton in the pseudopod. It was demonstrated that SPRF fixation did not destroy antigenicity, based on the results of the immunolocalisation of the major sperm protein in both species. In conclusion, SPRF is a low-cost alternative cryo-fixation method for nematodes.
Collapse
Affiliation(s)
- Myriam Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Belgium
| | - Vladimir V. Yushin
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
- Far Eastern Federal University, Vladivostok 690950, Russia
| | | | - Jef Claeys
- Nematology Research Unit, Department of Biology, Ghent University, Belgium
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, Belgium
| |
Collapse
|
17
|
Ultrastructural immunogold localization of major sperm protein (MSP) in spermatogenic cells of the nematode Acrobeles complexus (Nematoda, Rhabditida). Micron 2016; 89:43-55. [DOI: 10.1016/j.micron.2016.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 01/07/2023]
|
18
|
Actoclampin (+)-end-tracking motors: How the pursuit of profilin's role(s) in actin-based motility twice led to the discovery of how cells crawl. Biophys Chem 2015; 209:41-55. [PMID: 26720287 DOI: 10.1016/j.bpc.2015.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/05/2015] [Indexed: 11/21/2022]
Abstract
The path to the discovery of the actoclampins began with efforts to define profilin's role in actin-based pathogen and endosome rocketing. That research identified a set of FPPPP-containing cargo proteins and FPPPP-binding proteins that are consistently stationed within the polymerization zone during episodes of active motility. The very same biophysical clues that forced us to abandon Brownian Ratchet models guided us to the Actoclampin Hypothesis, which asserts that every propulsive filament possesses a (+)-end-tracking motor that generates the forces cells need to crawl. Each actoclampin motor is a multi-arm oligomeric complex, employing one arm to recruit/deliver Profilin•Actin•ATP to a growth-site located at the (+)-end of the lagging subfilament, while a second arm maintains an affinity-modulated binding interaction with the extreme (+)-end of the other subfilament. The alternating actions of these arms define a true molecular motor, the processivity of which explains why propelling filaments maintain full possession of their cargo. The Actoclampin Hypothesis also suggests how the energetics of tracker interactions with the (+)-end determines whether a given actoclampin is a passive (low force-producing) or active (high force-producing) motor, the latter requiring the Gibbs free energy of ATP hydrolysis. Another aim of this review is to acknowledge an earlier notional model that emerged from efforts to comprehend profilin's pivotal role(s) in actin-based cell motility.
Collapse
|
19
|
Hansen JM, Chavez DR, Stanfield GM. COMP-1 promotes competitive advantage of nematode sperm. eLife 2015; 4:e05423. [PMID: 25789512 PMCID: PMC4400581 DOI: 10.7554/elife.05423] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
Competition among sperm to fertilize oocytes is a ubiquitous feature of sexual reproduction as well as a profoundly important aspect of sexual selection. However, little is known about the cellular mechanisms sperm use to gain competitive advantage or how these mechanisms are regulated genetically. In this study, we utilize a forward genetic screen in Caenorhabditis elegans to identify a gene, comp-1, whose function is specifically required in competitive contexts. We show that comp-1 functions in sperm to modulate their migration through and localization within the reproductive tract, thereby promoting their access to oocytes. Contrary to previously described models, comp-1 mutant sperm show no defects in size or velocity, thereby defining a novel pathway for preferential usage. Our results indicate not only that sperm functional traits can influence the outcome of sperm competition, but also that these traits can be modulated in a context-dependent manner depending on the presence of competing sperm.
Collapse
Affiliation(s)
- Jody M Hansen
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Daniela R Chavez
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| |
Collapse
|
20
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
21
|
Role of posttranslational modifications in C. elegans and ascaris spermatogenesis and sperm function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:215-39. [PMID: 25030766 DOI: 10.1007/978-1-4939-0817-2_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Generally, spermatogenesis and sperm function involve widespread posttranslational modification of regulatory proteins in many different species. Nematode spermatogenesis has been studied in detail, mostly by genetic/molecular genetic techniques in the free-living Caenorhabditis elegans and by biochemistry/cell biology in the pig parasite Ascaris suum. Like other nematodes, both of these species produce sperm that use a form of amoeboid motility termed crawling, and many aspects of spermatogenesis are likely to be similar in both species. Consequently, work in these two nematode species has been largely complementary. Work in C. elegans has identified a number of spermatogenesis-defective genes and, so far, 12 encode enzymes that are implicated as catalysts of posttranslational protein modification. Crawling motility involves extension of a single pseudopod and this process is powered by a unique cytoskeleton composed of Major Sperm Protein (MSP) and accessory proteins, instead of the more widely observed actin. In Ascaris, pseudopod extension and crawling motility can be reconstituted in vitro, and biochemical studies have begun to reveal how posttranslational protein modifications, including phosphorylation, dephosphorylation and proteolysis, participate in these processes.
Collapse
|
22
|
Xu MJ, Fu JH, Nisbet AJ, Huang SY, Zhou DH, Lin RQ, Song HQ, Zhu XQ. Comparative profiling of microRNAs in male and female adults of Ascaris suum. Parasitol Res 2013; 112:1189-95. [PMID: 23306386 DOI: 10.1007/s00436-012-3250-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
Ascaris nematodes, which cause ascariasis in humans and pigs, are among the most important nematodes from both health and economic perspectives. microRNA (miRNA) is now recognized as key regulator of gene expression at posttranscription level. The public availability of the genome and transcripts of Ascaris suum provides powerful resources for the research of miRNA profiles of the parasite. Therefore, we investigated and compared the miRNA profiles of male and female adult A. suum using Solexa deep sequencing combined with bioinformatic analysis and stem-loop reverse transcription polymerase chain reaction. Deep sequencing of small RNAs yielded 11.71 and 11.72 million raw reads from male and female adults of A. suum, respectively. Analysis showed that the noncoding RNA of the two genders, including tRNA, rRNA, snRNA, and snoRNA, were similar. By mapping to the A. suum genome, we obtained 494 and 505 miRNA candidates from the female and male parasite, respectively, and 87 and 82 of miRNA candidates were consistent with A. suum miRNAs deposited in the miRBase database. Among the miRNA candidates, 154 were shared by the two genders, and 340 and 351 were female and male specific with their target numbers ranged from one to thousands, respectively. Functional prediction revealed a set of elongation factors, heat shock proteins, and growth factors from the targets of gender-specific miRNAs, which were essential for the development of the parasite. Moreover, major sperm protein and nematode sperm cell motility protein were found in targets of the male-specific miRNAs. Ovarian message protein was found in targets of the female-specific miRNAs. Enrichment analysis revealed significant differences among Gene Ontology terms of miRNA targets of the two genders, such as electron carrier and biological adhesion process. The regulating functions of gender-specific miRNAs was therefore not only related to the fundamental functions of cells but also were essential to the germ development of the parasite. The present study provides a framework for further research of Ascaris miRNAs, and consequently leads to the development of potential nucleotide vaccines against Ascaris of human and animal health significance.
Collapse
Affiliation(s)
- Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu Province, 730046, People's Republic China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lin RQ, Zhou DH, Huang SY, Zhang Y, Zou FC, Song HQ, Weng YB, Zhu XQ. Identification and characterization of new major sperm protein genes from Oesophagostomum dentatum and Oesophagostomum quadrispinulatum from pigs in China. Exp Parasitol 2012. [PMID: 23206956 DOI: 10.1016/j.exppara.2012.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study identified and characterized new major sperm protein (MSP) genes from the two nodule worms Oesophagostomum dentatum and Oesophagostomum quadrispinulatum collected from pigs in China. Total genomic DNA was extracted individually from 10 male nematode samples representing O. dentatum, and 4 male nematode samples representing O. quadrispinulatum. A pair of primers (OMSP1F/MSP1R) was designed based on the MSP gene sequences of Ascaris suum and O. dentatum available in GenBank, and used to amplify the MSP genes from the two porcine nodule worms. The PCR products were purified and subsequently cloned into pGEM-T Easy vector. Recombinants were identified by PCR and sequenced. Sequence analysis revealed that there were two different types of MSP sequences in O. dentatum and O. quadrispinulatum, one contained intron, and the other did not. The lengths of the MSP sequences containing introns were 433 bp or 439 bp in O. dentatum, and 436 bp, 439 bp or 446 bp in O. quadrispinulatum, containing 1 or 2 introns. Five and three new members of the MSP multigene family were identified in O. dentatum and O. quadrispinulatum in this study, respectively. The MSP sequences without introns were 381 bp in length, and can be deduced into 126 amino acids. The sequences of MSP genes containing introns seem to be more conserved than those without introns. The identities of deduced amino acid sequences of the MSP genes containing introns were 96.0-100% within and between the two nodule worms, and were 81.1-93.7% compared with other published MSP sequences of the representative nematodes. The present study identified new MSP genes with introns from O. dentatum and O. quadrispinulatum for the first time. The identification and characterization of newly described MSP genes from O. dentatum and O. quadrispinulatum have implications for further studies of molecular biology and reproduction control of Oesophagostomum spp.
Collapse
Affiliation(s)
- Rui-Qing Lin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
SACY-1 DEAD-Box helicase links the somatic control of oocyte meiotic maturation to the sperm-to-oocyte switch and gamete maintenance in Caenorhabditis elegans. Genetics 2012; 192:905-28. [PMID: 22887816 PMCID: PMC3522166 DOI: 10.1534/genetics.112.143271] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. In Caenorhabditis elegans, major sperm protein triggers meiotic resumption through a mechanism involving somatic Gαs–adenylate cyclase signaling and soma-to-germline gap-junctional communication. Using genetic mosaic analysis, we show that the major effector of Gαs–adenylate cyclase signaling, protein kinase A (PKA), is required in gonadal sheath cells for oocyte meiotic maturation and dispensable in the germ line. This result rules out a model in which cyclic nucleotides must transit through sheath-oocyte gap junctions to activate PKA in the germ line, as proposed in vertebrate systems. We conducted a genetic screen to identify regulators of oocyte meiotic maturation functioning downstream of Gαs–adenylate cyclase–PKA signaling. We molecularly identified 10 regulatory loci, which include essential and nonessential factors. sacy-1, which encodes a highly conserved DEAD-box helicase, is an essential germline factor that negatively regulates meiotic maturation. SACY-1 is a multifunctional protein that establishes a mechanistic link connecting the somatic control of meiotic maturation to germline sex determination and gamete maintenance. Modulatory factors include multiple subunits of a CoREST-like complex and the TWK-1 two-pore potassium channel. These factors are not absolutely required for meiotic maturation or its negative regulation in the absence of sperm, but function cumulatively to enable somatic control of meiotic maturation. This work provides insights into the genetic control of meiotic maturation signaling in C. elegans, and the conserved factors identified here might inform analysis in other systems through either homology or analogy.
Collapse
|