1
|
Yang JY, Chen YZ, Tsai RY, Chen RP, Hsieh LF, Tien-Hao Chang D, Chen CS. Development of multiple genome-wide proteome microarrays comprised wafer substrate-based chip and its scanner: An advanced high-throughput and sensitivity for molecular interactions studies. Biosens Bioelectron 2025; 272:117110. [PMID: 39778246 DOI: 10.1016/j.bios.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Proteome microarray technology enables high-throughput analysis of protein interactions with all kinds of molecules. Wafer (6-inch) substrates offer a promising alternative to conventional glass (2.6 × 7.6 cm) substrates for carrying proteomes. This study aims to develop high-density wafer-based proteome microarrays and a corresponding fluorescence scanner. We constructed E. coli proteome microarrays and probed them with the antimicrobial peptide indolicidin to identify its protein targets, revealing its antimicrobial mechanisms. Compared to glass substrates, wafer substrates showed a detectable fluorescence signal of the immobilized Dylight 550-labeled antibody at a lower concentration (200 ng/mL vs. 5000 ng/mL), indicating greater sensitivity. Spot images on wafers also exhibited a more uniform circular profile. We fabricated a wafer holder compatible with a regular glass microarray printer and successfully printed six entire genome-wide E. coli proteome microarrays, totaling approximately 52,000 protein spots, on one wafer. Probing the wafer array with indolicidin and its control in triplicate, we identified 75 E. coli K12 protein targets, many of which are enriched in transport functions. Notably, we also found that two proteins crucial for DNA synthesis (nrdF and nrdB) were targeted by indolicidin. This explains the earlier finding that indolicidin inhibits DNA synthesis in E. coli. This study introduces the first wafer-based proteome microarrays, demonstrating enhanced sensitivity and the ability to perform simultaneous multiplexed probing compared to regular glass slide-based proteome microarrays.
Collapse
Affiliation(s)
- Jia-Yi Yang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - You-Zuo Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Rung-Ywan Tsai
- Caduceus Biotechnology Inc, 9F-5, No. 66, Shengyi Road, Hsinchu, 302041, Taiwan
| | - Rong-Po Chen
- Caduceus Biotechnology Inc, 9F-5, No. 66, Shengyi Road, Hsinchu, 302041, Taiwan
| | - Li-Fan Hsieh
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Darby Tien-Hao Chang
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Kiouri DP, Ntallis C, Kelaidonis K, Peana M, Tsiodras S, Mavromoustakos T, Giuliani A, Ridgway H, Moore GJ, Matsoukas JM, Chasapis CT. Network-Based Prediction of Side Effects of Repurposed Antihypertensive Sartans against COVID-19 via Proteome and Drug-Target Interactomes. Proteomes 2023; 11:21. [PMID: 37368467 PMCID: PMC10305495 DOI: 10.3390/proteomes11020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
The potential of targeting the Renin-Angiotensin-Aldosterone System (RAAS) as a treatment for the coronavirus disease 2019 (COVID-19) is currently under investigation. One way to combat this disease involves the repurposing of angiotensin receptor blockers (ARBs), which are antihypertensive drugs, because they bind to angiotensin-converting enzyme 2 (ACE2), which in turn interacts with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. However, there has been no in silico analysis of the potential toxicity risks associated with the use of these drugs for the treatment of COVID-19. To address this, a network-based bioinformatics methodology was used to investigate the potential side effects of known Food and Drug Administration (FDA)-approved antihypertensive drugs, Sartans. This involved identifying the human proteins targeted by these drugs, their first neighbors, and any drugs that bind to them using publicly available experimentally supported data, and subsequently constructing proteomes and protein-drug interactomes. This methodology was also applied to Pfizer's Paxlovid, an antiviral drug approved by the FDA for emergency use in mild-to-moderate COVID-19 treatment. The study compares the results for both drug categories and examines the potential for off-target effects, undesirable involvement in various biological processes and diseases, possible drug interactions, and the potential reduction in drug efficiency resulting from proteoform identification.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Charalampos Ntallis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Sotirios Tsiodras
- 4th Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Harry Ridgway
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC 8001, Australia
- AquaMem Consultants, Rodeo, NM 88056, USA
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - John M. Matsoukas
- NewDrug PC, Patras Science Park, 26504 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.P.K.); (C.N.)
| |
Collapse
|
3
|
Abstract
Red blood cell (RBC) transfusion is one of the most frequently performed clinical procedures and therapies to improve tissue oxygen delivery in hospitalized patients worldwide. Generally, the cross-match is the mandatory test in place to meet the clinical needs of RBC transfusion by examining donor-recipient compatibility with antigens and antibodies of blood groups. Blood groups are usually an individual's combination of antigens on the surface of RBCs, typically of the ABO blood group system and the RH blood group system. Accurate and reliable blood group typing is critical before blood transfusion. Serological testing is the routine method for blood group typing based on hemagglutination reactions with RBC antigens against specific antibodies. Nevertheless, emerging technologies for blood group testing may be alternative and supplemental approaches when serological methods cannot determine blood groups. Moreover, some new technologies, such as the evolving applications of blood group genotyping, can precisely identify variant antigens for clinical significance. Therefore, this review mainly presents a clinical overview and perspective of emerging technologies in blood group testing based on the literature. Collectively, this may highlight the most promising strategies and promote blood group typing development to ensure blood transfusion safety.
Collapse
Affiliation(s)
- Hong-Yang Li
- Department of Blood Transfusion, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Kai Guo
| |
Collapse
|
4
|
Lee MJ, Pai CP, Wu PC, Lee W. Label-free single-substrate quantitative protein assay based on optical characteristics of cholesteric liquid crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Michelhaugh SA, Januzzi JL. Finding a Needle in a Haystack: Proteomics in Heart Failure. JACC Basic Transl Sci 2020; 5:1043-1053. [PMID: 33145466 PMCID: PMC7591826 DOI: 10.1016/j.jacbts.2020.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/26/2022]
Abstract
Proteomics has aided HF biomarker discovery, which allows for greater disease insights. Experiment design can be tailored to HF research to discover novel biomarkers. Primary methods include MS, protein microarray, aptamer, and PEA-based technologies. Proteomics can detect unique low abundance proteins and detect protein modifications.
Circulating protein biomarkers provide information regarding pathways in heart failure (HF) and can add important value to clinicians. Advancements in proteomics allow researchers to measure a multitude of proteins simultaneously with excellent sensitivity and selectivity to detect low abundance proteins. This helps identify previously unrecognized pathways in HF and discover biomarkers and potential targets for HF therapies. Although several proteomic methods exist, including mass spectrometry, protein microarray, aptamer, and proximity extension assay−based techniques, each have their unique advantages. This paper provides an overview of the various proteomic methods, with examples of how each has contributed to understanding the pathways in HF.
Collapse
Affiliation(s)
- Sam A Michelhaugh
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts
| | - James L Januzzi
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Division of Cardiology, Harvard Medical School, Boston, Massachusetts.,Baim Institute for Clinical Research, Boston, Massachusetts
| |
Collapse
|
6
|
Kilb N, Herz T, Burger J, Woehrle J, Meyer PA, Roth G. Protein Microarray Copying: Easy on-Demand Protein Microarray Generation Compatible with Fluorescence and Label-Free Real-Time Analysis. Chembiochem 2019; 20:1554-1562. [PMID: 30730095 DOI: 10.1002/cbic.201800699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/07/2019] [Indexed: 01/19/2023]
Abstract
Protein microarrays are essential to understand complex protein interaction networks. Their production, however, is a challenge and renders this technology unattractive for many laboratories. Recent developments in cell-free protein microarray generation offer new opportunities, but are still expensive and cumbersome in practice. Herein, we describe a cost-effective and user-friendly method for the cell-free production of protein microarrays. From a polydimethylsiloxane (PDMS) flow cell containing an expressible DNA microarray, proteins of interest are synthesised by cell-free expression and then immobilised on a capture surface. The resulting protein microarray can be regarded as a "copy" of the DNA microarray. 2 His6 - and Halo-tagged fluorescent reference proteins were used to demonstrate the functionality of nickel nitrilotriacetic acid (Ni-NTA) and Halo-bind surfaces in this copy system. The described process can be repeated several times on the same DNA microarray. The identity and functionality of the proteins were proven during the copy process by their fluorescence and on the surface through a fluorescent immune assay. Also, single-colour reflectometry (SCORE) was applied to show that, on such copied arrays, real-time binding kinetic measurements were possible.
Collapse
Affiliation(s)
- Normann Kilb
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Tobias Herz
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Jürgen Burger
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Johannes Woehrle
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Philipp A Meyer
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79104, Freiburg, Germany
| | - Günter Roth
- AG Roth-Lab for Microarray Copying, ZBSA-Centre for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany.,Faculty of Biology, Biology 3, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany.,BIOSS-Centre for Biological Signal Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| |
Collapse
|
7
|
Iannotti MJ, MacArthur R, Jones R, Tao D, Singeç I, Michael S, Inglese J. Detecting Secretory Proteins by Acoustic Droplet Ejection in Multiplexed High-Throughput Applications. ACS Chem Biol 2019; 14:497-505. [PMID: 30699290 DOI: 10.1021/acschembio.9b00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nearly one-third of the encoded proteome is comprised of secretory proteins that enable communication between cells and organ systems, playing a ubiquitous role in human health and disease. High-throughput detection of secreted proteins would enhance efforts to identify therapies for secretion-related diseases. Using the Z mutant of alpha-1 antitrypsin as a human secretory model, we have developed 1536-well high-throughput screening assays that utilize acoustic droplet ejection to transfer nanoliter volumes of sample for protein quantification. Among them, the acoustic reverse phase protein array (acoustic RPPA) is a multiplexable, low-cost immunodetection technology for native, endogenously secreted proteins from physiologically relevant model systems like stem cells that is compatible with plate-based instrumentation. Parallel assay profiling with the LOPAC1280 chemical library validated performance and orthogonality between a secreted bioluminescent reporter and acoustic RPPA method by consistently identifying secretory modulators with comparable concentration response relationships. Here, we introduce a robust, multiplexed drug discovery platform coupling extracellular protein quantification by acoustic RPPA with intracellular and cytotoxicity analyses from single wells, demonstrating proof-of-principle applications for human induced pluripotent stem cell-derived hepatocytes.
Collapse
Affiliation(s)
- Michael J. Iannotti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ryan MacArthur
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Richard Jones
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
8
|
Succinylated Jeffamine ED-2003 coated polycarbonate chips for low-cost analytical microarrays. Anal Bioanal Chem 2019; 411:1943-1955. [DOI: 10.1007/s00216-019-01594-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
|
9
|
Abstract
The current situation in microarray data analysis and prospects for the future are briefly discussed in this chapter, in which the competition between microarray technologies and high-throughput technologies is considered under a data analysis view. The up-to-date limitations of DNA microarrays are important to forecast challenges and future trends in microarray data analysis; these include data analysis techniques associated with an increasing sample sizes, new feature selection methods, deep learning techniques, covariate significance testing as well as false discovery rate methods, among other procedures for a better interpretability of the results.
Collapse
|
10
|
Miftakhov RA, Lapa SA, Shershov VE, Zasedateleva OA, Guseinov TO, Spitsyn MA, Kuznetsova VE, Mamaev DD, Lysov YP, Barsky VE, Timofeev EN, Zasedatelev AS, Chudinov AV. Generation of Active Carboxyl Groups on the Surface of a Polyethylene Terephthalate Film and Their Quantitation by Digital Fluorescence Microscopy. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Affiliation(s)
- Limor Cohen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - David R. Walt
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Bender J, Bognar S, Camagna M, Donauer JAM, Eble JW, Emig R, Fischer S, Jesser R, Keilholz L, Kokotek DMU, Neumann J, Nicklaus S, Oude Weernink RRQPT, Stühn LG, Wössner N, Krämer SD, Schwenk P, Gensch N, Roth G, Ulbrich MH. Multiplexed antibody detection from blood sera by immobilization of in vitro expressed antigens and label-free readout via imaging reflectometric interferometry (iRIf). Biosens Bioelectron 2018; 115:97-103. [PMID: 29803867 DOI: 10.1016/j.bios.2018.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/18/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022]
Abstract
The detection of antibodies from blood sera is crucial for diagnostic purposes. Miniaturized protein assays in combination with microfluidic setups hold great potential by enabling automated handling and multiplexed analyses. Yet, the separate expression, purification, and storage of many individual proteins are time consuming and limit applicability. In vitro cell-free expression has been proposed as an alternative procedure for the generation of protein assays. We report the successful in vitro expression of different model proteins from DNA templates with an optimized expression mix. His10-tagged proteins were specifically captured and immobilized on a Ni-NTA coated sensor surface directly from the in vitro expression mix. Finally, the specific binding of antibodies from rabbit-derived blood sera to the immobilized proteins was monitored by imaging reflectometric interferometry (iRIf). Antibodies in the blood sera could be identified by binding to the respective epitopes with minimal cross reactivity. The results show the potential of in vitro expression and label-free detection for binding assays in general and diagnostic purposes in specific.
Collapse
Affiliation(s)
- Julian Bender
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sabine Bognar
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Maurizio Camagna
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Julia A M Donauer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Julian W Eble
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ramona Emig
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sabrina Fischer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Rabea Jesser
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Luisa Keilholz
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Daniel M U Kokotek
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Julika Neumann
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Simon Nicklaus
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Ricardo R Q P T Oude Weernink
- Institute of Physics, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Lara G Stühn
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nathalie Wössner
- Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan D Krämer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; ZBSA - Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Schwenk
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Gensch
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Günter Roth
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; ZBSA - Center for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany.
| | - Maximilian H Ulbrich
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Renal Division, Freiburg University Medical Center, 79106 Freiburg, Germany.
| |
Collapse
|
13
|
Chen Z, Dodig-Crnković T, Schwenk JM, Tao SC. Current applications of antibody microarrays. Clin Proteomics 2018; 15:7. [PMID: 29507545 PMCID: PMC5830343 DOI: 10.1186/s12014-018-9184-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
The concept of antibody microarrays is one of the most versatile approaches within multiplexed immunoassay technologies. These types of arrays have increasingly become an attractive tool for the exploratory detection and study of protein abundance, function, pathways, and potential drug targets. Due to the properties of the antibody microarrays and their potential use in basic research and clinical analytics, various types of antibody microarrays have already been developed. In spite of the growing number of studies utilizing this technique, few reviews about antibody microarray technology have been presented to reflect the quality and future uses of the generated data. In this review, we provide a summary of the recent applications of antibody microarray techniques in basic biology and clinical studies, providing insights into the current trends and future of protein analysis.
Collapse
Affiliation(s)
- Ziqing Chen
- Key Laboratory of Systems Biomedicine, (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Tea Dodig-Crnković
- Affinity Proteomics, SciLifeLab, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Jochen M. Schwenk
- Affinity Proteomics, SciLifeLab, KTH - Royal Institute of Technology, 171 65 Solna, Sweden
| | - Sheng-ce Tao
- Key Laboratory of Systems Biomedicine, (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
14
|
Recent advances in sample pre-treatment for emerging methods in proteomic analysis. Talanta 2017; 174:738-751. [DOI: 10.1016/j.talanta.2017.06.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
|
15
|
Adeola HA, Van Wyk JC, Arowolo A, Ngwanya RM, Mkentane K, Khumalo NP. Emerging Diagnostic and Therapeutic Potentials of Human Hair Proteomics. Proteomics Clin Appl 2017; 12. [PMID: 28960873 DOI: 10.1002/prca.201700048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/09/2017] [Indexed: 01/22/2023]
Abstract
The use of noninvasive human substrates to interrogate pathophysiological conditions has become essential in the post- Human Genome Project era. Due to its high turnover rate, and its long term capability to incorporate exogenous and endogenous substances from the circulation, hair testing is emerging as a key player in monitoring long term drug compliance, chronic alcohol abuse, forensic toxicology, and biomarker discovery, among other things. Novel high-throughput 'omics based approaches like proteomics have been underutilized globally in comprehending human hair morphology and its evolving use as a diagnostic testing substrate in the era of precision medicine. There is paucity of scientific evidence that evaluates the difference in drug incorporation into hair based on lipid content, and very few studies have addressed hair growth rates, hair forms, and the biological consequences of hair grooming or bleaching. It is apparent that protein-based identification using the human hair proteome would play a major role in understanding these parameters akin to DNA single nucleotide polymorphism profiling, up to single amino acid polymorphism resolution. Hence, this work seeks to identify and discuss the progress made thus far in the field of molecular hair testing using proteomic approaches, and identify ways in which proteomics would improve the field of hair research, considering that the human hair is mostly composed of proteins. Gaps in hair proteomics research are identified and the potential of hair proteomics in establishing a historic medical repository of normal and disease-specific proteome is also discussed.
Collapse
Affiliation(s)
- Henry A Adeola
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer C Van Wyk
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Afolake Arowolo
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Reginald M Ngwanya
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Khwezikazi Mkentane
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.,Hair and Skin Research Laboratory, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
16
|
Gagarinova A, Phanse S, Cygler M, Babu M. Insights from protein-protein interaction studies on bacterial pathogenesis. Expert Rev Proteomics 2017; 14:779-797. [DOI: 10.1080/14789450.2017.1365603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
17
|
Horvatić A, Kuleš J, Guillemin N, Galan A, Mrljak V, Bhide M. High-throughput proteomics and the fight against pathogens. MOLECULAR BIOSYSTEMS 2017; 12:2373-84. [PMID: 27227577 DOI: 10.1039/c6mb00223d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathogens pose a major threat to human and animal welfare. Understanding the interspecies host-pathogen protein-protein interactions could lead to the development of novel strategies to combat infectious diseases through the rapid development of new therapeutics. The first step in understanding the host-pathogen crosstalk is to identify interacting proteins in order to define crucial hot-spots in the host-pathogen interactome, such as the proposed pharmaceutical targets by means of high-throughput proteomic methodologies. In order to obtain holistic insight into the inter- and intra-species bimolecular interactions, apart from the proteomic approach, sophisticated in silico modeling is used to correlate the obtained large data sets with other omics data and clinical outcomes. Since the main focus in this area has been directed towards human medicine, it is time to extrapolate the existing expertise to a new emerging field: the 'systems veterinary medicine'. Therefore, this review addresses high-throughput mass spectrometry-based technology for monitoring protein-protein interactions in vitro and in vivo and discusses pathogen cultivation, model host cells and available bioinformatic tools employed in vaccine development.
Collapse
Affiliation(s)
- Anita Horvatić
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Josipa Kuleš
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Nicolas Guillemin
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Asier Galan
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Mangesh Bhide
- ERA Chair VetMedZg Project, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia. and Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia and Institute of Neuroimmunology, Slovakia Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
18
|
Sauer U. Analytical Protein Microarrays: Advancements Towards Clinical Applications. SENSORS (BASEL, SWITZERLAND) 2017; 17:E256. [PMID: 28146048 PMCID: PMC5335935 DOI: 10.3390/s17020256] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Abstract
Protein microarrays represent a powerful technology with the potential to serve as tools for the detection of a broad range of analytes in numerous applications such as diagnostics, drug development, food safety, and environmental monitoring. Key features of analytical protein microarrays include high throughput and relatively low costs due to minimal reagent consumption, multiplexing, fast kinetics and hence measurements, and the possibility of functional integration. So far, especially fundamental studies in molecular and cell biology have been conducted using protein microarrays, while the potential for clinical, notably point-of-care applications is not yet fully utilized. The question arises what features have to be implemented and what improvements have to be made in order to fully exploit the technology. In the past we have identified various obstacles that have to be overcome in order to promote protein microarray technology in the diagnostic field. Issues that need significant improvement to make the technology more attractive for the diagnostic market are for instance: too low sensitivity and deficiency in reproducibility, inadequate analysis time, lack of high-quality antibodies and validated reagents, lack of automation and portable instruments, and cost of instruments necessary for chip production and read-out. The scope of the paper at hand is to review approaches to solve these problems.
Collapse
Affiliation(s)
- Ursula Sauer
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, 3430 Tulln, Austria.
| |
Collapse
|
19
|
Pirih N, Kunej T. Toward a Taxonomy for Multi-Omics Science? Terminology Development for Whole Genome Study Approaches by Omics Technology and Hierarchy. ACTA ACUST UNITED AC 2017; 21:1-16. [DOI: 10.1089/omi.2016.0144] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Nina Pirih
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domzale, Slovenia
| |
Collapse
|
20
|
Atak A, Mukherjee S, Jain R, Gupta S, Singh VA, Gahoi N, K P M, Srivastava S. Protein microarray applications: Autoantibody detection and posttranslational modification. Proteomics 2016; 16:2557-2569. [PMID: 27452627 DOI: 10.1002/pmic.201600104] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/09/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
The discovery of DNA microarrays was a major milestone in genomics; however, it could not adequately predict the structure or dynamics of underlying protein entities, which are the ultimate effector molecules in a cell. Protein microarrays allow simultaneous study of thousands of proteins/peptides, and various advancements in array technologies have made this platform suitable for several diagnostic and functional studies. Antibody arrays enable researchers to quantify the abundance of target proteins in biological fluids and assess PTMs by using the antibodies. Protein microarrays have been used to assess protein-protein interactions, protein-ligand interactions, and autoantibody profiling in various disease conditions. Here, we summarize different microarray platforms with focus on its biological and clinical applications in autoantibody profiling and PTM studies. We also enumerate the potential of tissue microarrays to validate findings from protein arrays as well as other approaches, highlighting their significance in proteomics.
Collapse
Affiliation(s)
- Apurva Atak
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shuvolina Mukherjee
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Rekha Jain
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Shabarni Gupta
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Vedita Anand Singh
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Nikita Gahoi
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Manubhai K P
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Sanjeeva Srivastava
- Proteomics Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
21
|
Hsiao FSH, Sutandy FXR, Syu GD, Chen YW, Lin JM, Chen CS. Systematic protein interactome analysis of glycosaminoglycans revealed YcbS as a novel bacterial virulence factor. Sci Rep 2016; 6:28425. [PMID: 27323865 PMCID: PMC4914927 DOI: 10.1038/srep28425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
Microbial pathogens have evolved several strategies for interacting with host cell components, such as glycosaminoglycans (GAGs). Some microbial proteins involved in host-GAG binding have been described; however, a systematic study on microbial proteome-mammalian GAG interactions has not been conducted. Here, we used Escherichia coli proteome chips to probe four typical mammalian GAGs, heparin, heparan sulphate (HS), chondroitin sulphate B (CSB), and chondroitin sulphate C (CSC), and identified 185 heparin-, 62 HS-, 98 CSB-, and 101 CSC-interacting proteins. Bioinformatics analyses revealed the unique functions of heparin- and HS-specific interacting proteins in glycine, serine, and threonine metabolism. Among all the GAG-interacting proteins, three were outer membrane proteins (MbhA, YcbS, and YmgH). Invasion assays confirmed that mutant E. coli lacking ycbS could not invade the epithelial cells. Introducing plasmid carrying ycbS complemented the invading defects at ycbS lacking E. coli mutant, that can be further improved by overexpressing ycbS. Preblocking epithelial cells with YcbS reduced the percentage of E. coli invasions. Moreover, we observed that whole components of the ycb operon were crucial for invasion. The displacement assay revealed that YcbS binds to the laminin-binding site of heparin and might affect the host extracellular matrix structure by displacing heparin from laminin.
Collapse
Affiliation(s)
- Felix Shih-Hsiang Hsiao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - FX Reymond Sutandy
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - Guan-Da Syu
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - Jun-Mu Lin
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| |
Collapse
|
22
|
Zhai L, Wu L, Li F, Burnham RS, Pizarro JC, Xu B. A Rapid Method for Refolding Cell Surface Receptors and Ligands. Sci Rep 2016; 6:26482. [PMID: 27215173 PMCID: PMC4877712 DOI: 10.1038/srep26482] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 05/03/2016] [Indexed: 01/08/2023] Open
Abstract
Production of membrane-associated cell surface receptors and their ligands is often a cumbersome, expensive, and time-consuming process that limits detailed structural and functional characterization of this important class of proteins. Here we report a rapid method for refolding inclusion-body-based, recombinant cell surface receptors and ligands in one day, a speed equivalent to that of soluble protein production. This method efficiently couples modular on-column immobilized metal ion affinity purification and solid-phase protein refolding. We demonstrated the general utility of this method for producing multiple functionally active immunoreceptors, ligands, and viral decoys, including challenging cell surface proteins that cannot be produced using typical dialysis- or dilution-based refolding approaches.
Collapse
Affiliation(s)
- Lu Zhai
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Interdepartmental Microbiology Graduate Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Feng Li
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Robert S. Burnham
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Juan C. Pizarro
- Department of Tropical Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Interdepartmental Microbiology Graduate Program, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
- Center for Drug Discovery, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| |
Collapse
|
23
|
Abstract
Autoantibodies are a key component for the diagnosis, prognosis and monitoring of various diseases. In order to discover novel autoantibody targets, highly multiplexed assays based on antigen arrays hold a great potential and provide possibilities to analyze hundreds of body fluid samples for their reactivity pattern against thousands of antigens in parallel. Here, we provide an overview of the available technologies for producing antigen arrays, highlight some of the technical and methodological considerations and discuss their applications as discovery tools. Together with recent studies utilizing antigen arrays, we give an overview on how the different types of antigen arrays have and will continue to deliver novel insights into autoimmune diseases among several others.
Collapse
|
24
|
Abstract
Reverse phase protein array (RPPA) technology evolved from the advent of miniaturized immunoassays and gene microarray technology. Reverse phase protein arrays provide either a low throughput or high throughput methodology for quantifying proteins and their post-translationally modified forms in both cellular and non-cellular samples. As the demand for patient tailored therapies increases so does the need for precise and sensitive technology to accurately profile the molecular circuitry driving an individual patient's disease. RPPAs are currently utilized in clinical trials for profiling and comparing the functional state of protein signaling pathways, either temporally within tumors, between patients, or within the same patients before/after treatment. RPPAs are generally employed for quantifying large numbers of samples on one array, under identical experimental conditions. However, the goal of personalized cancer medicine is to design therapies based on the molecular portrait of a patient's tumor, which in turn result in more efficacious treatments with less toxicity. Therefore, RPPAs are also being validated for low throughput assays of individual patient samples. This review explores RPPA technology in the cancer research field, concentrating on its role as a fundamental tool for deciphering protein signaling networks and its emerging role in personalized medicine.
Collapse
|
25
|
Merbl Y, Kirschner MW. Post-Translational Modification Profiling--a High-Content Assay for Identifying Protein Modifications in Mammalian Cellular Systems. ACTA ACUST UNITED AC 2014; 77:27.8.1-27.8.13. [PMID: 25081743 DOI: 10.1002/0471140864.ps2708s77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein microarrays are extremely useful for detecting substrates of phosphorylation, substrates of ubiquitylation, or other post-translational modifications. The ability to screen binding interactions as well as post-translational modifications of thousands of proteins at once has improved our ability to identify their targets. Utilizing such systems in combination with functional mammalian cell extracts that preserve enzymatic activity offers advantages in identifying semi-quantitative changes of these interactions in the context of specific cellular conditions. This unit provides a detailed procedure for setting up an extract-based activity assay for high content detection of protein post-translation modifications. It also provides basic guidelines for data analysis.
Collapse
Affiliation(s)
- Yifat Merbl
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Lin Z, Ma Y, Zhao C, Chen R, Zhu X, Zhang L, Yan X, Yang W. An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity. LAB ON A CHIP 2014; 14:2505-14. [PMID: 24852169 DOI: 10.1039/c4lc00223g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein microarrays have become vital tools for various applications in biomedicine and bio-analysis during the past decade. The intense requirements for a lower detection limit and industrialization in this area have resulted in a persistent pursuit to fabricate protein microarrays with a low background and high signal intensity via simple methods. Here, we report on an extremely simple strategy to create three-dimensional (3D) protein microarrays with an anti-fouling background and a high protein capacity by photo-induced surface sequential controlled/living graft polymerization developed in our lab. According to this strategy, "dormant" groups of isopropyl thioxanthone semipinacol (ITXSP) were first introduced to a polymeric substrate through ultraviolet (UV)-induced surface abstraction of hydrogen, followed by a coupling reaction. Under visible light irradiation, the ITXSP groups were photolyzed to initiate surface living graft polymerization of poly(ethylene glycol) methyl methacrylate (PEGMMA), thus introducing PEG brushes to the substrate to generate a full anti-fouling background. Due to the living nature of this graft polymerization, there were still ITXSP groups on the chain ends of the PEG brushes. Therefore, by in situ secondary living graft cross-linking copolymerization of glycidyl methacrylate (GMA) and polyethylene glycol diacrylate (PEGDA), we could finally plant height-controllable cylinder microarrays of a 3D PEG network containing reactive epoxy groups onto the PEG brushes. Through a commonly used reaction of amine and epoxy groups, the proteins could readily be covalently immobilized onto the microarrays. This delicate design aims to overcome two universal limitations in protein microarrays: a full anti-fouling background can effectively eliminate noise caused by non-specific absorption and a 3D reactive network provides a larger protein-loading capacity to improve signal intensity. The results of non-specific protein absorption tests demonstrated that the introduction of PEG brushes greatly improved the anti-fouling properties of the pristine low-density polyethylene (LDPE), for which the absorption to bovine serum albumin was reduced by 83.3%. Moreover, the 3D protein microarrays exhibited a higher protein capacity than the controls to which were attached the same protein on PGMA brushes and monolayer epoxy functional groups. The 3D protein microarrays were used to test the immunoglobulin G (IgG) concentration in human serum, suggesting that they could be used for biomedical diagnosis, which indicates that more potential bio-applications could be developed for these protein microarrays in the future.
Collapse
Affiliation(s)
- Zhifeng Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu CX, Wu FL, Jiang HW, He X, Guo SJ, Tao SC. Global identification of CobB interactors by an Escherichia coli proteome microarray. Acta Biochim Biophys Sin (Shanghai) 2014; 46:548-55. [PMID: 24907045 DOI: 10.1093/abbs/gmu038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Protein acetylation is one of the most abundant post-translational modifications and plays critical roles in many important biological processes. Based on the recent advances in mass spectrometry technology, in bacteria, such as Escherichia coli, tremendous acetylated proteins and acetylation sites have been identified. However, only one protein deacetylase, i.e. CobB, has been identified in E. coli so far. How CobB is regulated is still elusive. One right strategy to study the regulation of CobB is to globally identify its interacting proteins. In this study, we used a proteome microarray containing ∼4000 affinity-purified E. coli proteins to globally identify CobB interactors, and finally identified 183 binding proteins of high stringency. Bioinformatics analysis showed that these interacting proteins play a variety of roles in a wide range of cellular functions and are highly enriched in carboxylic acid metabolic process and hexose catabolic process, and also enriched in transferase and hydrolase. We further used bio-layer interferometry to analyze the interaction and quantify the kinetic parameters of putative CobB interactors, and clearly showed that CobB could strongly interact with TopA and AccC. The novel CobB interactors that we identified could serve as a start point for further functional analysis.
Collapse
Affiliation(s)
- Cheng-xi Liu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan-lin Wu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-wei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang He
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shu-juan Guo
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
28
|
Deng RP, He X, Guo SJ, Liu WF, Tao Y, Tao SC. Global identification of O-GlcNAc transferase (OGT) interactors by a human proteome microarray and the construction of an OGT interactome. Proteomics 2014; 14:1020-30. [PMID: 24536041 DOI: 10.1002/pmic.201300144] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/10/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAcylation) is an important protein PTM, which is very abundant in mammalian cells. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT), whose substrate specificity is believed to be regulated through interactions with other proteins. There are a handful of known human OGT interactors, which is far from enough for fully elucidating the substrate specificity of OGT. To address this challenge, we used a human proteome microarray containing ~17,000 affinity-purified human proteins to globally identify OGT interactors and identified 25 OGT-binding proteins. Bioinformatics analysis showed that these interacting proteins play a variety of roles in a wide range of cellular functions and are highly enriched in intra-Golgi vesicle-mediated transport and vitamin biosynthetic processes. Combining newly identified OGT interactors with the interactors identified prior to this study, we have constructed the first OGT interactome. Bioinformatics analysis suggests that the OGT interactome plays important roles in protein transportation/localization and transcriptional regulation. The novel OGT interactors that we identified in this study could serve as a starting point for further functional analysis. Because of its high-throughput and parallel analysis capability, we strongly believe that protein microarrays could be easily applied for the global identification of regulators for other key enzymes.
Collapse
Affiliation(s)
- Rui-Ping Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
| | | | | | | | | | | |
Collapse
|
29
|
Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. ScientificWorldJournal 2014; 2014:260348. [PMID: 24550697 PMCID: PMC3914447 DOI: 10.1155/2014/260348] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/08/2013] [Indexed: 12/14/2022] Open
Abstract
Despite remarkable progress in proteomic methods, including improved detection limits and sensitivity, these methods have not yet been established in routine clinical practice. The main limitations, which prevent their integration into clinics, are high cost of equipment, the need for highly trained personnel, and last, but not least, the establishment of reliable and accurate protein biomarkers or panels of protein biomarkers for detection of neoplasms. Furthermore, the complexity and heterogeneity of most solid tumours present obstacles in the discovery of specific protein signatures, which could be used for early detection of cancers, for prediction of disease outcome, and for determining the response to specific therapies. However, cancer proteome, as the end-point of pathological processes that underlie cancer development and progression, could represent an important source for the discovery of new biomarkers and molecular targets for tailored therapies.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Nina Kocevar
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Bendali A, Bouguelia S, Roupioz Y, Forster V, Mailley P, Benosman R, Livache T, Sahel JA, Picaud S. Cell specific electrodes for neuronal network reconstruction and monitoring. Analyst 2014; 139:3281-9. [DOI: 10.1039/c4an00048j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Layered signaling regulatory networks analysis of gene expression involved in malignant tumorigenesis of non-resolving ulcerative colitis via integration of cross-study microarray profiles. PLoS One 2013; 8:e67142. [PMID: 23825635 PMCID: PMC3692446 DOI: 10.1371/journal.pone.0067142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/15/2013] [Indexed: 01/08/2023] Open
Abstract
Background Ulcerative colitis (UC) was the most frequently diagnosed inflammatory bowel disease (IBD) and closely linked to colorectal carcinogenesis. By far, the underlying mechanisms associated with the disease are still unclear. With the increasing accumulation of microarray gene expression profiles, it is profitable to gain a systematic perspective based on gene regulatory networks to better elucidate the roles of genes associated with disorders. However, a major challenge for microarray data analysis is the integration of multiple-studies generated by different groups. Methodology/Principal Findings In this study, firstly, we modeled a signaling regulatory network associated with colorectal cancer (CRC) initiation via integration of cross-study microarray expression data sets using Empirical Bayes (EB) algorithm. Secondly, a manually curated human cancer signaling map was established via comprehensive retrieval of the publicly available repositories. Finally, the co-differently-expressed genes were manually curated to portray the layered signaling regulatory networks. Results Overall, the remodeled signaling regulatory networks were separated into four major layers including extracellular, membrane, cytoplasm and nucleus, which led to the identification of five core biological processes and four signaling pathways associated with colorectal carcinogenesis. As a result, our biological interpretation highlighted the importance of EGF/EGFR signaling pathway, EPO signaling pathway, T cell signal transduction and members of the BCR signaling pathway, which were responsible for the malignant transition of CRC from the benign UC to the aggressive one. Conclusions The present study illustrated a standardized normalization approach for cross-study microarray expression data sets. Our model for signaling networks construction was based on the experimentally-supported interaction and microarray co-expression modeling. Pathway-based signaling regulatory networks analysis sketched a directive insight into colorectal carcinogenesis, which was of significant importance to monitor disease progression and improve therapeutic interventions.
Collapse
|
32
|
Uzoma I, Zhu H. Interactome mapping: using protein microarray technology to reconstruct diverse protein networks. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:18-28. [PMID: 23395178 PMCID: PMC3968920 DOI: 10.1016/j.gpb.2012.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
A major focus of systems biology is to characterize interactions between cellular components, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protein microarrays have greatly contributed to advances in proteomics and are becoming an important platform for systems biology. Protein microarrays are highly flexible, ranging from large-scale proteome microarrays to smaller customizable microarrays, making the technology amenable for detection of a broad spectrum of biochemical properties of proteins. In this article, we will focus on the numerous studies that have utilized protein microarrays to reconstruct biological networks including protein–DNA interactions, posttranslational protein modifications (PTMs), lectin–glycan recognition, pathogen–host interactions and hierarchical signaling cascades. The diversity in applications allows for integration of interaction data from numerous molecular classes and cellular states, providing insight into the structure of complex biological systems. We will also discuss emerging applications and future directions of protein microarray technology in the global frontier.
Collapse
Affiliation(s)
- Ijeoma Uzoma
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|