1
|
Lin G, Xu Q, Li J, Chu Z, Ma X, Zhu Q, Zhao Y, Mo J, Ye W, Shao L, Fang T, He M, Yue S, Dai M. Design, Synthesis, and Biological Evaluation of Pierardine Derivatives as Novel Brain-Penetrant and In Vivo Potent NMDAR-GluN2B Antagonists for Ischemic Stroke Treatment. J Med Chem 2024; 67:3358-3384. [PMID: 38413367 DOI: 10.1021/acs.jmedchem.3c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A series of structurally novel GluN2B NMDAR antagonists were designed, synthesized, and biologically evaluated as anti-stroke therapeutics by optimizing the chemical structure of Pierardine, the active ingredient of traditional Chinese medicine Dendrobium aphyllum (Roxb.) C. E. Fischer identified via in silico screening. The systematic structure-activity relationship study led to the discovery of 58 with promising NMDAR-GluN2B binding affinity and antagonistic activity. Of the two enantiomers, S-58 exhibited significant inhibition (IC50 = 74.01 ± 12.03 nM) against a GluN1/GluN2B receptor-mediated current in a patch clamp assay. In addition, it displayed favorable specificity over other subtypes and off-target receptors. In vivo, S-58 exerted therapeutic efficacy comparable to that of the approved GluN2B NMDAR antagonist ifenprodil and excellent safety profiles. In addition to the attractive in vitro and in vivo potency, S-58 exhibited excellent brain exposure. In light of these merits, S-58 has been advanced to further preclinical investigation as a potential anti-stroke candidate.
Collapse
Affiliation(s)
- Gaofeng Lin
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Qinlong Xu
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Jiaming Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Zhaoxing Chu
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Xiaodong Ma
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zhao
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Jiajia Mo
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Wenfeng Ye
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Li Shao
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Tao Fang
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Minghan He
- Rutgers Preparatory School, Somerset, New Jersey 08873, United States
| | - Shaoyun Yue
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| | - Mingqi Dai
- Hefei Institute of Pharmaceutical Industry Company, Ltd., Hefei 230088, China
| |
Collapse
|
2
|
Quan J, Yang H, Qin F, He Y, Liu J, Zhao Y, Ma C, Cheng M. Discovery of novel tryptamine derivatives as GluN2B subunit-containing NMDA receptor antagonists via pharmacophore-merging strategy with orally available therapeutic effect of cerebral ischemia. Eur J Med Chem 2023; 253:115318. [PMID: 37037139 DOI: 10.1016/j.ejmech.2023.115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/12/2023]
Abstract
A series of tryptamine derivatives has been designed and synthesized as novel GluN2B subunit-containing NMDA receptor (GluN2B-NMDAR) antagonists, which could simultaneously manifest the receptor-ligand interactions of representative GluN2B-NMDAR antagonists ifenprodil (1) and EVT-101 (3). In the present study, the neuroprotective potential of these compounds was explored through chemical synthesis and pharmacological characterization. Compound Z25 with significantly better neuroprotective activity than the positive control drug (percentage of protection: 55.8 ± 0.6% vs. 41.0 ± 2.7%) was considered to be an effective antagonist of the human GluN2B-NMDA receptor. Judging from in vitro pharmacological profiling, Z25 could downregulate NMDA-induced increased intracellular Ca2+ concentration, and Z25 could also upregulate NMDA-induced decreased intracellular p-ERK 1/2 expression, which suggested that Z25 is an antagonist of the GluN2B-NMDA receptor. Furthermore, the in vitro preliminary evaluation of the drug-like properties of compound Z25 showed remarkable plasma stability. Based on in vivo pharmacokinetic and pharmacodynamic studies in C57 mice, compound Z25 exhibited a relatively short half-life and a low F value (3.12 ± 0.01%), while administration of Z25 substantially improved the cognitive performance of mice in a series of tests of cerebral ischemic injury. Overall, these results support the further development of compound Z25 as a potential lead compound to treat the cerebral ischemic injury by antagonizing GluN2B-NMDA receptor.
Collapse
Affiliation(s)
- Jishun Quan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Huali Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Fengyun Qin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Yeli He
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Jiao Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Ying Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
3
|
Harris L, Regan MC, Myers SJ, Nocilla KA, Akins NS, Tahirovic YA, Wilson LJ, Dingledine R, Furukawa H, Traynelis SF, Liotta DC. Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model. ACS Chem Neurosci 2023; 14:917-935. [PMID: 36779874 PMCID: PMC9983021 DOI: 10.1021/acschemneuro.2c00779] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 02/14/2023] Open
Abstract
Many cases of accidental death associated with drug overdose are due to chronic opioid use, tolerance, and addiction. Analgesic tolerance is characterized by a decreased response to the analgesic effects of opioids, requiring increasingly higher doses to maintain the desired level of pain relief. Overactivation of GluN2B-containing N-methyl-d-Aspartate receptors is thought to play a key role in mechanisms underlying cellular adaptation that takes place in the development of analgesic tolerance. Herein, we describe a novel GluN2B-selective negative allosteric modulator, EU93-108, that shows high potency and brain penetrance. We describe the structural basis for binding at atomic resolution. This compound possesses intrinsic analgesic properties in the rodent tail immersion test. EU93-108 has an acute and significant anodyne effect, whereby morphine when combined with EU93-108 produces a higher tail flick latency compared to that of morphine alone. These data suggest that engagement of GluN2B as a target has utility in the treatment of pain, and EU93-108 could serve as an appropriate tool compound to interrogate this hypothesis. Future structure-activity relationship work around this scaffold could give rise to compounds that can be co-administered with opioids to diminish the onset of tolerance due to chronic opioid use, thereby modifying their utility.
Collapse
Affiliation(s)
- Lynnea
D. Harris
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Michael C. Regan
- W.M.
Keck Structural Biology Laboratory, Cold
Spring Harbor Laboratory, New York, New York11724, United States
- RADD
Pharmaceuticals, Westport, Connecticut06880, United States
| | - Scott J. Myers
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Kelsey A. Nocilla
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Nicholas S. Akins
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Yesim A. Tahirovic
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Lawrence J. Wilson
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| | - Ray Dingledine
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Hiro Furukawa
- W.M.
Keck Structural Biology Laboratory, Cold
Spring Harbor Laboratory, New York, New York11724, United States
| | - Stephen F. Traynelis
- Department
of Pharmacology and Chemical Biology, Emory
University, Atlanta, Georgia30322, United States
| | - Dennis C. Liotta
- Department
of Chemistry, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
4
|
Myers SJ, Ruppa KP, Wilson LJ, Tahirovic YA, Lyuboslavsky P, Menaldino DS, Dentmon ZW, Koszalka GW, Zaczek R, Dingledine RJ, Traynelis SF, Liotta DC. A Glutamate N-Methyl-d-Aspartate (NMDA) Receptor Subunit 2B-Selective Inhibitor of NMDA Receptor Function with Enhanced Potency at Acidic pH and Oral Bioavailability for Clinical Use. J Pharmacol Exp Ther 2021; 379:41-52. [PMID: 34493631 DOI: 10.1124/jpet.120.000370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
We describe a clinical candidate molecule from a new series of glutamate N-methyl-d-aspartate receptor subunit 2B-selective inhibitors that shows enhanced inhibition at extracellular acidic pH values relative to physiologic pH. This property should render these compounds more effective inhibitors of N-methyl-d-aspartate receptors at synapses responding to a high frequency of action potentials, since glutamate-containing vesicles are acidic within their lumen. In addition, acidification of penumbral regions around ischemic tissue should also enhance selective drug action for improved neuroprotection. The aryl piperazine we describe here shows strong neuroprotective actions with minimal side effects in preclinical studies. The clinical candidate molecule NP10679 has high oral bioavailability with good brain penetration and is suitable for both intravenous and oral dosing for therapeutic use in humans. SIGNIFICANCE STATEMENT: This study identifies a new series of glutamate N-methyl-d-aspartate (NMDA) receptor subunit 2B-selective negative allosteric modulators with properties appropriate for clinical advancement. The compounds are more potent at acidic pH, associated with ischemic tissue, and this property should increase the therapeutic safety of this class by improving efficacy in affected tissue while sparing NMDA receptor block in healthy brain.
Collapse
Affiliation(s)
- Scott J Myers
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Kamalesh P Ruppa
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Lawrence J Wilson
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Yesim A Tahirovic
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Polina Lyuboslavsky
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - David S Menaldino
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Zackery W Dentmon
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - George W Koszalka
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Robert Zaczek
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Raymond J Dingledine
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| | - Dennis C Liotta
- Department of Pharmacology and Chemical Biology (S.J.M, P.L., R.J.D., S.F.T.), Department of Chemistry (L.J.W., Y.A.T., D.S.M., Z.W.D., D.C.L.), Emory University, Atlanta, Georgia; NeurOp Inc., Atlanta, Georgia (S.J.M., K.P.R., L.J.W., Y.A.T, P.L., D.S.M., Z.W.D., G.W.K., R.Z.), and TRPblue Inc., Durham, North Carolina (G.W.K)
| |
Collapse
|
5
|
Ugale V, Dhote A, Narwade R, Khadse S, Reddy PN, Shirkhedkar A. GluN2B/N-methyl-D-aspartate Receptor Antagonists: Advances in Design, Synthesis, and Pharmacological Evaluation Studies. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:822-862. [PMID: 33687902 DOI: 10.2174/1871527320666210309141627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Selective GluN2B/N-methyl-D-aspartate receptor (NMDAR) antagonists have exposed their clinical effectiveness in a cluster of neurodegenerative diseases, such as epilepsy, Alzheimer's disease, Parkinson's disease, pain, and depression. Hence, GluN2B/NMDARs are considered to be a prospective target for the management of neurodegenerative diseases. Here, we have discussed the current results and significance of subunit selective GluN2B/NMDAR antagonists to pave the way for the establishment of new, safe, and economical drug candidates in the near future. By using summarized data of selective GluN2B/NMDAR antagonists, medicinal chemists are certainly a step closer to the goal of improving the therapeutic and side effect profile of selective antagonists. Outlined summary of designing strategies, synthetic schemes, and pharmacological evaluation studies reinvigorate efforts to identify, modify, and synthesize novel GluN2B/NMDAR antagonists for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Ashish Dhote
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Rushikesh Narwade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - P Narayana Reddy
- Department of Chemistry, Gitam School of Technology, Gitam University, Hyderabad (T.S), India
| | - Atul Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| |
Collapse
|
6
|
Marcin LR, Warrier J, Thangathirupathy S, Shi J, Karageorge GN, Pearce BC, Ng A, Park H, Kempson J, Li J, Zhang H, Mathur A, Reddy AB, Nagaraju G, Tonukunuru G, Gupta GVRKM, Kamble M, Mannoori R, Cheruku S, Jogi S, Gulia J, Bastia T, Sanmathi C, Aher J, Kallem R, Srikumar BN, Vijaya KK, Naidu PS, Paschapur M, Kalidindi N, Vikramadithyan R, Ramarao M, Denton R, Molski T, Shields E, Subramanian M, Zhuo X, Nophsker M, Simmermacher J, Sinz M, Albright C, Bristow LJ, Islam I, Bronson JJ, Olson RE, King D, Thompson LA, Macor JE. BMS-986163, a Negative Allosteric Modulator of GluN2B with Potential Utility in Major Depressive Disorder. ACS Med Chem Lett 2018; 9:472-477. [PMID: 29795762 DOI: 10.1021/acsmedchemlett.8b00080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022] Open
Abstract
There is a significant unmet medical need for more efficacious and rapidly acting antidepressants. Toward this end, negative allosteric modulators of the N-methyl-d-aspartate receptor subtype GluN2B have demonstrated encouraging therapeutic potential. We report herein the discovery and preclinical profile of a water-soluble intravenous prodrug BMS-986163 (6) and its active parent molecule BMS-986169 (5), which demonstrated high binding affinity for the GluN2B allosteric site (Ki = 4.0 nM) and selective inhibition of GluN2B receptor function (IC50 = 24 nM) in cells. The conversion of prodrug 6 to parent 5 was rapid in vitro and in vivo across preclinical species. After intravenous administration, compounds 5 and 6 have exhibited robust levels of ex vivo GluN2B target engagement in rodents and antidepressant-like activity in mice. No significant off-target activity was observed for 5, 6, or the major circulating metabolites met-1 and met-2. The prodrug BMS-986163 (6) has demonstrated an acceptable safety and toxicology profile and was selected as a preclinical candidate for further evaluation in major depressive disorder.
Collapse
Affiliation(s)
- Lawrence R. Marcin
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | | | - Jianliang Shi
- Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, New Jersey 08648, United States
| | - George N. Karageorge
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Bradley C. Pearce
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Alicia Ng
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Hyunsoo Park
- Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, New Jersey 08648, United States
| | - James Kempson
- Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, New Jersey 08648, United States
| | - Jianqing Li
- Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, New Jersey 08648, United States
| | - Huiping Zhang
- Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, New Jersey 08648, United States
| | - Arvind Mathur
- Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, New Jersey 08648, United States
| | | | - G. Nagaraju
- Biocon Bristol-Myers Squibb Research Center, Bangalore, India
| | | | | | | | - Raju Mannoori
- Biocon Bristol-Myers Squibb Research Center, Bangalore, India
| | | | - Srinivas Jogi
- Biocon Bristol-Myers Squibb Research Center, Bangalore, India
| | - Jyoti Gulia
- Biocon Bristol-Myers Squibb Research Center, Bangalore, India
| | - Tanmaya Bastia
- Biocon Bristol-Myers Squibb Research Center, Bangalore, India
| | | | - Jayant Aher
- Biocon Bristol-Myers Squibb Research Center, Bangalore, India
| | | | | | | | | | | | | | | | | | - Rex Denton
- Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, New Jersey 08648, United States
| | - Thaddeus Molski
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Eric Shields
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | - Xiaoliang Zhuo
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michelle Nophsker
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jean Simmermacher
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael Sinz
- Biocon Bristol-Myers Squibb Research Center, Bangalore, India
| | - Charlie Albright
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Linda J. Bristow
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Imadul Islam
- Biocon Bristol-Myers Squibb Research Center, Bangalore, India
| | - Joanne J. Bronson
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Richard E. Olson
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Dalton King
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lorin A. Thompson
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E. Macor
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
7
|
Ugale VG, Bari SB. Identification of potential Gly/NMDA receptor antagonists by cheminformatics approach: a combination of pharmacophore modelling, virtual screening and molecular docking studies. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2016; 27:125-145. [PMID: 26911562 DOI: 10.1080/1062936x.2015.1136679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Gly/NMDA receptor has become known as potential target for the management of neurodegenerative diseases. Discovery of Gly/NMDA antagonists has thus attracted much attention in recent years. In the present research, a cheminformatics approach has been used to determine structural requirements for Gly/NMDA antagonism and to identify potential antagonists. Here, 37 quinoxaline derivatives were selected to develop a significant pharmacophore model with good certainty. The selected model was validated by leave-one-out cross-validation, an external test set, decoy set and Y-randomization test. Applicability domain was verified by the standardization approach. The validated 3D-QSAR model was used to screen virtual hits from the ZINC database by pharmacophore mapping. Molecular docking was used for assessment of receptor-ligand binding modes and binding affinities. The GlideScore and molecular interactions with critical amino acids were considered as crucial features to identify final hits. Furthermore, hits were analysed for in silico pharmacokinetic parameters and Lipinski's rule of five, demonstrating their potential as drug-like candidates. The PubChem and SciFinder search tools were used to authenticate the novelty of leads retrieved. Finally, five different leads have been suggested as putative novel candidates for the exploration of potent Gly/NMDA receptor antagonists.
Collapse
Affiliation(s)
- V G Ugale
- a Department of Pharmaceutical Chemistry , R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur ( Dhule ), Maharashtra , India
| | - S B Bari
- b Department of Pharmaceutical Chemistry , H. R. Patel Institute of Pharmaceutical Education and Research , Shirpur ( Dhule ), Maharashtra , India
| |
Collapse
|