1
|
Chen Y, Li S, Yang Z, Wang T, Yin F, Zhao X, Zhang Y. Value of Bax and Bcl2 expression in peripheral blood mononuclear cells for clinical prognosis of patients with chronic heart failure. Medicine (Baltimore) 2024; 103:e36943. [PMID: 38241555 PMCID: PMC10798729 DOI: 10.1097/md.0000000000036943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/28/2023] [Indexed: 01/21/2024] Open
Abstract
To investigate the expression of Bax and Bcl2 protein in peripheral blood mononuclear cells (PBMC) of patients with chronic heart failure (CHF), and to analyze their value for predicting major adverse cardiovascular event (MACE) in CHF patients. A total of 154 fasting venous blood samples from CHF patients were collected in our hospital from January 2017 to June 2019, and they were divided into 2 group according to whether MACE occurred during 3 years follow-up, MACE group and No-MACE group. Levels of Bax and Bcl2 protein expression in PBMC of CHF patients using enzyme-linked immunosorbent assay (ELISA), and then evaluated the predictive power of Bax and Bcl2 expression for MACE using logistic regression analysis and ROC curve. 62 (40.26%) of 154 CHF patients occurred MACE during follow-up, and there were significant differences in age, diabetes, LVEF, LDL-C and NYHA grade between MACE group and No-MACE group. Levels of Bax protein expression in PBMC of CHF patients in MACE group were significantly higher than those in No-MACE group, while levels of Bcl2 protein expression were significantly lower than those in No-MACE group, and Bax and Bcl2 protein levels increased and decreased with NYHA grades in MACE group and No-MACE group, respectively. Results of univariate and multivariate logistic regression analysis showed that Bax (OR, 1.026; 95% CI, 1.003-1.049; P = .027) and Bcl2 levels (OR, 0.952; 95% CI, 0.908-0.998; P = .041) were independent predictive factors for MACE in CHF patients. In addition, Bax and Bcl2 levels could be used to differentiate CHF patients at risk for MACE with an AUC of 0.744 (95% CI: 0.660-0.827) and an AUC of 0.743 (95% CI: 0.667-0.819), respectively. Levels of Bax and Bcl2 protein in PBMC could be used as independent predictive factors for MACE in CHF patients.
Collapse
Affiliation(s)
- Yangang Chen
- Department of Internal Medicine-Cardiovascular, Liangzhou Hospital of Wuwei City, Wuwei City, Gansu Province, China
| | - Shuiquan Li
- Department of Internal Medicine-Cardiovascular, Liangzhou Hospital of Wuwei City, Wuwei City, Gansu Province, China
| | - Zhenwen Yang
- Department of Internal Medicine-Cardiovascular, Liangzhou Hospital of Wuwei City, Wuwei City, Gansu Province, China
| | - Tianlu Wang
- Department of Internal Medicine-Cardiovascular, Liangzhou Hospital of Wuwei City, Wuwei City, Gansu Province, China
| | - Fahui Yin
- Department of Internal Medicine-Cardiovascular, Liangzhou Hospital of Wuwei City, Wuwei City, Gansu Province, China
| | - Xiangyu Zhao
- Department of Internal Medicine-Cardiovascular, Liangzhou Hospital of Wuwei City, Wuwei City, Gansu Province, China
| | - Yong Zhang
- Department of Internal Medicine-Cardiovascular, Liangzhou Hospital of Wuwei City, Wuwei City, Gansu Province, China
| |
Collapse
|
2
|
Tan L, Xiong D, Zhang H, Xiao S, Yi R, Wu J. ETS2 promotes cardiomyocyte apoptosis and autophagy in heart failure by regulating lncRNA TUG1/miR-129-5p/ATG7 axis. FASEB J 2023; 37:e22937. [PMID: 37171262 DOI: 10.1096/fj.202202148rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Heart failure (HF) is a chronic disease in which the heart is unable to provide enough blood and oxygen to the peripheral tissues. Cardiomyocyte apoptosis and autophagy have been linked to HF progression. However, the underlying mechanism of HF is unknown. In this study, H2 O2 -treated AC16 cells were used as a cell model of HF. The mRNA and protein levels of related genes were examined using RT-qPCR and western blot. Cell viability and apoptosis were assessed using CCK-8 and flow cytometry, respectively. The interactions between ETS2, TUG1, miR-129-5p, and ATG7 were validated by luciferase activity, ChIP, and RNA-Binding protein Immunoprecipitation assays. According to our findings, H2 O2 stimulation increased the expression of ETS2, TUG1, and ATG7 while decreasing the expression of miR-129-5p in AC16 cells. Furthermore, H2 O2 stimulation induced cardiomyocyte apoptosis and autophagy, which were reversed by ETS2 depletion, TUG1 silencing, or miR-129-5p upregulation. Mechanistically, ETS2 promoted TUG1 expression by binding to the TUG1 promoter, and TUG1 sponged miR-129-5p to increase ATG7 expression. Furthermore, TUG1 overexpression reversed ETS2 knockdown-mediated inhibition of cardiomyocyte apoptosis and autophagy and miR-129-5p inhibition abolished TUG1 depletion-mediated suppression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. As presumed, ATG7 overexpression reversed miR-129-5p mimics-mediated repression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. Finally, ETS2 silencing reduced cardiomyocyte apoptosis and autophagy to slow HF progression by targeting the ETS2/TUG1/miR-129-5p/ATG7 axis, which may provide new therapeutic targets for HF treatment.
Collapse
Affiliation(s)
- Li Tan
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Di Xiong
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Hui Zhang
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Sirou Xiao
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Ruilan Yi
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Jian Wu
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| |
Collapse
|
3
|
Effect of injection of different doses of isoproterenol on the hearts of mice. BMC Cardiovasc Disord 2022; 22:409. [PMID: 36096747 PMCID: PMC9469628 DOI: 10.1186/s12872-022-02852-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background Heart failure (HF) is one of the diseases that seriously threaten human health today and its mechanisms are very complex. Our study aims to confirm the optimal dose ISO-induced chronic heart failure mice model for better study of HF-related mechanisms and treatments in the future. Methods C57BL/6 mice were used to establish mice model of chronic heart failure. We injected isoproterenol subcutaneously in a dose gradient of 250 mg/kg, 200 mg/kg, 150 mg/kg, 100 mg/kg and 50 mg/kg. Echocardiography and ELISA were performed to figure out the occurrence of HF. We also supplemented the echocardiographic changes in mice over 30 days. Results Except group S and group E, echocardiographic abnormalities were found in other groups, suggesting a decrease in cardiac function. Except group S, myofibrolysis were found in the hearts of mice in other groups. Brain natriuretic peptide was significantly increased in groups B and D, and C-reactive protein was significantly increased in each group. Conclusion Our research finally found that the HFrEF mice model created by injection at a dose of 100 mg/kg for 7 days was the most suitable and a relatively stable chronic heart failure model could be obtained by placing it for 21 days. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02852-x.
Collapse
|
4
|
Silpa L, Sim R, Russell AJ. Recent Advances in Small Molecule Stimulation of Regeneration and Repair. Bioorg Med Chem Lett 2022; 61:128601. [PMID: 35123003 DOI: 10.1016/j.bmcl.2022.128601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Therapeutic approaches to stimulate regeneration and repair have the potential to transform healthcare and improve outcomes for patients suffering from numerous chronic degenerative diseases. To date most approaches have involved the transplantation of therapeutic cells, and while there have been a small number of clinical approvals, major hurdles exist to the routine adoption of such therapies. In recent years humans and other mammals have been shown to possess a regenerative capacity across multiple tissues and organs, and an innate regenerative and repair response has been shown to be activated in these organs in response to injury. These realisations have inspired a transformative approach in regenerative medicine: the development of new agents to directly target these innate regeneration and repair pathways. In this article we will review the current state of the art in the discovery of small molecule modulators of regeneration and their translation towards therapeutic agents, focussing specifically on the areas of neuroregeneration and cardiac regeneration.
Collapse
Affiliation(s)
- Laurence Silpa
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Rachel Sim
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA; Department of Pharmacology, University of Oxford, University of Oxford OX1 3QT.
| |
Collapse
|
5
|
Pan L, Fonseca De Lima CF, Vu LD, De Smet I. A Comprehensive Phylogenetic Analysis of the MAP4K Family in the Green Lineage. FRONTIERS IN PLANT SCIENCE 2021; 12:650171. [PMID: 34484252 PMCID: PMC8415026 DOI: 10.3389/fpls.2021.650171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The kinase-mediated phosphorylation impacts every basic cellular process. While mitogen-activated protein kinase technology kinase kinases (MAP4Ks) are evolutionarily conserved, there is no comprehensive overview of the MAP4K family in the green lineage (Viridiplantae). In this study, we identified putative MAP4K members from representative species of the two core groups in the green lineage: Chlorophyta, which is a diverse group of green algae, and Streptophyta, which is mostly freshwater green algae and land plants. From that, we inferred the evolutionary relationships of MAP4K proteins through a phylogenetic reconstruction. Furthermore, we provided a classification of the MAP4Ks in the green lineage into three distinct.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
6
|
Lou T, Ma J, Xie Y, Yao G, Fan Y, Ma S, Zou X. Nuanxin capsule enhances cardiac function by inhibiting oxidative stress-induced mitochondrial dependent apoptosis through AMPK/JNK signaling pathway. Biomed Pharmacother 2021; 135:111188. [PMID: 33418304 DOI: 10.1016/j.biopha.2020.111188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Oxidative stress and apoptosis play critical roles in the pathogenesis of heart failure (HF).Nuanxin capsule (NX) is a Chinese medicine that has outstanding protective effects on HF. The present study aimed to elucidate whether NX could protect HF against oxidative stress-induced apoptosis through intrinsic mitochondrial pathway. METHODS In vivo, HF was induced by transverse aortic constriction. NX and Compound C (Comp C) were administered to C57BL/6 J mice for over a 4-week period. Cardiac function was assessed with echocardiography. In vitro, H9c2 cells were exposed to H2O2 in the presence or absence of NX and Compound C. Cell viability, cytotoxicity, reactive oxygen species (ROS) production, apoptosis, mitochondrial membrane potential (ΔΨm) and mitochondrial function by oxygen consumption rate (OCR) were detected. The expressions of cytochrome c, BAX, Bcl-2, cleaved caspase-3, AMPK and JNK were evaluated by western blotting. RESULTS The results indicated that NX significantly improved cardiac function and enhanced the cell viability, ΔΨm and mitochondrial respiration. Also NX treatment reduced cell cytotoxicity and ROS production. Moreover, NX inhibited mitochondrial-mediated apoptosis by upregulating AMPK and downregulating JNK both in vivo and in vitro. The protective effects of NX on cardiac function by reducing oxidative stress-induced mitochondrial dependent apoptosis were reversed by Compound C treatment. CONCLUSIONS These findings demonstrated that NX effectively improved cardiac function in TAC mice by reducing oxidative stress-induced mitochondrial dependent apoptosis by activating AMPK/JNK signaling pathway.
Collapse
Affiliation(s)
- Tiantian Lou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Yanzheng Xie
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Gengzhen Yao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Ye Fan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China.
| | - Xu Zou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China; Dongguan Kanghua Hospital, Dongguan, 523080, China.
| |
Collapse
|
7
|
Verjans R, Derks WJA, Korn K, Sönnichsen B, van Leeuwen REW, Schroen B, van Bilsen M, Heymans S. Functional Screening Identifies MicroRNAs as Multi-Cellular Regulators of Heart Failure. Sci Rep 2019; 9:6055. [PMID: 30988323 PMCID: PMC6465262 DOI: 10.1038/s41598-019-41491-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is the leading cause of death in the Western world. Pathophysiological processes underlying HF development, including cardiac hypertrophy, fibrosis and inflammation, are controlled by specific microRNAs (miRNAs). Whereas most studies investigate miRNA function in one particular cardiac cell type, their multicellular function is poorly investigated. The present study probed 194 miRNAs -differentially expressed in cardiac inflammatory disease - for regulating cardiomyocyte size, cardiac fibroblasts collagen content, and macrophage polarization. Of the tested miRNAs, 13%, 26%, and 41% modulated cardiomyocyte size, fibroblast collagen production, and macrophage polarization, respectively. Seventeen miRNAs affected all three cellular processes, including miRNAs with established (miR-210) and unknown roles in cardiac pathophysiology (miR-145-3p). These miRNAs with a multi-cellular function commonly target various genes. In-depth analysis in vitro of previously unstudied miRNAs revealed that the observed phenotypical alterations concurred with changes in transcript and protein levels of hypertrophy-, fibrosis- and inflammation-related genes. MiR-145-3p and miR-891a-3p were identified to regulate the fibrotic response, whereas miR-223-3p, miR-486-3p, and miR-488-5p modulated macrophage activation and polarisation. In conclusion, miRNAs are multi-cellular regulators of different cellular processes underlying cardiac disease. We identified previously undescribed roles of miRNAs in hypertrophy, fibrosis, and inflammation, and attribute new cellular effects to various well-known miRNAs.
Collapse
Affiliation(s)
- Robin Verjans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
- Former Cenix BioScience GmbH, 01307, Dresden, Saxony, Germany
| | - Wouter J A Derks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
- Former Cenix BioScience GmbH, 01307, Dresden, Saxony, Germany
| | - Kerstin Korn
- Former Cenix BioScience GmbH, 01307, Dresden, Saxony, Germany
| | | | - Rick E W van Leeuwen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
| | - Marc van Bilsen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD, Maastricht, Limburg, The Netherlands.
- Center for Molecular and Cardiovascular Biology, Department of Cardiovascular Sciences, 3001, Leuven, Vlaams-Brabant, Belgium.
- Netherlands Heart Institute, 3511 EP, Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Fiedler LR, Chapman K, Xie M, Maifoshie E, Jenkins M, Golforoush PA, Bellahcene M, Noseda M, Faust D, Jarvis A, Newton G, Paiva MA, Harada M, Stuckey DJ, Song W, Habib J, Narasimhan P, Aqil R, Sanmugalingam D, Yan R, Pavanello L, Sano M, Wang SC, Sampson RD, Kanayaganam S, Taffet GE, Michael LH, Entman ML, Tan TH, Harding SE, Low CMR, Tralau-Stewart C, Perrior T, Schneider MD. MAP4K4 Inhibition Promotes Survival of Human Stem Cell-Derived Cardiomyocytes and Reduces Infarct Size In Vivo. Cell Stem Cell 2019; 24:579-591.e12. [PMID: 30853557 PMCID: PMC6458995 DOI: 10.1016/j.stem.2019.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/24/2018] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Heart disease is a paramount cause of global death and disability. Although cardiomyocyte death plays a causal role and its suppression would be logical, no clinical counter-measures target the responsible intracellular pathways. Therapeutic progress has been hampered by lack of preclinical human validation. Mitogen-activated protein kinase kinase kinase kinase-4 (MAP4K4) is activated in failing human hearts and relevant rodent models. Using human induced-pluripotent-stem-cell-derived cardiomyocytes (hiPSC-CMs) and MAP4K4 gene silencing, we demonstrate that death induced by oxidative stress requires MAP4K4. Consequently, we devised a small-molecule inhibitor, DMX-5804, that rescues cell survival, mitochondrial function, and calcium cycling in hiPSC-CMs. As proof of principle that drug discovery in hiPSC-CMs may predict efficacy in vivo, DMX-5804 reduces ischemia-reperfusion injury in mice by more than 50%. We implicate MAP4K4 as a well-posed target toward suppressing human cardiac cell death and highlight the utility of hiPSC-CMs in drug discovery to enhance cardiomyocyte survival.
Collapse
Affiliation(s)
- Lorna R Fiedler
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Kathryn Chapman
- Drug Discovery Centre, Department of Medicine, Imperial College London, London SW7 2AZ, UK; Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK; Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Min Xie
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evie Maifoshie
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Micaela Jenkins
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Pelin Arabacilar Golforoush
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mohamed Bellahcene
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Michela Noseda
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Dörte Faust
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Ashley Jarvis
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Gary Newton
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Marta Abreu Paiva
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mutsuo Harada
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Daniel J Stuckey
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Weihua Song
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Josef Habib
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Priyanka Narasimhan
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Rehan Aqil
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Devika Sanmugalingam
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Robert Yan
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Lorenzo Pavanello
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Motoaki Sano
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sam C Wang
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert D Sampson
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Sunthar Kanayaganam
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - George E Taffet
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lloyd H Michael
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark L Entman
- Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tse-Hua Tan
- Immunology Research Center, National Health Research Institutes, Zhunan 35053, Taiwan; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sian E Harding
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Caroline M R Low
- Drug Discovery Centre, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | - Trevor Perrior
- Domainex, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; Michael E. DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Dorr KM, Conlon FL. Proteomic-based approaches to cardiac development and disease. Curr Opin Chem Biol 2019; 48:150-157. [PMID: 30711722 DOI: 10.1016/j.cbpa.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/14/2023]
Abstract
Congenital malformations, or structural birth defects, are now the leading cause of infant mortality in the United States and Europe (Dolk et al., 2010; Heron et al., 2009). Of the congenital malformations, congenital heart disease (CHD) is the most common (Dolk et al., 2010; Heron et al., 2009). Thus, a molecular understanding of heart development is an essential goal for improving clinical approaches to CHD. However, CHDs are commonly a result of genetic defects that manifest themselves in a spatial and temporal manner during the early stages of embryogenesis, leaving them mostly intractable to mass spectrometry-based analysis. Here, we describe the technologies and advancements in the field of mass spectrometry over the past few years that have begun to provide insights into the molecular and cellular basis of CHD and prospects for these types of approaches in the future.
Collapse
Affiliation(s)
- Kerry M Dorr
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L Conlon
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Klimczak-Tomaniak D, Pilecki T, Żochowska D, Sieńko D, Janiszewski M, Pączek L, Kuch M. CXCL12 in Patients with Chronic Kidney Disease and Healthy Controls: Relationships to Ambulatory 24-Hour Blood Pressure and Echocardiographic Measures. Cardiorenal Med 2018; 8:249-258. [PMID: 30021207 DOI: 10.1159/000490396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIMS Chronic kidney disease is a pro-inflammatory condition where the interplay between different regulatory pathways and immune cells mediates an unfavorable remodeling of the vascular wall and myocardial hypertrophy. These mechanisms include the action of CXCL12. The aim of this study is to evaluate the association between serum CXCL12 with left ventricular hypertrophy (LVH) and blood pressure control in chronic kidney disease (CKD) patients. METHODS This single-center observational study involved 90 stable CKD stage 1-5 patients (including 33 renal transplant recipients) and 25 healthy age- and sex-matched control subjects. CXCL12 was quantified by ELISA. 24-h ambulatory blood pressure monitoring was performed in 90 patients and 25 healthy controls. Left ventricular mass index (LVMI) was calculated based on the transthoracic echocardiography measurements in 27 patients out of the CKD population and in the whole control group. RESULTS CXCL12 correlated significantly with LVMI by multivariate regression analysis (coefficient B = 0.33, p = 0.02) together with age (B = 0.30, p = 0.03) and gender (B = 0.41, p = 0.003). A positive correlation was observed between CXCL12 and average 24-h systolic blood pressure (SBP) (rho = 0.35, p = 0.001), daytime SBP (rho = 0.35, p = 0.001), and nocturnal SBP (rho = 0.30, p = 0.002). Nocturnal hypertension was frequent (46% of CKD patients). CONCLUSIONS The results of our study point towards a link between CXCL12 and LVH as well as blood pressure control among patients with CKD, supporting the thesis that CXCL12 may be regarded as a new potential uremic toxin.
Collapse
Affiliation(s)
- Dominika Klimczak-Tomaniak
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland.,Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Pilecki
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Żochowska
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Damian Sieńko
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Janiszewski
- Department of Heart Failure and Cardiac Rehabilitation, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantation and Internal Medicine, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kuch
- Chair and Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
High-speed, high-frequency ultrasound, in utero vector-flow imaging of mouse embryos. Sci Rep 2017; 7:16658. [PMID: 29192281 PMCID: PMC5709407 DOI: 10.1038/s41598-017-16933-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/19/2017] [Indexed: 01/16/2023] Open
Abstract
Real-time imaging of the embryonic murine cardiovascular system is challenging due to the small size of the mouse embryo and rapid heart rate. High-frequency, linear-array ultrasound systems designed for small-animal imaging provide high-frame-rate and Doppler modes but are limited in regards to the field of view that can be imaged at fine-temporal and -spatial resolution. Here, a plane-wave imaging method was used to obtain high-speed image data from in utero mouse embryos and multi-angle, vector-flow algorithms were applied to the data to provide information on blood flow patterns in major organs. An 18-MHz linear array was used to acquire plane-wave data at absolute frame rates ≥10 kHz using a set of fixed transmission angles. After beamforming, vector-flow processing and image compounding, effective frame rates were on the order of 2 kHz. Data were acquired from the embryonic liver, heart and umbilical cord. Vector-flow results clearly revealed the complex nature of blood-flow patterns in the embryo with fine-temporal and -spatial resolution.
Collapse
|
12
|
Sabbah HN. Silent disease progression in clinically stable heart failure. Eur J Heart Fail 2017; 19:469-478. [PMID: 27976514 PMCID: PMC5396296 DOI: 10.1002/ejhf.705] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is a progressive disorder whereby cardiac structure and function continue to deteriorate, often despite the absence of clinically apparent signs and symptoms of a worsening disease state. This silent yet progressive nature of HFrEF can contribute to the increased risk of death-even in patients who are 'clinically stable', or who are asymptomatic or only mildly symptomatic-because it often goes undetected and/or undertreated. Current therapies are aimed at improving clinical symptoms, and several agents more directly target the underlying causes of disease; however, new therapies are needed that can more fully address factors responsible for underlying progressive cardiac dysfunction. In this review, mechanisms that drive HFrEF, including ongoing cardiomyocyte loss, mitochondrial abnormalities, impaired calcium cycling, elevated LV wall stress, reactive interstitial fibrosis, and cardiomyocyte hypertrophy, are discussed. Additionally, limitations of current HF therapies are reviewed, with a focus on how these therapies are designed to counteract the deleterious effects of compensatory neurohumoral activation but do not fully prevent disease progression. Finally, new investigational therapies that may improve the underlying molecular, cellular, and structural abnormalities associated with HF progression are reviewed.
Collapse
|
13
|
Ebert AD, Diecke S, Chen IY, Wu JC. Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand? EMBO Mol Med 2016; 7:1090-103. [PMID: 26183451 PMCID: PMC4568945 DOI: 10.15252/emmm.201504395] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heart disease remains a leading cause of mortality and a major worldwide healthcare burden. Recent advances in stem cell biology have made it feasible to derive large quantities of cardiomyocytes for disease modeling, drug development, and regenerative medicine. The discoveries of reprogramming and transdifferentiation as novel biological processes have significantly contributed to this paradigm. This review surveys the means by which reprogramming and transdifferentiation can be employed to generate induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and induced cardiomyocytes (iCMs). The application of these patient-specific cardiomyocytes for both in vitro disease modeling and in vivo therapies for various cardiovascular diseases will also be discussed. We propose that, with additional refinement, human disease-specific cardiomyocytes will allow us to significantly advance the understanding of cardiovascular disease mechanisms and accelerate the development of novel therapeutic options.
Collapse
Affiliation(s)
- Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sebastian Diecke
- Max Delbrück Center, Berlin, Germany Berlin Institute of Health, Berlin, Germany
| | - Ian Y Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Petrosino JM, Heiss VJ, Maurya SK, Kalyanasundaram A, Periasamy M, LaFountain RA, Wilson JM, Simonetti OP, Ziouzenkova O. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes. PLoS One 2016; 11:e0148010. [PMID: 26859763 PMCID: PMC4747552 DOI: 10.1371/journal.pone.0148010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of novel therapeutics.
Collapse
Affiliation(s)
- Jennifer M. Petrosino
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
- Biomedical Sciences Program, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
| | - Valerie J. Heiss
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
| | - Santosh K. Maurya
- Cardiovascular Pathobiology Program, Sanford Burnham Medical Research Institute at Lake Nona, Orland, Florida, United States of America
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Muthu Periasamy
- Cardiovascular Pathobiology Program, Sanford Burnham Medical Research Institute at Lake Nona, Orland, Florida, United States of America
| | - Richard A. LaFountain
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
| | - Jacob M. Wilson
- Department of Human Performance, The University of Tampa, Tampa, Florida, United States of America
| | - Orlando P. Simonetti
- Department of Radiology, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
- Department of Cardiovascular Medicine, The Ohio State University, College of Medicine, Columbus, Ohio, United States of America
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, College of Education & Human Ecology, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|