1
|
Alosaimi F, Boonstra JT, Tan S, Temel Y, Jahanshahi A. The role of neurotransmitter systems in mediating deep brain stimulation effects in Parkinson’s disease. Front Neurosci 2022; 16:998932. [PMID: 36278000 PMCID: PMC9579467 DOI: 10.3389/fnins.2022.998932] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Deep brain stimulation (DBS) is among the most successful paradigms in both translational and reverse translational neuroscience. DBS has developed into a standard treatment for movement disorders such as Parkinson’s disease (PD) in recent decades, however, specific mechanisms behind DBS’s efficacy and side effects remain unrevealed. Several hypotheses have been proposed, including neuronal firing rate and pattern theories that emphasize the impact of DBS on local circuitry but detail distant electrophysiological readouts to a lesser extent. Furthermore, ample preclinical and clinical evidence indicates that DBS influences neurotransmitter dynamics in PD, particularly the effects of subthalamic nucleus (STN) DBS on striatal dopaminergic and glutamatergic systems; pallidum DBS on striatal dopaminergic and GABAergic systems; pedunculopontine nucleus DBS on cholinergic systems; and STN-DBS on locus coeruleus (LC) noradrenergic system. DBS has additionally been associated with mood-related side effects within brainstem serotoninergic systems in response to STN-DBS. Still, addressing the mechanisms of DBS on neurotransmitters’ dynamics is commonly overlooked due to its practical difficulties in monitoring real-time changes in remote areas. Given that electrical stimulation alters neurotransmitter release in local and remote regions, it eventually exhibits changes in specific neuronal functions. Consequently, such changes lead to further modulation, synthesis, and release of neurotransmitters. This narrative review discusses the main neurotransmitter dynamics in PD and their role in mediating DBS effects from preclinical and clinical data.
Collapse
Affiliation(s)
- Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
- *Correspondence: Faisal Alosaimi,
| | - Jackson Tyler Boonstra
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sonny Tan
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Ali Jahanshahi,
| |
Collapse
|
2
|
Zhang Z, Lin BS, Wu CWG, Hsieh TH, Liou JC, Li YT, Peng CW. Designing and Pilot Testing a Novel Transcranial Temporal Interference Stimulation Device for Neuromodulation. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1483-1493. [PMID: 35657852 DOI: 10.1109/tnsre.2022.3179537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcranial temporal interference stimulation (tTIS) has been proposed as a new neuromodulation technology for non-invasive deep-brain stimulation (DBS). However, few studies have detailed the design method of a tTIS device and provided system validation. Thus, a detailed design and validation scheme of a novel tTIS device for animal brain stimulation are presented in this study. In the proposed tTIS device, a direct digital synthesizer (DDS) was used to generate a sine wave potential of different frequencies, which was converted to an adjustable sine wave current. A current transformer was used to produce electrical isolation of different channels, which eliminated the current crosstalk between channels and greatly increased the load capacity by amplifying the output voltage. Several in vitro experiments were first conducted to validate the tTIS device. Our results indicated that the error percentages of the stimulation currents were within ±2%. Current crosstalk between channels was almost completely eliminated. Then, in vivo electric field measurement shows that the 2-pole arrangement may provide better cortical targeting than the 4-pole mode. A pilot animal experiment was conducted in which evoked motion and electromyographic activation of the contralateral forelimb were observed, which indicated that the 2-pole tTIS had successfully activated the primary motor cortex in a rat. Motor activation induced by the 2-pole tTIS demonstrated the feasibility and safety potential when applying our tTIS device for neuromodulation.
Collapse
|
3
|
Averna A, Marceglia S, Arlotti M, Locatelli M, Rampini P, Priori A, Bocci T. Influence of inter-electrode distance on subthalamic nucleus local field potential recordings in Parkinson's disease. Clin Neurophysiol 2021; 133:29-38. [PMID: 34794045 DOI: 10.1016/j.clinph.2021.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To evaluate spectra and their correlations with clinical symptoms of local field potentials (LFP) acquired from wide- and close-spaced contacts (i.e. between contacts 0-3 or LFP03, and contacts 1-2 or LFP12 respectively) on the same DBS electrode within the subthalamus (STN) in Parkinson's disease (PD), before and after levodopa administration. METHODS LFP12 and LFP03 were recorded from 20 PD patients. We evaluated oscillatory power, local and switched phase-amplitude coupling (l- and Sw-PAC) and correlation with motor symptoms (UPDRSIII). RESULTS Before levodopa, both LFP03 and LFP12 power in the α band inversely correlated with UPDRSIII. Differences between contacts were found in the low-frequency bands power. After levodopa, differences in UPDRSIII were associated to changes in LFP03 low-β and LFP12 HFO (high frequency oscillations, 250-350 Hz) power, while a modulation of the low-β power and an increased β-LFO (low frequency oscillations, 15-45 Hz) PAC was found only for LFP12. CONCLUSION This study reveals differences in spectral pattern between LFP12 and LFP03 before and after levodopa administration, as well as different correlations with PD motor symptoms. SIGNIFICANCE Differences between LFP12 and LFP03 may offer an opportunity for optimizing adaptive deep brain stimulation (aDBS) protocols for PD. LFP12 can be used to detect β-HFO coupling and β power (i.e. bradykinesia), while LFP03 are optimal for low frequency oscillations (dyskinesias).
Collapse
Affiliation(s)
- Alberto Averna
- Aldo Ravelli" Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | | | - Marco Locatelli
- Aldo Ravelli" Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; Department of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Rampini
- Department of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alberto Priori
- Aldo Ravelli" Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; Clinical Neurology Unit I, San Paolo University Hospital, ASST Santi Paolo e Carlo and Department of Health Sciences, 20142 Milan, Italy
| | - Tommaso Bocci
- Aldo Ravelli" Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy; Clinical Neurology Unit I, San Paolo University Hospital, ASST Santi Paolo e Carlo and Department of Health Sciences, 20142 Milan, Italy..
| |
Collapse
|
4
|
Lio G, Thobois S, Ballanger B, Lau B, Boulinguez P. Removing deep brain stimulation artifacts from the electroencephalogram: Issues, recommendations and an open-source toolbox. Clin Neurophysiol 2018; 129:2170-2185. [PMID: 30144660 DOI: 10.1016/j.clinph.2018.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 07/23/2018] [Accepted: 07/28/2018] [Indexed: 12/30/2022]
Abstract
A major question for deep brain stimulation (DBS) research is understanding how DBS of one target area modulates activity in different parts of the brain. EEG gives privileged access to brain dynamics, but its use with implanted patients is limited since DBS adds significant high-amplitude electrical artifacts that can completely obscure neural activity measured using EEG. Here, we systematically review and discuss the methods available for removing DBS artifacts. These include simple techniques such as oversampling, antialiasing analog filtering and digital low-pass filtering, which are necessary but typically not sufficient to fully remove DBS artifacts when each is used in isolation. We also cover more advanced methods, including techniques tracking outliers in the frequency-domain, which can be effective, but are rarely used. The reason for that is twofold: First, it requires advanced skills in signal processing since no user friendly tool for removing DBS artifacts is currently available. Second, it involves fine-tuning to avoid over-aggressive filtering. We highlight an open-source toolbox incorporating most artifact removal methods, allowing users to combine different strategies.
Collapse
Affiliation(s)
- Guillaume Lio
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, Centre de Neuroscience Cognitive, Bron, France
| | - Stéphane Thobois
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, Centre de Neuroscience Cognitive, Bron, France; Hospices civils de Lyon, hôpital neurologique Pierre Wertheimer, Bron, France
| | - Bénédicte Ballanger
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne, France; INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Lyon, France
| | - Brian Lau
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France
| | - Philippe Boulinguez
- Université de Lyon, F-69622 Lyon, France; Université Lyon 1, Villeurbanne, France; INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Lyon, France.
| |
Collapse
|
5
|
Xia X, Yang Y, Guo Y, Bai Y, Dang Y, Xu R, He J. Current Status of Neuromodulatory Therapies for Disorders of Consciousness. Neurosci Bull 2018; 34:615-625. [PMID: 29916112 DOI: 10.1007/s12264-018-0244-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/25/2018] [Indexed: 11/26/2022] Open
Abstract
Treatment for disorders of consciousness (DOCs) is still a Gordian knot. Evidence-based guidelines on the treatment of DOC patients are not currently available, while neuromodulation techniques are seen as a potential treatment. Multiple neuromodulation therapies have been applied. This article reviews the most relevant studies in the literature in order to describe a clear picture of the current state of neuromodulation therapies that could be used to treat DOC patients. Both invasive and non-invasive brain stimulation is discussed. Significant behavioral improvements in prolonged DOCs under neuromodulation therapies are rare. The efficacy of various such therapies remains a matter of debate. Further clinical investigations of existing techniques in larger samples properly controlling for spontaneous recovery are needed, and new approaches are awaited.
Collapse
Affiliation(s)
- Xiaoyu Xia
- Department of Neurosurgery, PLA Army General Hospital, Beijing, 100700, China
| | - Yi Yang
- Department of Neurosurgery, PLA Army General Hospital, Beijing, 100700, China
| | - Yongkun Guo
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Yang Bai
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuanyuan Dang
- Department of Neurosurgery, PLA Army General Hospital, Beijing, 100700, China
| | - Ruxiang Xu
- Department of Neurosurgery, PLA Army General Hospital, Beijing, 100700, China
| | - Jianghong He
- Department of Neurosurgery, PLA Army General Hospital, Beijing, 100700, China.
| |
Collapse
|
6
|
Hashtjini MM, Jahromi GP, Sadr SS, Meftahi GH, Hatef B, Javidnazar D. Deep brain stimulation in a rat model of post-traumatic stress disorder modifies forebrain neuronal activity and serum corticosterone. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:370-375. [PMID: 29796219 PMCID: PMC5960752 DOI: 10.22038/ijbms.2018.27482.6705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective(s): Post-traumatic stress disorder (PTSD), one of the most devastating kinds of anxiety disorders, is the consequence of a traumatic event followed by intense fear. In rats with contextual fear conditioning (CFC), a model of PTSD caused by CFC (electrical foot shock chamber), deep brain stimulation (DBS) alleviates CFC abnormalities. Materials and Methods: Forty Male Wistar rats (220–250 g) were divided into 5 groups (n=8) and underwent stereotactic surgery to implant electrodes in the right basolateral nucleus of the amygdala (BLn). After 7 days, some animals received a foot shock, followed by another 7-day treatment schedule (DBS treatment). Next, freezing behavior was measured as a predicted response in the absence of the foot shock (re-exposure time). Blood serum corticosterone levels and amygdala c-Fos protein expression were assessed using Enzyme-linked immunosorbent assay (ELISA) and Western blot, respectively. Furthermore, freezing behaviors by re-exposure time test and general anxiety by elevated plus-maze (EPM) were evaluated. Results: PTSD decreased serum corticosterone levels and increased both amygdala c-Fos expression and freezing behaviors. Therefore, DBS treatment significantly (P<0.001) enhanced serum corticosterone levels and could significantly (P<0.001) reduce both c-Fos protein expression and freezing behaviors’ duration. However, DBS treatment has no effect on the general anxiety in PTSD rats. Conclusion: We argue that these outcomes might demonstrate the mechanism of DBS treatment, a complete therapeutic strategy, in PTSD patients.
Collapse
Affiliation(s)
- Mina Mokhtari Hashtjini
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gila Pirzad Jahromi
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Boshra Hatef
- Neuroscience Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Danial Javidnazar
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Oprisan SA, Imperatore J, Helms J, Tompa T, Lavin A. Cocaine-Induced Changes in Low-Dimensional Attractors of Local Field Potentials in Optogenetic Mice. Front Comput Neurosci 2018; 12:2. [PMID: 29445337 PMCID: PMC5797774 DOI: 10.3389/fncom.2018.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Optogenetically evoked local field potential (LFP) recorded from the medial prefrontal cortex (mPFC) of mice during basal conditions and following a systemic cocaine administration were analyzed. Blue light stimuli were delivered to mPFC through a fiber optic every 2 s and each trial was repeated 100 times. As in the previous study, we used a surrogate data method to check that nonlinearity was present in the experimental LFPs and only used the last 1.5 s of steady activity to measure the LFPs phase resetting induced by the brief 10 ms light stimulus. We found that the steady dynamics of the mPFC in response to light stimuli could be reconstructed in a three-dimensional phase space with topologically similar "8"-shaped attractors across different animals. Therefore, cocaine did not change the complexity of the recorded nonlinear data compared to the control case. The phase space of the reconstructed attractor is determined by the LFP time series and its temporally shifted versions by a multiple of some lag time. We also compared the change in the attractor shape between cocaine-injected and control using (1) dendrogram clustering and (2) Frechet distance. We found about 20% overlap between control and cocaine trials when classified using dendrogram method, which suggest that it may be possible to describe mathematically both data sets with the same model and slightly different model parameters. We also found that the lag times are about three times shorter for cocaine trials compared to control. As a result, although the phase space trajectories for control and cocaine may look similar, their dynamics is significantly different.
Collapse
Affiliation(s)
- Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Julia Imperatore
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Jessica Helms
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Department of Preventive Medicine, Faculty of Healthcare, University of Miskolc, Miskolc, Hungary
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
8
|
Prototype Deep Brain Stimulation System with Closed-Loop Control Feedback for Modulating Bladder Functions in Traumatic Brain Injured Animals. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Ragazzoni A, Cincotta M, Giovannelli F, Cruse D, Young GB, Miniussi C, Rossi S. Clinical neurophysiology of prolonged disorders of consciousness: From diagnostic stimulation to therapeutic neuromodulation. Clin Neurophysiol 2017; 128:1629-1646. [DOI: 10.1016/j.clinph.2017.06.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 05/17/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
|
10
|
Liu S, Li C, Xing Y, Wang Y, Tao F. Role of Neuromodulation and Optogenetic Manipulation in Pain Treatment. Curr Neuropharmacol 2017; 14:654-61. [PMID: 26935535 PMCID: PMC4981737 DOI: 10.2174/1570159x14666160303110503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/30/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
Neuromodulation, including invasive and non-invasive stimulation, has been used to treat intractable chronic pain. However, the mechanisms by which neuromodulation produces antinociceptive effect still remain uncertain. Optogenetic manipulation, a recently developed novel approach, has already proven its value to clinicians by providing new insights into mechanisms of current clinical neuromodulation methods as well as pathophysiology of nervous system diseases at the circuit level. Here, we discuss the principles of two neuromodulation methods (deep brain stimulation and motor cortex stimulation) and their applications in pain treatment. More important, we summarize the new information from recent studies regarding optogenetic manipulation in neuroscience research and its potential utility in pain study.
Collapse
Affiliation(s)
| | | | | | | | - Feng Tao
- Department of Biomedical Sciences at Texas A&M University Baylor College of Dentistry, 3302 Gaston Avenue, Dallas, Texas.
| |
Collapse
|
11
|
Qian X, Chen Y, Feng Y, Ma B, Hao H, Li L. A platform for long-term monitoring the deep brain rhythms. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa50d6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Risk of Infection After Local Field Potential Recording from Externalized Deep Brain Stimulation Leads in Parkinson's Disease. World Neurosurg 2017; 97:64-69. [DOI: 10.1016/j.wneu.2016.09.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022]
|
13
|
Basiago A, Binder DK. Effects of Deep Brain Stimulation on Autonomic Function. Brain Sci 2016; 6:brainsci6030033. [PMID: 27537920 PMCID: PMC5039462 DOI: 10.3390/brainsci6030033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson's disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target.
Collapse
Affiliation(s)
- Adam Basiago
- School of Medicine, University of California, Riverside, CA 92521, USA.
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, 1247 Webber Hall, Riverside, CA 92521, USA.
| |
Collapse
|
14
|
Rossi S, Santarnecchi E, Valenza G, Ulivelli M. The heart side of brain neuromodulation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0187. [PMID: 27044999 DOI: 10.1098/rsta.2015.0187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 05/03/2023]
Abstract
Neuromodulation refers to invasive, minimally invasive or non-invasive techniques to stimulate discrete cortical or subcortical brain regions with therapeutic purposes in otherwise intractable patients: for example, thousands of advanced Parkinsonian patients, as well as patients with tremor or dystonia, benefited by deep brain stimulation (DBS) procedures (neural targets: basal ganglia nuclei). A new era for DBS is currently opening for patients with drug-resistant depression, obsessive-compulsive disorders, severe epilepsy, migraine and chronic pain (neural targets: basal ganglia and other subcortical nuclei or associative fibres). Vagal nerve stimulation (VNS) has shown clinical benefits in patients with pharmacoresistant epilepsy and depression. Non-invasive brain stimulation neuromodulatory techniques such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are also being increasingly investigated for their therapeutic potential in several neurological and psychiatric disorders. In this review, we first address the most common neural targets of each of the mentioned brain stimulation techniques, and the known mechanisms of their neuromodulatory action on stimulated brain networks. Then, we discuss how DBS, VNS, rTMS and tDCS could impact on the function of brainstem centres controlling vital functions, critically reviewing their acute and long-term effects on brain sympathetic outflow controlling heart function and blood pressure. Finally, as there is clear experimental evidence in animals that brain stimulation can affect autonomic and heart functions, we will try to give a critical perspective on how it may enhance our understanding of the cortical/subcortical mechanisms of autonomic cardiovascular regulation, and also if it might find a place among therapeutic opportunities in patients with otherwise intractable autonomic dysfunctions.
Collapse
Affiliation(s)
- Simone Rossi
- Gaetano Valenza, Monica Ulivelli Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab. (Si-BIN Lab.), Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Emiliano Santarnecchi
- Gaetano Valenza, Monica Ulivelli Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab. (Si-BIN Lab.), Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Gaetano Valenza
- Department of Information Engineering, and Research Center E. Piaggio, University of Pisa, 56122 Pisa, Italy Neuroscience Statistics Research Lab, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monica Ulivelli
- Gaetano Valenza, Monica Ulivelli Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab. (Si-BIN Lab.), Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| |
Collapse
|
15
|
Arlotti M, Rosa M, Marceglia S, Barbieri S, Priori A. The adaptive deep brain stimulation challenge. Parkinsonism Relat Disord 2016; 28:12-7. [PMID: 27079257 DOI: 10.1016/j.parkreldis.2016.03.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 01/17/2023]
Abstract
Sub-optimal clinical outcomes of conventional deep brain stimulation (cDBS) in treating Parkinson's Disease (PD) have boosted the development of new solutions to improve DBS therapy. Adaptive DBS (aDBS), consisting of closed-loop, real-time changing of stimulation parameters according to the patient's clinical state, promises to achieve this goal and is attracting increasing interest in overcoming all of the challenges posed by its development and adoption. In the design, implementation, and application of aDBS, the choice of the control variable and of the control algorithm represents the core challenge. The proposed approaches, in fact, differ in the choice of the control variable and control policy, in the system design and its technological limits, in the patient's target symptom, and in the surgical procedure needed. Here, we review the current proposals for aDBS systems, focusing on the choice of the control variable and its advantages and drawbacks, thus providing a general overview of the possible pathways for the clinical translation of aDBS with its benefits, limitations and unsolved issues.
Collapse
Affiliation(s)
- Mattia Arlotti
- Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Electronics, Computer Science and Systems, University of Bologna, Cesena, Italy
| | - Manuela Rosa
- Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Marceglia
- Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Sergio Barbieri
- Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Unità di Neurofisiopatologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Alberto Priori
- Department of Health Sciences, University of Milan, Fondazione IRCCS Ca'Granda, Milan, Italy.
| |
Collapse
|
16
|
Chassain C, Melon C, Salin P, Vitale F, Couraud S, Durif F, Kerkerian-Le Goff L, Gubellini P. Metabolic, synaptic and behavioral impact of 5-week chronic deep brain stimulation in hemiparkinsonian rats. J Neurochem 2015; 136:1004-16. [PMID: 26576509 DOI: 10.1111/jnc.13438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 01/19/2023]
Abstract
The long-term effects and action mechanisms of subthalamic nucleus (STN) high-frequency stimulation (HFS) for Parkinson's disease still remain poorly characterized, mainly due to the lack of experimental models relevant to clinical application. To address this issue, we performed a multilevel study in freely moving hemiparkinsonian rats undergoing 5-week chronic STN HFS, using a portable constant-current microstimulator. In vivo metabolic neuroimaging by (1) H-magnetic resonance spectroscopy (11.7 T) showed that STN HFS normalized the tissue levels of the neurotransmission-related metabolites glutamate, glutamine and GABA in both the striatum and substantia nigra reticulata (SNr), which were significantly increased in hemiparkinsonian rats, but further decreased nigral GABA levels below control values; taurine levels, which were not affected in hemiparkinsonian rats, were significantly reduced. Slice electrophysiological recordings revealed that STN HFS was, uniquely among antiparkinsonian treatments, able to restore both forms of corticostriatal synaptic plasticity, i.e. long-term depression and potentiation, which were impaired in hemiparkinsonian rats. Behavior analysis (staircase test) showed a progressive recovery of motor skill during the stimulation period. Altogether, these data show that chronic STN HFS efficiently counteracts metabolic and synaptic defects due to dopaminergic lesion in both the striatum and SNr. Comparison of chronic STN HFS with acute and subchronic treatment further suggests that the long-term benefits of this treatment rely both on the maintenance of acute effects and on delayed actions on the basal ganglia network. We studied the effects of chronic (5 weeks) continuous subthalamic nucleus (STN) high-frequency stimulation (HFS) in hemiparkinsonian rats. The levels of glutamate and GABA in the striatum () and substantia nigra reticulata (SNr) (), measured by in vivo proton magnetic resonance spectroscopy ((1) H-MRS), were increased by 6-hydroxydopamine (6-OHDA) lesion, which also disrupted corticostriatal synaptic plasticity () and impaired forepaw skill () in the staircase test. Five-week STN HFS normalized glutamate and GABA levels and restored both synaptic plasticity and motor function. A partial behavioral recovery was observed at 2-week STN HFS.
Collapse
Affiliation(s)
- Carine Chassain
- Centre Hospitalier Universitaire (CHU) Clermont-Ferrand and Université d'Auvergne, Clermont-Ferrand, France
| | - Christophe Melon
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Pascal Salin
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Flora Vitale
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Sébastien Couraud
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Franck Durif
- Centre Hospitalier Universitaire (CHU) Clermont-Ferrand and Université d'Auvergne, Clermont-Ferrand, France
| | - Lydia Kerkerian-Le Goff
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| | - Paolo Gubellini
- Institut de Biologie du Développement de Marseille (IBDM) UMR7288, Aix-Marseille Université, CNRS, Marseille, France
| |
Collapse
|
17
|
Gubellini P, Kachidian P. Animal models of Parkinson's disease: An updated overview. Rev Neurol (Paris) 2015; 171:750-61. [PMID: 26343921 DOI: 10.1016/j.neurol.2015.07.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology, besides a minority of genetic cases, is still largely unknown. Animal models have contributed to elucidate PD etiology and pathogenesis, as well as its cellular and molecular mechanisms, leading to the general hypothesis that this neurological disorder is due to complex interactions between environmental and genetic factors. However, the full understanding of PD is still very far from being achieved, and new potential treatments need to be tested to further improve patients' quality of life and, possibly, slow down the neurodegenerative process. In this context, animal models of PD are required to address all these issues. "Classic" models are based on neurotoxins that selectively target catecholaminergic neurons (such as 6-hydroxydopamine, 1-methyl-1,2,3,6-tetrahydropiridine, agricultural pesticides, etc.), while more recent models employ genetic manipulations that either introduce mutations similar to those find in familial cases of PD (α-synuclein, DJ-1, PINK1, Parkin, etc.) or selectively disrupt nigrostriatal neurons (MitoPark, Pitx3, Nurr1, etc.). Each one of these models has its own advantages and limitations, thus some are better suited for studying PD pathogenesis, while others are more pertinent to test therapeutic treatments. Here, we provide a critical and updated review of the most used PD models.
Collapse
Affiliation(s)
- P Gubellini
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM) UMR7288, case 907, parc scientifique de Luminy, 163, avenue de Luminy, 13009 Marseille, France
| | - P Kachidian
- Aix-Marseille Université, CNRS, Institut de Biologie du Développement de Marseille (IBDM) UMR7288, case 907, parc scientifique de Luminy, 163, avenue de Luminy, 13009 Marseille, France.
| |
Collapse
|
18
|
Priori A. Technology for deep brain stimulation at a gallop. Mov Disord 2015; 30:1206-12. [PMID: 26011821 PMCID: PMC4736681 DOI: 10.1002/mds.26253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/13/2015] [Accepted: 03/30/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Alberto Priori
- Clinical Center for Neurostimulation, Neurotechnology and Movement Disorders, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, and University of Milan, Italy
| |
Collapse
|
19
|
Rosa M, Arlotti M, Ardolino G, Cogiamanian F, Marceglia S, Di Fonzo A, Cortese F, Rampini PM, Priori A. Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov Disord 2015; 30:1003-5. [PMID: 25999288 PMCID: PMC5032989 DOI: 10.1002/mds.26241] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/20/2015] [Accepted: 03/21/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Manuela Rosa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| | - Mattia Arlotti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Ardolino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Sara Marceglia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Paolo M Rampini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Priori
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Smith H, Gee L, Kumar V, Ramirez-Zamora A, Durphy J, Hanspal E, Barba A, Molho E, Shin D, Pilitsis JG. Deep brain stimulation significantly decreases disability from low back pain in patients with advanced Parkinson's disease. Stereotact Funct Neurosurg 2015; 93:206-11. [PMID: 25895600 DOI: 10.1159/000380827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Up to 60% of Parkinson's disease (PD) patients suffer from low back pain (LBP) during the course of their disease. How LBP affects daily functional status and how to manage this aspect of PD has not been adequately explored. METHODS We examined 16 patients undergoing bilateral subthalamic nucleus deep brain stimulation (STN DBS) who met the inclusion criteria for moderate disability from LBP, as classified by the Oswestry Low Back Pain Disability Index (OLBPD). RESULTS Thirteen of 16 patients had attempted additional treatments for LBP, including medical management, massage, chiropractic, epidural steroid injections and/or surgery, with minimal relief. Following DBS, there was a significant improvement in the OLBPD at both the 6-month and 1-year time points (p < 0.02, p < 0.005, respectively). A mean improvement of 31.7% on the OLBPD score was noted. The Visual Analogue Scale (VAS) similarly decreased significantly at 1 year (p = 0.015). There was no correlation between the OLBPD score and other measures, including the Unified Parkinson's Disease Rating Scale (UPDRS), age and other nonmotor symptoms. CONCLUSION Given the prevalent yet undertreated disability associated with LBP in PD, these results are novel in that they show that STN DBS has a significant positive effect on disability associated with LBP.
Collapse
Affiliation(s)
- Heather Smith
- Department of Neurosurgery, Albany Medical College, Albany, N.Y., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Marceglia S, Rossi E, Rosa M, Cogiamanian F, Rossi L, Bertolasi L, Vogrig A, Pinciroli F, Barbieri S, Priori A. Web-based telemonitoring and delivery of caregiver support for patients with Parkinson disease after deep brain stimulation: protocol. JMIR Res Protoc 2015; 4:e30. [PMID: 25803512 PMCID: PMC4376163 DOI: 10.2196/resprot.4044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 11/25/2014] [Indexed: 11/25/2022] Open
Abstract
Background The increasing number of patients, the high costs of management, and the chronic progress of the disease that prevents patients from performing even simple daily activities make Parkinson disease (PD) a complex pathology with a high impact on society. In particular, patients implanted with deep brain stimulation (DBS) electrodes face a highly fragile stabilization period, requiring specific support at home. However, DBS patients are followed usually by untrained personnel (caregivers or family), without specific care pathways and supporting systems. Objective This projects aims to (1) create a reference consensus guideline and a shared requirements set for the homecare and monitoring of DBS patients, (2) define a set of biomarkers that provides alarms to caregivers for continuous home monitoring, and (3) implement an information system architecture allowing communication between health care professionals and caregivers and improving the quality of care for DBS patients. Methods The definitions of the consensus care pathway and of caregiver needs will be obtained by analyzing the current practices for patient follow-up through focus groups and structured interviews involving health care professionals, patients, and caregivers. The results of this analysis will be represented in a formal graphical model of the process of DBS patient care at home. To define the neurophysiological biomarkers to be used to raise alarms during the monitoring process, neurosignals will be acquired from DBS electrodes through a new experimental system that records while DBS is turned ON and transmits signals by radiofrequency. Motor, cognitive, and behavioral protocols will be used to study possible feedback/alarms to be provided by the system. Finally, a set of mobile apps to support the caregiver at home in managing and monitoring the patient will be developed and tested in the community of caregivers that participated in the focus groups. The set of developed apps will be connected to the already existing WebBioBank Web-based platform allowing health care professionals to manage patient electronic health records and neurophysiological signals. New modules in the WebBioBank platform will be implemented to allow integration and data exchange with mobile health apps. Results The results of this project will provide a novel approach to long-term evaluation of patients with chronic, severe conditions in the homecare environment, based on caregiver empowerment and tailored applications developed according to consensus care pathways established by clinicians. Conclusions The creation of a direct communication channel between health care professionals and caregivers can benefit large communities of patients and would represent a scalable experience in integrating data and information coming from a clinical setting to those in home monitoring.
Collapse
Affiliation(s)
- Sara Marceglia
- Clinical Center for Neurostimulation, Neurotechnology, and Movement Disorders, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rossi E, Rosa M, Rossi L, Priori A, Marceglia S. WebBioBank: A new platform for integrating clinical forms and shared neurosignal analyses to support multi-centre studies in Parkinson’s Disease. J Biomed Inform 2014; 52:92-104. [DOI: 10.1016/j.jbi.2014.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 07/07/2014] [Accepted: 08/28/2014] [Indexed: 11/27/2022]
|
23
|
Krugel LK, Ehlen F, Tiedt HO, Kühn AA, Klostermann F. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing. Neuropsychologia 2014; 63:175-84. [DOI: 10.1016/j.neuropsychologia.2014.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/01/2023]
|
24
|
Grahn PJ, Mallory GW, Khurram OU, Berry BM, Hachmann JT, Bieber AJ, Bennet KE, Min HK, Chang SY, Lee KH, Lujan JL. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies. Front Neurosci 2014; 8:169. [PMID: 25009455 PMCID: PMC4070176 DOI: 10.3389/fnins.2014.00169] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023] Open
Abstract
Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Peter J Grahn
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - Grant W Mallory
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Obaid U Khurram
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - B Michael Berry
- Mayo Clinic College of Medicine, Mayo Clinic Rochester, MN, USA
| | - Jan T Hachmann
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Allan J Bieber
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Neurology, Mayo Clinic Rochester, MN, USA
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Division of Engineering, Mayo Clinic Rochester, MN, USA
| | - Hoon-Ki Min
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| | - J L Lujan
- Department of Neurologic Surgery, Mayo Clinic Rochester, MN, USA ; Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
25
|
Marin MF, Camprodon JA, Dougherty DD, Milad MR. Device-based brain stimulation to augment fear extinction: implications for PTSD treatment and beyond. Depress Anxiety 2014; 31:269-78. [PMID: 24634247 DOI: 10.1002/da.22252] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/10/2014] [Accepted: 01/18/2014] [Indexed: 01/27/2023] Open
Abstract
Conditioned fear acquisition and extinction paradigms have been widely used both in animals and humans to examine the neurobiology of emotional memory. Studies have also shown that patients suffering from posttraumatic stress disorder (PTSD) exhibit deficient extinction recall along with dysfunctional activation of the fear extinction network, including the ventromedial prefrontal cortex, amygdala, and hippocampus. A great deal of overlap exists between this fear extinction network and brain regions associated with symptom severity in PTSD. This suggests that the neural nodes of fear extinction could be targeted to reduce behavioral deficits that may subsequently translate into symptom improvement. In this article, we discuss potential applications of brain stimulation and neuromodulation methods, which, combined with a mechanistic understanding of the neurobiology of fear extinction, could be used to further our understanding of the pathophysiology of anxiety disorders and develop novel therapeutic tools. To this end, we discuss the following stimulation approaches: deep-brain stimulation, vagus nerve stimulation, transcranial direct current stimulation, and transcranial magnetic stimulation. We propose new translational research avenues that, from a systems neuroscience perspective, aim to expand our understanding of circuit dynamics and fear processing toward the practical development of clinical tools, to be used alone or in combination with behavioral therapies.
Collapse
Affiliation(s)
- Marie-France Marin
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Thelma Lovick
- Physiology and Pharmacology; University of Bristol; Bristol BS8 1TD UK
| |
Collapse
|
27
|
Rosa M, Fumagalli M, Giannicola G, Marceglia S, Lucchiari C, Servello D, Franzini A, Pacchetti C, Romito L, Albanese A, Porta M, Pravettoni G, Priori A. Pathological gambling in Parkinson's disease: subthalamic oscillations during economics decisions. Mov Disord 2013; 28:1644-52. [PMID: 23554027 DOI: 10.1002/mds.25427] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 01/29/2023] Open
Abstract
Pathological gambling develops in up to 8% of patients with Parkinson's disease. Although the pathophysiology of gambling remains unclear, several findings argue for a dysfunction in the basal ganglia circuits. To clarify the role of the subthalamic nucleus in pathological gambling, we studied its activity during economics decisions. We analyzed local field potentials recorded from deep brain stimulation electrodes in the subthalamic nucleus while parkinsonian patients with (n = 8) and without (n = 9) pathological gambling engaged in an economics decision-making task comprising conflictual trials (involving possible risk-taking) and non conflictual trials. In all parkinsonian patients, subthalamic low frequencies (2-12 Hz) increased during economics decisions. Whereas, in patients without gambling, low-frequency oscillations exhibited a similar pattern during conflictual and non conflictual stimuli, in those with gambling, low-frequency activity increased significantly more during conflictual than during non conflictual stimuli. The specific low-frequency oscillatory pattern recorded in patients with Parkinson's disease who gamble could reflect a subthalamic dysfunction that makes their decisional threshold highly sensitive to risky options. When parkinsonian patients process stimuli related to an economics task, low-frequency subthalamic activity increases. This task-related change suggests that the cognitive-affective system that drives economics decisional processes includes the subthalamic nucleus. The specific subthalamic neuronal activity during conflictual decisions in patients with pathological gambling supports the idea that the subthalamic nucleus is involved in behavioral strategies and in the pathophysiology of gambling.
Collapse
Affiliation(s)
- Manuela Rosa
- Centro Clinico per la Neurostimolazione, le Neurotecnologie ed i Disordini del Movimento, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Deep brain electrophysiological recordings provide clues to the pathophysiology of Tourette syndrome. Neurosci Biobehav Rev 2013; 37:1063-8. [PMID: 23333267 DOI: 10.1016/j.neubiorev.2013.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 12/13/2012] [Accepted: 01/03/2013] [Indexed: 01/12/2023]
Abstract
Although ample evidence suggests that high-frequency deep brain stimulation (DBS) is an effective therapy in patients with Tourette syndrome (TS), its pathophysiology and the neurophysiological mechanisms underlying these benefits remain unclear. The DBS targets mainly used to date in TS are located within the basal ganglia-thalamo-cortical circuit compromised in this syndrome: the medial and ventral thalamic nuclei, which are way stations within the circuit, the globus pallidus and the nucleus accumbens. Neuronal activity can be electrophysiologically recorded from deep brain structures during DBS surgery (intraoperative microrecordings) or within few days after DBS electrode implantation (local field potentials, LFPs). Recordings from the thalamus in patients with TS showed that the power in low-frequency oscillations (2-15 Hz) was higher than power in high frequency oscillations (<45 Hz) and that activity in gamma band (25-45 Hz) increases when patients' clinical status improved. Effective thalamic DBS for tic reduction seems to increase high frequency band oscillations (25-45 Hz). The same oscillatory pattern persists after DBS for 1 year, therefore showing that in TS DBS does not induce persistent neuroplastic changes in the neural activity in the stimulated structures. Neurophysiological recordings from deep brain structures suggest that tics originate not from the cortex but from neuronal dysfunction in deep brain structures such as the thalamus and globus pallidus. In conclusion, DBS can induce its beneficial effects in TS by modulating specific neural rhythms in the cortico-basal ganglia thalamic network. DBS could reduce tics related increased low-frequency activity by shifting the basal ganglia-thalamic oscillation power to higher frequencies.
Collapse
|