1
|
Sproule TJ, Wilpan RY, Wilson JJ, Low BE, Kabata Y, Ushiki T, Abe R, Wiles MV, Roopenian DC, Sundberg JP. Dystonin modifiers of junctional epidermolysis bullosa and models of epidermolysis bullosa simplex without dystonia musculorum. PLoS One 2023; 18:e0293218. [PMID: 37883475 PMCID: PMC10602294 DOI: 10.1371/journal.pone.0293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The Lamc2jeb junctional epidermolysis bullosa (EB) mouse model has been used to demonstrate that significant genetic modification of EB symptoms is possible, identifying as modifiers Col17a1 and six other quantitative trait loci, several with strong candidate genes including dystonin (Dst/Bpag1). Here, CRISPR/Cas9 was used to alter exon 23 in mouse skin specific isoform Dst-e (Ensembl GRCm38 transcript name Dst-213, transcript ID ENSMUST00000183302.5, protein size 2639AA) and validate a proposed arginine/glutamine difference at amino acid p1226 in B6 versus 129 mice as a modifier of EB. Frame shift deletions (FSD) in mouse Dst-e exon 23 (Dst-eFSD/FSD) were also identified that cause mice carrying wild-type Lamc2 to develop a phenotype similar to human EB simplex without dystonia musculorum. When combined, Dst-eFSD/FSD modifies Lamc2jeb/jeb (FSD+jeb) induced disease in unexpected ways implicating an altered balance between DST-e (BPAG1e) and a rarely reported rodless DST-eS (BPAG1eS) in epithelium as a possible mechanism. Further, FSD+jeb mice with pinnae removed are found to provide a test bed for studying internal epithelium EB disease and treatment without severe skin disease as a limiting factor while also revealing and accelerating significant nasopharynx symptoms present but not previously noted in Lamc2jeb/jeb mice.
Collapse
Affiliation(s)
| | - Robert Y. Wilpan
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - John J. Wilson
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Benjamin E. Low
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Yudai Kabata
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Riichiro Abe
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Michael V. Wiles
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
2
|
Lalonde R, Strazielle C. The DST gene in neurobiology. J Neurogenet 2023; 37:131-138. [PMID: 38465459 DOI: 10.1080/01677063.2024.2319880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
DST is a gene whose alternative splicing yields epithelial, neuronal, and muscular isoforms. The autosomal recessive Dstdt (dystonia musculorum) spontaneous mouse mutation causes degeneration of spinocerebellar tracts as well as peripheral sensory nerves, dorsal root ganglia, and cranial nerve ganglia. In addition to Dstdt mutants, axonopathy and neurofilament accumulation in perikarya are features of two other murine lines with spontaneous Dst mutations, targeted Dst knockout mice, DstTg4 transgenic mice carrying two deleted Dst exons, DstGt mice with trapped actin-binding domain-containing isoforms, and conditional Schwann cell-specific Dst knockout mice. As a result of nerve damage, Dstdt mutants display dystonia and ataxia, as seen in several genetically modified models and their motor coordination deficits have been quantified along with the spontaneous Dst nonsense mutant, the conditional Schwann cell-specific Dst knockout, the conditional DstGt mutant, and the Dst-b isoform specific Dst mutant. Recent findings in humans have associated DST mutations of the Dst-b isoform with hereditary sensory and autonomic neuropathies type 6 (HSAN-VI). These data should further encourage the development of genetic techniques to treat or prevent ataxic and dystonic symptoms.
Collapse
Affiliation(s)
- Robert Lalonde
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes (EA7300), Faculté de Médecine, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes (EA7300), Faculté de Médecine, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
3
|
Sproule TJ, Philip VM, Chaudhry NA, Roopenian DC, Sundberg JP. Seven naturally variant loci serve as genetic modifiers of Lamc2jeb induced non-Herlitz junctional Epidermolysis Bullosa in mice. PLoS One 2023; 18:e0288263. [PMID: 37437067 PMCID: PMC10337971 DOI: 10.1371/journal.pone.0288263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Epidermolysis Bullosa (EB) is a group of rare genetic disorders that compromise the structural integrity of the skin such that blisters and subsequent erosions occur after minor trauma. While primary genetic risk of all subforms of EB adhere to Mendelian patterns of inheritance, their clinical presentations and severities can vary greatly, implying genetic modifiers. The Lamc2jeb mouse model of non-Herlitz junctional EB (JEB-nH) demonstrated that genetic modifiers can contribute substantially to the phenotypic variability of JEB and likely other forms of EB. The innocuous changes in an 'EB related gene', Col17a1, have shown it to be a dominant modifier of Lamc2jeb. This work identifies six additional Quantitative Trait Loci (QTL) that modify disease in Lamc2jeb/jeb mice. Three QTL include other known 'EB related genes', with the strongest modifier effect mapping to a region including the epidermal hemi-desmosomal structural gene dystonin (Dst-e/Bpag1-e). Three other QTL map to intervals devoid of known EB-associated genes. Of these, one contains the nuclear receptor coactivator Ppargc1a as its primary candidate and the others contain related genes Pparg and Igf1, suggesting modifier pathways. These results, demonstrating the potent disease modifying effects of normally innocuous genetic variants, greatly expand the landscape of genetic modifiers of EB and therapeutic approaches that may be applied.
Collapse
Affiliation(s)
| | - Vivek M. Philip
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Lischka A, Lassuthova P, Çakar A, Record CJ, Van Lent J, Baets J, Dohrn MF, Senderek J, Lampert A, Bennett DL, Wood JN, Timmerman V, Hornemann T, Auer-Grumbach M, Parman Y, Hübner CA, Elbracht M, Eggermann K, Geoffrey Woods C, Cox JJ, Reilly MM, Kurth I. Genetic pain loss disorders. Nat Rev Dis Primers 2022; 8:41. [PMID: 35710757 DOI: 10.1038/s41572-022-00365-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 01/05/2023]
Abstract
Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.
Collapse
Affiliation(s)
- Annette Lischka
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Petra Lassuthova
- Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Arman Çakar
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Christopher J Record
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Jonathan Baets
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Maike F Dohrn
- Department of Neurology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, Oxford University, Oxford, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born Bunge, Antwerp, Belgium
| | - Thorsten Hornemann
- Department of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michaela Auer-Grumbach
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Yesim Parman
- Neuromuscular Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - C Geoffrey Woods
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, Cambridge, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Wilson DW. Motor Skills: Recruitment of Kinesins, Myosins and Dynein during Assembly and Egress of Alphaherpesviruses. Viruses 2021; 13:v13081622. [PMID: 34452486 PMCID: PMC8402756 DOI: 10.3390/v13081622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022] Open
Abstract
The alphaherpesviruses are pathogens of the mammalian nervous system. Initial infection is commonly at mucosal epithelia, followed by spread to, and establishment of latency in, the peripheral nervous system. During productive infection, viral gene expression, replication of the dsDNA genome, capsid assembly and genome packaging take place in the infected cell nucleus, after which mature nucleocapsids emerge into the cytoplasm. Capsids must then travel to their site of envelopment at cytoplasmic organelles, and enveloped virions need to reach the cell surface for release and spread. Transport at each of these steps requires movement of alphaherpesvirus particles through a crowded and viscous cytoplasm, and for distances ranging from several microns in epithelial cells, to millimeters or even meters during egress from neurons. To solve this challenging problem alphaherpesviruses, and their assembly intermediates, exploit microtubule- and actin-dependent cellular motors. This review focuses upon the mechanisms used by alphaherpesviruses to recruit kinesin, myosin and dynein motors during assembly and egress.
Collapse
Affiliation(s)
- Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; ; Tel.: +1-718-430-2305
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
6
|
Wiche G, Castañón MJ. Cytoskeleton | Intermediate Filament Linker Proteins: Plectin and BPAG1. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021:200-219. [DOI: 10.1016/b978-0-12-819460-7.00263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Lynch-Godrei A, Repentigny YD, Ferrier A, Gagnon S, Kothary R. Dystonin loss-of-function leads to impaired autophagosome-endolysosome pathway dynamics. Biochem Cell Biol 2020; 99:364-373. [PMID: 33347391 DOI: 10.1139/bcb-2020-0557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuronal dystonin protein (DST-a) is a large cytoskeletal linker important for integrating the various components of the cytoskeleton. Recessive Dst mutations lead to a sensory neuropathy in mice, known as dystonia musculorum (Dstdt). The disease is characterized by ataxia, autonomic disturbances, and ultimately, death, which are associated with massive degeneration of the sensory neurons in the dorsal root ganglion (DRG). Recent investigation of Dstdt sensory neurons revealed an accumulation of autophagosomes and a disruption in autophagic flux, which was believed to be due to insufficient availability of motor protein. Motor protein levels and the endolysosomal pathway were assessed in pre-symptomatic (postnatal day 5; P5) and symptomatic (P15) stage wild-type and Dstdt DRGs. Levels of mRNA encoding molecular motors were reduced, although no significant reduction in the protein level was detected. An increase in lysosomal marker LAMP1 in medium-large size Dstdt-27J sensory neurons was observed, along with an accumulation of electron-light single-membraned vesicles in Dstdt-27J DRG tissue at the late stages of disease. These vesicles are likely to have been autolysosomes, and their presence in only late-stage Dstdt-27J sensory neurons is suggestive of a pathological defect in autophagy. Further investigation is necessary to confirm vesicle identity, and to determine the role of Dst-a in normal autophagic flux.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Andrew Ferrier
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Centre for Neuromuscular Disease, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Makita E, Matsuzaki Y, Fukui T, Matsui A, Minakawa S, Nakano H, Ito K, Kijima H, Sawamura D. Autoantibodies to BPAG1e Trigger Experimental Bullous Pemphigoid in Mice. J Invest Dermatol 2020; 141:1167-1176.e3. [PMID: 33069726 DOI: 10.1016/j.jid.2020.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 11/19/2022]
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease that targets the hemidesmosomal proteins BP180 and BP230/BPAG1e. Whereas the role of anti-BP180 antibodies has been extensively characterized, the pathogenicity of anti-BPAG1e antibodies remains unclear. The purpose of this study is to elucidate the role of antibodies to BPAG1e in the experimental bullous pemphigoid models. We generated Bpag1 conditional knockout mice, where the knockout of Bpag1 is restricted to keratin 5-expressing epithelial cells. Bpag1 conditional knockout mice were immunized with the C-terminal portion of BPAG1e, and the splenocytes were injected into Rag2-/- mice intravenously. The recipient mice presented with erosion on the feet and tails. Microscopic examination showed subepidermal blisters and a linear deposition of IgG at the dermal-epidermal junction. To assess the potential role of trauma on BP development, we inflicted surface wounds on the dorsum of the Rag2-/- recipient mice after adoptive transfer. The wounded Rag2-/- mice had increased morbidity and severity of BP-like symptoms. Moreover, the depletion of B cells from splenocytes abolished a subepidermal blistering phenotype in vivo. These findings demonstrate that antibodies to BPAG1e might play a pathogenic role in causing subepidermal blistering, and external factors, including trauma, might be a trigger for BP development.
Collapse
Affiliation(s)
- Eiko Makita
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasushi Matsuzaki
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Tomohisa Fukui
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akinobu Matsui
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Satoko Minakawa
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hajime Nakano
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Ito
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
9
|
Ahmad I, Wilson DW. HSV-1 Cytoplasmic Envelopment and Egress. Int J Mol Sci 2020; 21:ijms21175969. [PMID: 32825127 PMCID: PMC7503644 DOI: 10.3390/ijms21175969] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a structurally complex enveloped dsDNA virus that has evolved to replicate in human neurons and epithelia. Viral gene expression, DNA replication, capsid assembly, and genome packaging take place in the infected cell nucleus, which mature nucleocapsids exit by envelopment at the inner nuclear membrane then de-envelopment into the cytoplasm. Once in the cytoplasm, capsids travel along microtubules to reach, dock, and envelope at cytoplasmic organelles. This generates mature infectious HSV-1 particles that must then be sorted to the termini of sensory neurons, or to epithelial cell junctions, for spread to uninfected cells. The focus of this review is upon our current understanding of the viral and cellular molecular machinery that enables HSV-1 to travel within infected cells during egress and to manipulate cellular organelles to construct its envelope.
Collapse
Affiliation(s)
- Imran Ahmad
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
10
|
Jin JY, Wu PF, He JQ, Fan LL, Yuan ZZ, Pang XY, Tang JY, Zhang LY. Novel Compound Heterozygous DST Variants Causing Hereditary Sensory and Autonomic Neuropathies VI in Twins of a Chinese Family. Front Genet 2020; 11:492. [PMID: 32528525 PMCID: PMC7262964 DOI: 10.3389/fgene.2020.00492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/20/2020] [Indexed: 11/27/2022] Open
Abstract
Background: Hereditary sensory and autonomic neuropathies (HSANs) are a rare and severe group of sensory axonal neuropathies. HSANs have been classified into eight groups based on mode of inheritance, clinical features, and the involved genes. HSAN-VI, perhaps the most notable type, is an autosomal recessive disease, which manifests as the severely impaired pain sensitivity, autonomic disturbances, distal myopathy, spontaneous or surgical amputations, and sometimes early death. Mutations in DST have been identified as the cause of HSAN-VI. DST encodes dystonin, a member of the plakin protein family that is involved in cytoskeletal filament networks. Dystonin has seven major isoforms in nerve, muscle, and epithelium. Material and Methods: The present study investigated a Chinese family with HSAN and explored potential pathogenic variants using whole-exome sequencing (WES). Variants were screened and filtered through bioinformatics analysis and prediction of variant pathogenicity. Co-segregation analysis was subsequently conducted. Results: We identified compound heterozygous variants of DST (c.3304G>A, p.V1102I and c.13796G>A, p.R4599H) in two patients. Conclusion: We reported on a Chinese family with HSAN-VI family and detected the disease-causing variants. Our description expands the spectrum of known DST variants and contributes to the clinical diagnosis of HSAN-VI.
Collapse
Affiliation(s)
- Jie-Yuan Jin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| | - Pan-Feng Wu
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ji-Qiang He
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Liang-Liang Fan
- School of Life Sciences, Central South University, Changsha, China.,Human Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | | | - Xiao-Yang Pang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ju-Yu Tang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China
| | - Li-Yang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
11
|
Lynch-Godrei A, De Repentigny Y, Yaworski RA, Gagnon S, Butcher J, Manoogian J, Stintzi A, Kothary R. Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterol Motil 2020; 32:e13773. [PMID: 31814231 DOI: 10.1111/nmo.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dystonia musculorum (Dstdt ) is a murine disease caused by recessive mutations in the dystonin (Dst) gene. Loss of dorsal root ganglion (DRG) sensory neurons, ataxia, and dystonic postures before death by postnatal day 18 (P18) is a hallmark feature. Recently we observed gas accumulation and discoloration in the small intestine and cecum in Dstdt mice by P15. The human disease resulting from dystonin loss-of-function, known as hereditary sensory and autonomic neuropathy type VI (HSAN-VI), has also been associated with gastrointestinal (GI) symptoms including chronic diarrhea and abdominal pain. As neuronal dystonin isoforms are expressed in the GI tract, we hypothesized that dystonin loss-of-function in Dstdt-27J enteric nervous system (ENS) neurons resulted in neurodegeneration associated with the GI abnormalities. METHODS We characterized the nature of the GI abnormalities observed in Dstdt mice through histological analysis of the gut, assessing the ENS for signs of neurodegeneration, evaluation of GI motility and absorption, and by profiling the microbiome. KEY RESULTS Though gut histology, ENS viability, and GI absorption were normal, slowed GI motility, thinning of the colon mucous layer, and reduced microbial richness/evenness were apparent in Dstdt-27J mice by P15. Parasympathetic GI input showed signs of neurodegeneration, while sympathetic did not. CONCLUSIONS & INFERENCES Dstdt-27J GI defects are not linked to ENS neurodegeneration, but are likely a result of an imbalance in autonomic control over the gut. Further characterization of HSAN-VI patient GI symptoms is necessary to determine potential treatments targeting symptom relief.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca A Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Juliana Manoogian
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Angel PM, Bruner E, Bethard J, Clift CL, Ball L, Drake RR, Feghali-Bostwick C. Extracellular matrix alterations in low-grade lung adenocarcinoma compared with normal lung tissue by imaging mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4450. [PMID: 31654589 PMCID: PMC7145762 DOI: 10.1002/jms.4450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 05/04/2023]
Abstract
Lung adenocarcinoma (LUAD) is the second most common cancer, affecting both men and women. Fibrosis is a hallmark of LUAD occurring throughout progression with excess production of extracellular matrix (ECM) components that lead to metastatic cell processes. Understanding the ECM cues that drive LUAD progression has been limited due to a lack of tools that can access and report on ECM components within the complex tumor microenvironment. Here, we test whether low-grade LUAD can be distinguished from normal lung tissue using a novel ECM imaging mass spectrometry (ECM IMS) approach. ECM IMS analysis of a tissue microarray with 20 low-grade LUAD tissues and 20 normal lung samples from 10 patients revealed 25 peptides that could discriminate between normal and low-grade LUAD using area under the receiver-operating curve (AUC) ≥0.7, P value ≤.001. Principal component analysis demonstrated that 62.4% of the variance could be explained by sample origin from normal or low-grade tumor tissue. Additional work performed on a wedge resection with moderately differentiated LUAD demonstrated that the ECM IMS analytical approach could distinguish LUAD spectral features from spectral features of normal adjacent lung tissue. Conventional liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomics demonstrated that specific sites of hydroxylation of proline (HYP) were a main collagen post translational modification that was readily detected in LUAD. A distinct peptide from collagen 3A1 modified by HYP was increased 3.5 fold in low-grade LUAD compared with normal lung tissue (AUC 0.914, P value <.001). This suggests that regulation of collagen proline hydroxylation could be an important process during early LUAD fibrotic deposition. ECM IMS is a useful tool that may be used to define fibrotic deposition in low-grade LUAD.
Collapse
Affiliation(s)
- Peggi M. Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Evelyn Bruner
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Jennifer Bethard
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Cassandra L. Clift
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Lauren Ball
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Proteomics Center, Medical University of South Carolina, Charleston, SC
| | | |
Collapse
|
13
|
Lynch-Godrei A, Kothary R. HSAN-VI: A spectrum disorder based on dystonin isoform expression. NEUROLOGY-GENETICS 2020; 6:e389. [PMID: 32042917 PMCID: PMC6975176 DOI: 10.1212/nxg.0000000000000389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022]
Abstract
Hereditary sensory and autonomic neuropathy (HSAN-VI) is a recessive genetic disorder that arises because of mutations in the human dystonin gene (DST, previously known as bullous pemphigoid antigen 1). Although initial characterization of HSAN-VI reported it as a sensory neuropathy that was lethal in infancy, we now know of a number of heterozygous mutations in DST that result in milder forms of the disease. Akin to what we observe in the mouse model dystonia musculorum (Dstdt), we believe that the heterogeneity of HSAN-VI can be attributed to a number of dystonin isoforms that the mutation affects. Lack of neuronal isoform dystonin-a2 is likely the universal determinant of HSAN-VI because all reported human cases are null for this isoform, as are all Dstdt mouse alleles. Compensatory mechanisms by intact dystonin-a isoforms also likely play a role in regulating disease severity, although we have yet to determine what specific effect dystonin-a1 and dystonin-a3 have on the pathogenesis of HSAN-VI.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program (A.L.-G., R.K.), Ottawa Hospital Research Institute; Department of Cellular and Molecular Medicine (A.L.-G., R.K.) and Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Department of Medicine (R.K.), University of Ottawa; and Centre for Neuromuscular Disease (R.K.), University of Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program (A.L.-G., R.K.), Ottawa Hospital Research Institute; Department of Cellular and Molecular Medicine (A.L.-G., R.K.) and Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Department of Medicine (R.K.), University of Ottawa; and Centre for Neuromuscular Disease (R.K.), University of Ottawa, Canada
| |
Collapse
|
14
|
Diwaker D, Wilson DW. Microtubule-Dependent Trafficking of Alphaherpesviruses in the Nervous System: The Ins and Outs. Viruses 2019; 11:v11121165. [PMID: 31861082 PMCID: PMC6950448 DOI: 10.3390/v11121165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022] Open
Abstract
The Alphaherpesvirinae include the neurotropic pathogens herpes simplex virus and varicella zoster virus of humans and pseudorabies virus of swine. These viruses establish lifelong latency in the nuclei of peripheral ganglia, but utilize the peripheral tissues those neurons innervate for productive replication, spread, and transmission. Delivery of virions from replicative pools to the sites of latency requires microtubule-directed retrograde axonal transport from the nerve terminus to the cell body of the sensory neuron. As a corollary, during reactivation newly assembled virions must travel along axonal microtubules in the anterograde direction to return to the nerve terminus and infect peripheral tissues, completing the cycle. Neurotropic alphaherpesviruses can therefore exploit neuronal microtubules and motors for long distance axonal transport, and alternate between periods of sustained plus end- and minus end-directed motion at different stages of their infectious cycle. This review summarizes our current understanding of the molecular details by which this is achieved.
Collapse
Affiliation(s)
- Drishya Diwaker
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Duncan W. Wilson
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-(718)-430-2305
| |
Collapse
|
15
|
Hahn I, Voelzmann A, Liew YT, Costa-Gomes B, Prokop A. The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology. Neural Dev 2019; 14:11. [PMID: 31706327 PMCID: PMC6842214 DOI: 10.1186/s13064-019-0134-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Axons are the slender, cable-like, up to meter-long projections of neurons that electrically wire our brains and bodies. In spite of their challenging morphology, they usually need to be maintained for an organism's lifetime. This makes them key lesion sites in pathological processes of ageing, injury and neurodegeneration. The morphology and physiology of axons crucially depends on the parallel bundles of microtubules (MTs), running all along to serve as their structural backbones and highways for life-sustaining cargo transport and organelle dynamics. Understanding how these bundles are formed and then maintained will provide important explanations for axon biology and pathology. Currently, much is known about MTs and the proteins that bind and regulate them, but very little about how these factors functionally integrate to regulate axon biology. As an attempt to bridge between molecular mechanisms and their cellular relevance, we explain here the model of local axon homeostasis, based on our own experiments in Drosophila and published data primarily from vertebrates/mammals as well as C. elegans. The model proposes that (1) the physical forces imposed by motor protein-driven transport and dynamics in the confined axonal space, are a life-sustaining necessity, but pose a strong bias for MT bundles to become disorganised. (2) To counterbalance this risk, MT-binding and -regulating proteins of different classes work together to maintain and protect MT bundles as necessary transport highways. Loss of balance between these two fundamental processes can explain the development of axonopathies, in particular those linking to MT-regulating proteins, motors and transport defects. With this perspective in mind, we hope that more researchers incorporate MTs into their work, thus enhancing our chances of deciphering the complex regulatory networks that underpin axon biology and pathology.
Collapse
Affiliation(s)
- Ines Hahn
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - André Voelzmann
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Yu-Ting Liew
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Beatriz Costa-Gomes
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, School of Biology, Manchester, UK.
| |
Collapse
|
16
|
Lynch-Godrei A, De Repentigny Y, Gagnon S, Trung MT, Kothary R. Dystonin-A3 upregulation is responsible for maintenance of tubulin acetylation in a less severe dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Hum Mol Genet 2019; 27:3598-3611. [PMID: 29982604 DOI: 10.1093/hmg/ddy250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy type VI (HSAN-VI) is a recessive human disease that arises from mutations in the dystonin gene (DST; also known as Bullous pemphigoid antigen 1 gene). A milder form of HSAN-VI was recently described, resulting from loss of a single dystonin isoform (DST-A2). Similarly, mutations in the mouse dystonin gene (Dst) result in severe sensory neuropathy, dystonia musculorum (Dstdt). Two Dstdt alleles, Dstdt-Tg4 and Dstdt-27J, differ in the severity of disease. The less severe Dstdt-Tg4 mice have disrupted expression of Dst-A1 and -A2 isoforms, while the more severe Dstdt-27J allele affects Dst-A1, -A2 and -A3 isoforms. As dystonin is a cytoskeletal-linker protein, we evaluated microtubule network integrity within sensory neurons from Dstdt-Tg4 and Dstdt-27J mice. There is a significant reduction in tubulin acetylation in Dstdt-27J indicative of microtubule instability and severe microtubule disorganization within sensory axons. However, Dstdt-Tg4 mice have no change in tubulin acetylation, and microtubule organization was only mildly impaired. Thus, microtubule instability is not central to initiation of Dstdt pathogenesis, though it may contribute to disease severity. Maintenance of microtubule stability in Dstdt-Tg4 dorsal root ganglia could be attributed to an upregulation in Dst-A3 expression as a compensation for the absence of Dst-A1 and -A2 in Dstdt-Tg4 sensory neurons. Indeed, knockdown of Dst-A3 in these neurons resulted in a decrease in tubulin acetylation. These findings shed light on the possible compensatory role of dystonin isoforms within HSAN-VI, which might explain the heterogeneity in symptoms within the reported forms of the disease.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - My Tran Trung
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada
| |
Collapse
|
17
|
Cheng J, Liu HP, Hwang SL, Hsu LF, Lin WY, Tsai FJ. Dystonin/BPAG1 modulates diabetes and Alzheimer's disease cross-talk: a meta-analysis. Neurol Sci 2019; 40:1577-1582. [PMID: 30963337 DOI: 10.1007/s10072-019-03879-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/30/2019] [Indexed: 01/02/2023]
Abstract
Dementia is one of the diabetic complications under intensive study. Alteration of synaptic adhesion protein (SAP) associates with neurological diseases, including Alzheimer's disease. However, the regulation of SAPs in the brain of diabetes mellitus remains elusive. To pinpoint the candidate SAPs underlining the mechanism of diabetic dementia, we investigated expression profiling of SAPs in both streptozotocin (STZ)-induced diabetic mice, AppNL-G-F/NL-G-F mice, and amyloid precursor protein intracellular domain (AICD)-induced human neural cell line from public databases. DST (Dystonin/BPAG1) was identified upregulated in both models. Our finding suggests that DST alteration may involve in the mechanism of diabetic dementia.
Collapse
Affiliation(s)
- Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, 41354, Taiwan
| | - Su-Lun Hwang
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi County, 61363, Taiwan.,Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi County, 61363, Taiwan
| | - Lee-Fen Hsu
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi County, 61363, Taiwan.,Division of Neurosurgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi County, 61363, Taiwan
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,Brain Diseases Research Center, China Medical University, Taichung, 40402, Taiwan.
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan. .,Children's Medical Center, China Medical University Hospital, Taichung, 40447, Taiwan.
| |
Collapse
|
18
|
Rioux G, Pouliot-Bérubé C, Simard M, Benhassine M, Soucy J, Guérin SL, Pouliot R. The Tissue-Engineered Human Psoriatic Skin Substitute: A Valuable In Vitro Model to Identify Genes with Altered Expression in Lesional Psoriasis. Int J Mol Sci 2018; 19:E2923. [PMID: 30261611 PMCID: PMC6213003 DOI: 10.3390/ijms19102923] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease for which no cure has emerged. Its complex etiology requires the development of an in vitro model representative of the pathology. In this study, we exploited gene profiling analyses on microarray in order to characterize and further optimize the production of a human psoriatic skin model representative of this in vivo skin disease. Various skin substitutes were produced by tissue-engineering using biopsies from normal, healthy donors, or from lesional or non-lesional skin samples from patients with psoriasis, and their gene expression profiles were examined by DNA microarray. We demonstrated that more than 3540 and 1088 genes (two-fold change) were deregulated between healthy/lesional and lesional/non-lesional psoriatic substitutes, respectively. Moreover, several genes related to lipid metabolism, such as PLA2G4E and PLA2G4C, were identified as repressed in the lesional substitutes. In conclusion, gene profiling analyses identified a list of deregulated candidate genes associated with various metabolic pathways that may contribute to the progression of psoriasis.
Collapse
Affiliation(s)
- Geneviève Rioux
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Claudia Pouliot-Bérubé
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Mélissa Simard
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Manel Benhassine
- Centre Universitaire d'Ophtalmologie-Recherche, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1S4L8, Canada.
- Département d'Ophtalmologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Jacques Soucy
- Département de Dermatologie, Hôpital de l'Enfant-Jésus, Québec, QC G1J 1Z4, Canada.
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1S4L8, Canada.
- Département d'Ophtalmologie, Université Laval, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération, Centre de Recherche FRQS du CHU de Québec, Axe Médecine Régénératrice, Québec, QC G1J 1Z4, Canada.
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
19
|
Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018; 10:v10020092. [PMID: 29473915 PMCID: PMC5850399 DOI: 10.3390/v10020092] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons.
Collapse
|
20
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
21
|
Zhang J, Yue J, Wu X. Spectraplakin family proteins - cytoskeletal crosslinkers with versatile roles. J Cell Sci 2017; 130:2447-2457. [PMID: 28679697 PMCID: PMC5558266 DOI: 10.1242/jcs.196154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The different cytoskeletal networks in a cell are responsible for many fundamental cellular processes. Current studies have shown that spectraplakins, cytoskeletal crosslinkers that combine features of both the spectrin and plakin families of crosslinkers, have a critical role in integrating these different cytoskeletal networks. Spectraplakin genes give rise to a variety of isoforms that have distinct functions. Importantly, all spectraplakin isoforms are uniquely able to associate with all three elements of the cytoskeleton, namely, F-actin, microtubules and intermediate filaments. In this Review, we will highlight recent studies that have unraveled their function in a wide range of different processes, from regulating cell adhesion in skin keratinocytes to neuronal cell migration. Taken together, this work has revealed a diverse and indispensable role for orchestrating the function of different cytoskeletal elements in vivo.
Collapse
Affiliation(s)
- Jamie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
22
|
Ali A, Hu L, Zhao F, Qiu W, Wang P, Ma X, Zhang Y, Chen L, Qian A. BPAG1, a distinctive role in skin and neurological diseases. Semin Cell Dev Biol 2017. [PMID: 28627382 DOI: 10.1016/j.semcdb.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spectraplakins are multifunctional cytoskeletal linker proteins that act as important communicators, connecting cytoskeletal components with each other and to cellular junctions. Bullous pemphigoid antigen 1 (BPAG1)/dystonin is a member of spectraplakin family and expressed in various tissues. Alternative splicing of BPAG1 gene produces various isoforms with unique structure and domains. BPAG1 plays crucial roles in numerous biological processes, such as cytoskeleton organization, cell polarization, cell adhesion, and cell migration as well as signaling transduction. Genetic mutation of BPAG1 isoforms is the miscreant of epidermolysis bullosa and multifarious, destructive neurological diseases. In this review, we summarize the recent advances of BPAG1's role in various biological processes and in skin and neurological diseases.
Collapse
Affiliation(s)
- Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Wuxia Qiu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Pai Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Lei Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China.
| |
Collapse
|
23
|
Haidar M, Timmerman V. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies. Front Mol Neurosci 2017; 10:143. [PMID: 28553203 PMCID: PMC5425483 DOI: 10.3389/fnmol.2017.00143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
The inherited peripheral neuropathies (IPNs) comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer's, Parkinson's, and Huntington's diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting.
Collapse
Affiliation(s)
- Mansour Haidar
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Institute Born Bunge, University of AntwerpAntwerpen, Belgium
| |
Collapse
|
24
|
Manganelli F, Parisi S, Nolano M, Tao F, Paladino S, Pisciotta C, Tozza S, Nesti C, Rebelo AP, Provitera V, Santorelli FM, Shy ME, Russo T, Zuchner S, Santoro L. Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 2017; 88:2132-2140. [PMID: 28468842 DOI: 10.1212/wnl.0000000000003992] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/10/2017] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To describe a second hereditary sensory autonomic neuropathy type VI (HSAN-VI) family harboring 2 novel heterozygous mutations in the dystonin (DST) gene and to evaluate their effect on neurons derived from induced pluripotent stem cells (iPSC). METHODS The family consisted of 3 affected siblings from nonconsanguineous healthy parents. All members underwent clinical and electrophysiologic evaluation and genetic analysis. Two patients underwent quantitative sensory testing (QST), cardiovascular reflexes, dynamic sweat test, and skin biopsy to evaluate somatic and autonomic cutaneous innervation and to get fibroblast cultures for developing iPSC-derived neurons. RESULTS Onset occurred in the first decade, with painless and progressive mutilating distal ulcerations leading to amputation and joint deformity. Sensation to pain, touch, and vibration was reduced. Autonomic disturbances included hypohidrosis, pupillary abnormalities, and gastrointestinal and sexual dysfunction. Nerve conduction studies showed a severe axonal sensory neuropathy. QST and autonomic functional studies were abnormal. Skin biopsy revealed a lack of sensory and autonomic nerve fibers. Genetic analysis revealed 2 pathogenic mutations in the DST gene affecting exclusively the DST neuronal isoform-a2. Neurons derived from iPSC showed absence or very low levels of DST protein and short and dystrophic neuritis or no projections at all. CONCLUSIONS Unlike the previous HSAN-VI family, our description indicates that DST mutations may be associated with a nonlethal and nonsyndromic phenotype. Neuronal loss affects large and small sensory nerve fibers as well as autonomic ones. Induced-PSC findings suggest that dystonin defect might alter proper development of the peripheral nerves. Dystonin-a2 plays a major role in the HSAN-VI phenotype.
Collapse
Affiliation(s)
- Fiore Manganelli
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Silvia Parisi
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Maria Nolano
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Feifei Tao
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Simona Paladino
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Chiara Pisciotta
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Stefano Tozza
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Claudia Nesti
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Adriana P Rebelo
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Vincenzo Provitera
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Filippo M Santorelli
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Michael E Shy
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Tommaso Russo
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Stephan Zuchner
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Lucio Santoro
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City.
| |
Collapse
|
25
|
Zhu B, Li X, Chen H, Wang H, Zhu X, Hou H, Hu Q. iTRAQ proteomic analysis of the hippocampus in a rat model of nicotine-induced conditioned place preference. Biochem Biophys Res Commun 2017; 486:971-977. [PMID: 28359756 DOI: 10.1016/j.bbrc.2017.03.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 01/19/2023]
Abstract
Repeated exposures to nicotine are known to result in persistent changes in proteins expression in addiction-related brain regions, such as the striatum, nucleus accumbens and prefrontal cortex, but the changes induced in the protein content of the hippocampus remain poorly studied. This study established a rat model of nicotine-induced conditioned place preference (CPP), and screened for proteins that were differentially expressed in the hippocampus of these rats using isobaric tags for relative and absolute quantitation labeling (iTRAQ) coupled with 2D-LC MS/MS. The nicotine-induced CPP was established by subcutaneously injecting rats with 0.2 mg/kg nicotine. Relative to the control (saline) group, the nicotine group showed 0.67- and 1.5-fold changes in 117 and 10 hippocampal proteins, respectively. These differentially expressed proteins are mainly involved in calcium-mediated signaling, neurotransmitter transport, GABAergic synapse function, long-term synaptic potentiation and nervous system development. Furthermore, RT-PCR was used to confirmed the results of the proteomic analysis. Our findings identify several proteins and cellular signaling pathways potentially involved in the molecular mechanisms in the hippocampus that underlie nicotine addiction. These results provide insights into the mechanisms of nicotine treatment in hippocampus.
Collapse
Affiliation(s)
- Beibei Zhu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Xiangyu Li
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Huan Chen
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Xinchao Zhu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China.
| |
Collapse
|
26
|
Qu Y, Hahn I, Webb SED, Pearce SP, Prokop A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol Biol Cell 2016; 28:296-308. [PMID: 27881663 PMCID: PMC5231898 DOI: 10.1091/mbc.e16-10-0727] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Drosophila genetics is combined with high-resolution microscopy and a number of functional readouts to demonstrate key factors required for the presence of regularly spaced rings of cortical actin in axons. The data suggest important roles for the actin rings in microtubule regulation, most likely by sustaining their polymerization. Axons are cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily conserved, ubiquitous, highly ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organization, and function, combining versatile Drosophila genetics with superresolution microscopy and various functional readouts. Analyses with 11 actin regulators and three actin-targeting drugs suggest that PMS contains short actin filaments that are depolymerization resistant and sensitive to spectrin, adducin, and nucleator deficiency, consistent with microscopy-derived models proposing PMS as specialized cortical actin. Upon actin removal, we observed gaps in microtubule bundles, reduced microtubule polymerization, and reduced axon numbers, suggesting a role of PMS in microtubule organization. These effects become strongly enhanced when carried out in neurons lacking the microtubule-stabilizing protein Short stop (Shot). Combining the aforementioned actin manipulations with Shot deficiency revealed a close correlation between PMS abundance and microtubule regulation, consistent with a model in which PMS-dependent microtubule polymerization contributes to their maintenance in axons. We discuss potential implications of this novel PMS function along axon shafts for axon maintenance and regeneration.
Collapse
Affiliation(s)
- Yue Qu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stephen E D Webb
- Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot OX11 0QX, United Kingdom
| | - Simon P Pearce
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom.,School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Andreas Prokop
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
27
|
Voelzmann A, Hahn I, Pearce SP, Sánchez-Soriano N, Prokop A. A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bull 2016; 126:226-237. [PMID: 27530065 PMCID: PMC5090033 DOI: 10.1016/j.brainresbull.2016.08.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022]
Abstract
Axons are the cable-like protrusions of neurons which wire up the nervous system. Polar bundles of microtubules (MTs) constitute their structural backbones and are highways for life-sustaining transport between proximal cell bodies and distal synapses. Any morphogenetic changes of axons during development, plastic rearrangement, regeneration or degeneration depend on dynamic changes of these MT bundles. A key mechanism for implementing such changes is the coordinated polymerisation and depolymerisation at the plus ends of MTs within these bundles. To gain an understanding of how such regulation can be achieved at the cellular level, we provide here an integrated overview of the extensive knowledge we have about the molecular mechanisms regulating MT de/polymerisation. We first summarise insights gained from work in vitro, then describe the machinery which supplies the essential tubulin building blocks, the protein complexes associating with MT plus ends, and MT shaft-based mechanisms that influence plus end dynamics. We briefly summarise the contribution of MT plus end dynamics to important cellular functions in axons, and conclude by discussing the challenges and potential strategies of integrating the existing molecular knowledge into conceptual understanding at the level of axons.
Collapse
Affiliation(s)
- André Voelzmann
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ines Hahn
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Simon P Pearce
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; The University of Manchester, School of Mathematics, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Natalia Sánchez-Soriano
- University of Liverpool, Institute of Translational Medicine, Department of Cellular and Molecular Physiology, Crown Street, Liverpool, L69 3BX, UK
| | - Andreas Prokop
- The University of Manchester, Faculty of Biology, Medicine and Health, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
28
|
Voelzmann A, Okenve-Ramos P, Qu Y, Chojnowska-Monga M, del Caño-Espinel M, Prokop A, Sanchez-Soriano N. Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking. eLife 2016; 5:e14694. [PMID: 27501441 PMCID: PMC4977155 DOI: 10.7554/elife.14694] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/12/2016] [Indexed: 11/13/2022] Open
Abstract
The mechanisms regulating synapse numbers during development and ageing are essential for normal brain function and closely linked to brain disorders including dementias. Using Drosophila, we demonstrate roles of the microtubule-associated protein Tau in regulating synapse numbers, thus unravelling an important cellular requirement of normal Tau. In this context, we find that Tau displays a strong functional overlap with microtubule-binding spectraplakins, establishing new links between two different neurodegenerative factors. Tau and the spectraplakin Short Stop act upstream of a three-step regulatory cascade ensuring adequate delivery of synaptic proteins. This cascade involves microtubule stability as the initial trigger, JNK signalling as the central mediator, and kinesin-3 mediated axonal transport as the key effector. This cascade acts during development (synapse formation) and ageing (synapse maintenance) alike. Therefore, our findings suggest novel explanations for intellectual disability in Tau deficient individuals, as well as early synapse loss in dementias including Alzheimer's disease.
Collapse
Affiliation(s)
- Andre Voelzmann
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Pilar Okenve-Ramos
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yue Qu
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Monika Chojnowska-Monga
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Manuela del Caño-Espinel
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Natalia Sanchez-Soriano
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
29
|
Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination. PLoS One 2016; 11:e0149201. [PMID: 26886550 PMCID: PMC4757544 DOI: 10.1371/journal.pone.0149201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 01/12/2023] Open
Abstract
Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic protein expression in both cerebral cortex and spinal cord. Together these data suggest that, unlike Schwann cells, oligodendrocytes do not have an intrinsic requirement for neuronal dystonin for differentiation and myelination.
Collapse
|
30
|
Abstract
Adhesion G protein-coupled receptors (aGPCRs/ADGRs) are unique receptors that combine cell adhesion and signaling functions. Protein networks related to ADGRs exert diverse functions, e.g., in tissue polarity, cell migration, nerve cell function, or immune response, and are regulated via different mechanisms. The large extracellular domain of ADGRs is capable of mediating cell-cell or cell-matrix protein interactions. Their intracellular surface and domains are coupled to downstream signaling pathways and often bind to scaffold proteins, organizing membrane-associated protein complexes. The cohesive interplay between ADGR-related network components is essential to prevent severe disease-causing damage in numerous cell types. Consequently, in recent years, attention has focused on the decipherment of the precise molecular composition of ADGR protein complexes and interactomes in various cellular modules. In this chapter, we discuss the affiliation of ADGR networks to cellular modules and how they can be regulated, pinpointing common features in the networks related to the diverse ADGRs. Detailed decipherment of the composition of protein networks should provide novel targets for the development of novel therapies with the aim to cure human diseases related to ADGRs.
Collapse
Affiliation(s)
- Barbara Knapp
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Johannes von Muellerweg 6, Mainz, 55099, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Johannes von Muellerweg 6, Mainz, 55099, Germany.
| |
Collapse
|
31
|
Abstract
The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments, and microtubules, all displaying characteristic structural properties, functions, cellular distributions, and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin, and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy. Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signaling, and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools are readily available. Here, we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect cellular roles and molecular mechanisms of spectraplakins.
Collapse
|
32
|
Ferrier A, De Repentigny Y, Lynch-Godrei A, Gibeault S, Eid W, Kuo D, Zha X, Kothary R. Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice. Autophagy 2015; 11:1025-36. [PMID: 26043942 PMCID: PMC4590603 DOI: 10.1080/15548627.2015.1052207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dst(dt)) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dst(dt-Tg4) mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dst(dt-Tg4) sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dst(dt-Tg4) mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dst(dt-Tg4) mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dst(dt-Tg4) dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dst(dt) pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis.
Collapse
Key Words
- ANOVA, analysis of variance
- BPAG1
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- DMC
- DMC, dynein/dynactin motor complex
- DMEM, Dulbecco's modified Eagle's medium
- DNAIC1, dynein, axonemal, intermediate chain 1
- DRG, dorsal root ganglion
- DST, dystonin
- Dstdt, dystonia musculorum
- EM, electron microscopy
- FBS, fetal bovine serum
- HSAN-VI
- HSAN-VI, hereditary sensory and autonomic neuropathy type VI
- MACF1, microtubule-actin crosslinking factor 1
- MAP1B
- MAP1B, microtubule-associated protein 1B
- MAP1LC3/LC3, microtubule associated-protein 1 light chain 3
- MT, microtubule
- P, postnatal day
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PrP, prion protein
- RT-PCR, reverse transcription-polymerase chain reaction
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- SQTSM1/p62, sequestosome 1
- TCA, trichloroacetic acid
- TUBB3, tubulin, β, 3 class III
- WT, wild type
- autophagosome
- dynein
- dystonin
- microtubules
- trafficking
Collapse
Affiliation(s)
- Andrew Ferrier
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa, ON, Canada
| | | | - Anisha Lynch-Godrei
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa, ON, Canada
| | | | - Walaa Eid
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Biochemistry; Microbiology; and Immunology; University of Ottawa; Ottawa, ON, Canada
| | - Daniel Kuo
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
| | - Xiaohui Zha
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Biochemistry; Microbiology; and Immunology; University of Ottawa; Ottawa, ON, Canada
- Department of Medicine; University of Ottawa; Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa, ON, Canada
- Department of Medicine; University of Ottawa; Ottawa, ON, Canada
- University of Ottawa Center for Neuromuscular Disease; Ottawa, ON, Canada
| |
Collapse
|
33
|
Hayashi S, Yano M, Igarashi M, Okano HJ, Okano H. Alternative role of HuD splicing variants in neuronal differentiation. J Neurosci Res 2014; 93:399-409. [PMID: 25332105 DOI: 10.1002/jnr.23496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/26/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
HuD is a neuronal RNA-binding protein that plays an important role in neuronal differentiation of the nervous system. HuD has been reported to have three RNA recognition motifs (RRMs) and three splice variants (SVs) that differ in their amino acid sequences between RRM2 and RRM3. This study investigates whether these SVs have specific roles in neuronal differentiation. In primary neural epithelial cells under differentiating conditions, HuD splice variant 1 (HuD-sv1), which is a general form, and HuD-sv2 were expressed at all tested times, whereas HuD-sv4 was transiently expressed at the beginning of differentiation, indicating that HuD-sv4 might play a role compared different from that of HuD-sv1. Indeed, HuD-sv4 did not promote neuronal differentiation in epithelial cells, whereas HuD-sv1 did promote neuronal differentiation. HuD-sv4 overexpression showed less neurite-inducing activity than HuD-sv1 in mouse neuroblastoma N1E-115 cells; however, HuD-sv4 showed stronger growth-arresting activity. HuD-sv1 was localized only in the cytoplasm, whereas HuD-sv4 was localized in both the cytoplasm and the nuclei. The Hu protein has been reported to be involved in translation and alternative splicing in the cytoplasm and nuclei, respectively. Consistent with this observation, HuD-sv1 showed translational activity on p21, which plays a role in growth arrest and neuronal differentiation, whereas HuD-sv4 did not. By contrast, HuD-sv4 showed stronger pre-mRNA splicing activity than did HuD-sv1 on Clasp2, which participates in cell division. Therefore, HuD SVs might play a role in controlling the timing of proliferation/differentiation switching by controlling the translation and alternative splicing of target genes.
Collapse
Affiliation(s)
- Satoru Hayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan; CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
34
|
Ferrier A, Sato T, De Repentigny Y, Gibeault S, Bhanot K, O'Meara RW, Lynch-Godrei A, Kornfeld SF, Young KG, Kothary R. Transgenic expression of neuronal dystonin isoform 2 partially rescues the disease phenotype of the dystonia musculorum mouse model of hereditary sensory autonomic neuropathy VI. Hum Mol Genet 2014; 23:2694-710. [PMID: 24381311 PMCID: PMC3990168 DOI: 10.1093/hmg/ddt663] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023] Open
Abstract
A newly identified lethal form of hereditary sensory and autonomic neuropathy (HSAN), designated HSAN-VI, is caused by a homozygous mutation in the bullous pemphigoid antigen 1 (BPAG1)/dystonin gene (DST). The HSAN-VI mutation impacts all major neuronal BPAG1/dystonin protein isoforms: dystonin-a1, -a2 and -a3. Homozygous mutations in the murine Dst gene cause a severe sensory neuropathy termed dystonia musculorum (dt). Phenotypically, dt mice are similar to HSAN-VI patients, manifesting progressive limb contractures, dystonia, dysautonomia and early postnatal death. To obtain a better molecular understanding of disease pathogenesis in HSAN-VI patients and the dt disorder, we generated transgenic mice expressing a myc-tagged dystonin-a2 protein under the regulation of the neuronal prion protein promoter on the dt(Tg4/Tg4) background, which is devoid of endogenous dystonin-a1 and -a2, but does express dystonin-a3. Restoring dystonin-a2 expression in the nervous system, particularly within sensory neurons, prevented the disorganization of organelle membranes and microtubule networks, attenuated the degeneration of sensory neuron subtypes and ameliorated the phenotype and increased life span in these mice. Despite these improvements, complete rescue was not observed likely because of inadequate expression of the transgene. Taken together, this study provides needed insight into the molecular basis of the dt disorder and other peripheral neuropathies including HSAN-VI.
Collapse
Affiliation(s)
- Andrew Ferrier
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
| | - Tadasu Sato
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
| | - Sabrina Gibeault
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
| | - Kunal Bhanot
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
| | - Ryan W. O'Meara
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
| | - Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
| | - Samantha F. Kornfeld
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
| | - Kevin G. Young
- National Research Council of Canada-Human Health Therapeutics, Ottawa, Ontario, CanadaK1A 0R6
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, CanadaK1H 8L6
- Department of Cellular and Molecular Medicine and
- Department of Medicine, University of Ottawa, Ottawa, Ontario, CanadaK1H 8M5
| |
Collapse
|
35
|
|
36
|
Prokop A, Beaven R, Qu Y, Sánchez-Soriano N. Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 2013; 126:2331-41. [PMID: 23729743 DOI: 10.1242/jcs.126912] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The extension of long slender axons is a key process of neuronal circuit formation, both during brain development and regeneration. For this, growth cones at the tips of axons are guided towards their correct target cells by signals. Growth cone behaviour downstream of these signals is implemented by their actin and microtubule cytoskeleton. In the first part of this Commentary, we discuss the fundamental roles of the cytoskeleton during axon growth. We present the various classes of actin- and microtubule-binding proteins that regulate the cytoskeleton, and highlight the important gaps in our understanding of how these proteins functionally integrate into the complex machinery that implements growth cone behaviour. Deciphering such machinery requires multidisciplinary approaches, including genetics and the use of simple model organisms. In the second part of this Commentary, we discuss how the application of combinatorial genetics in the versatile genetic model organism Drosophila melanogaster has started to contribute to the understanding of actin and microtubule regulation during axon growth. Using the example of dystonin-linked neuron degeneration, we explain how knowledge acquired by studying axonal growth in flies can also deliver new understanding in other aspects of neuron biology, such as axon maintenance in higher animals and humans.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|