1
|
Kliche J, Simonetti L, Krystkowiak I, Kuss H, Diallo M, Rask E, Nilsson J, Davey NE, Ivarsson Y. Proteome-scale characterisation of motif-based interactome rewiring by disease mutations. Mol Syst Biol 2024; 20:1025-1048. [PMID: 39009827 PMCID: PMC11369174 DOI: 10.1038/s44320-024-00055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024] Open
Abstract
Whole genome and exome sequencing are reporting on hundreds of thousands of missense mutations. Taking a pan-disease approach, we explored how mutations in intrinsically disordered regions (IDRs) break or generate protein interactions mediated by short linear motifs. We created a peptide-phage display library tiling ~57,000 peptides from the IDRs of the human proteome overlapping 12,301 single nucleotide variants associated with diverse phenotypes including cancer, metabolic diseases and neurological diseases. By screening 80 human proteins, we identified 366 mutation-modulated interactions, with half of the mutations diminishing binding, and half enhancing binding or creating novel interaction interfaces. The effects of the mutations were confirmed by affinity measurements. In cellular assays, the effects of motif-disruptive mutations were validated, including loss of a nuclear localisation signal in the cell division control protein CDC45 by a mutation associated with Meier-Gorlin syndrome. The study provides insights into how disease-associated mutations may perturb and rewire the motif-based interactome.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Leandro Simonetti
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Izabella Krystkowiak
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, Chelsea, London, UK
| | - Hanna Kuss
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
- University of Münster, Institute of Pharmaceutical and Medicinal Chemistry, DE-48149, Münster, Germany
| | - Marcel Diallo
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Emma Rask
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Norman E Davey
- Division of Cancer Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, SW3 6JB, Chelsea, London, UK.
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Box 576, Husargatan 3, 751 23, Uppsala, Sweden.
| |
Collapse
|
2
|
Azzam T, Du JJ, Flowers MW, Ali AV, Hunn JC, Vijayvargiya N, Knagaram R, Bogacz M, Maravillas KE, Sastre DE, Fields JK, Mirzaei A, Pierce BG, Sundberg EJ. Combinatorially restricted computational design of protein-protein interfaces to produce IgG heterodimers. SCIENCE ADVANCES 2024; 10:eadk8157. [PMID: 38598628 PMCID: PMC11006224 DOI: 10.1126/sciadv.adk8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.
Collapse
Affiliation(s)
- Tala Azzam
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jonathan J. Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria W. Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Adeela V. Ali
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy C. Hunn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nina Vijayvargiya
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rushil Knagaram
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marek Bogacz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kino E. Maravillas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diego E. Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James K. Fields
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ardalan Mirzaei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Brian G. Pierce
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20850, USA
| | - Eric J. Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Kim DY, Kandalaft H, Lowden MJ, Yang Q, Rossotti MA, Robotham A, Kelly JF, Hussack G, Schrag JD, Henry KA, Tanha J. Sequence tolerance of immunoglobulin variable domain framework regions to noncanonical intradomain disulfide linkages. J Biol Chem 2023; 299:105278. [PMID: 37742917 PMCID: PMC10641266 DOI: 10.1016/j.jbc.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Most immunoglobulin (Ig) domains bear only a single highly conserved canonical intradomain, inter-β-sheet disulfide linkage formed between Cys23-Cys104, and incorporation of rare noncanonical disulfide linkages at other locations can enhance Ig domain stability. Here, we exhaustively surveyed the sequence tolerance of Ig variable (V) domain framework regions (FRs) to noncanonical disulfide linkages. Starting from a destabilized VH domain lacking a Cys23-Cys104 disulfide linkage, we generated and screened phage-displayed libraries of engineered VHs, bearing all possible pairwise combinations of Cys residues in neighboring β-strands of the Ig fold FRs. This approach identified seven novel Cys pairs in VH FRs (Cys4-Cys25, Cys4-Cys118, Cys5-Cys120, Cys6-Cys119, Cys22-Cys88, Cys24-Cys86, and Cys45-Cys100; the international ImMunoGeneTics information system numbering), whose presence rescued domain folding and stability. Introduction of a subset of these noncanonical disulfide linkages (three intra-β-sheet: Cys4-Cys25, Cys22-Cys88, and Cys24-Cys86, and one inter-β-sheet: Cys6-Cys119) into a diverse panel of VH, VL, and VHH domains enhanced their thermostability and protease resistance without significantly impacting expression, solubility, or binding to cognate antigens. None of the noncanonical disulfide linkages identified were present in the natural human VH repertoire. These data reveal an unexpected permissiveness of Ig V domains to noncanonical disulfide linkages at diverse locations in FRs, absent in the human repertoire, whose presence is compatible with antigen recognition and improves domain stability. Our work represents the most complete assessment to date of the role of engineered noncanonical disulfide bonding within FRs in Ig V domain structure and function.
Collapse
Affiliation(s)
- Dae Young Kim
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Hiba Kandalaft
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Michael J Lowden
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Qingling Yang
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Martin A Rossotti
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Anna Robotham
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - John F Kelly
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Greg Hussack
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Joseph D Schrag
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Quebec, Canada
| | - Kevin A Henry
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jamshid Tanha
- Life Sciences Division, Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
4
|
Maruthachalam BV, Barreto K, Hogan D, Kusalik A, Geyer CR. Generation of synthetic antibody fragments with optimal complementarity determining region lengths for Notch-1 recognition. Front Microbiol 2022; 13:931307. [PMID: 35992693 PMCID: PMC9381698 DOI: 10.3389/fmicb.2022.931307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Synthetic antibodies have been engineered against a wide variety of antigens with desirable biophysical, biochemical, and pharmacological properties. Here, we describe the generation and characterization of synthetic antigen-binding fragments (Fabs) against Notch-1. Three single-framework synthetic Fab libraries, named S, F, and modified-F, were screened against the recombinant human Notch-1 extracellular domain using phage display. These libraries were built on a modified trastuzumab framework, containing two or four diversified complementarity-determining regions (CDRs) and different CDR diversity designs. In total, 12 Notch-1 Fabs were generated with 10 different CDRH3 lengths. These Fabs possessed a high affinity for Notch-1 (sub-nM to mid-nM KDapp values) and exhibited different binding profiles (mono-, bi-or tri-specific) toward Notch/Jagged receptors. Importantly, we showed that screening focused diversity libraries, implementing next-generation sequencing approaches, and fine-tuning the CDR length diversity provided improved binding solutions for Notch-1 recognition. These findings have implications for antibody library design and antibody phage display.
Collapse
Affiliation(s)
| | - Kris Barreto
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Clarence Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Clarence Ronald Geyer,
| |
Collapse
|
5
|
Benz C, Ali M, Krystkowiak I, Simonetti L, Sayadi A, Mihalic F, Kliche J, Andersson E, Jemth P, Davey NE, Ivarsson Y. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol Syst Biol 2022; 18:e10584. [PMID: 35044719 PMCID: PMC8769072 DOI: 10.15252/msb.202110584] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide-phage display library that tiles all disordered regions of the human proteome and allows the screening of ~ 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)-binding domains and confirmed the quality of the produced data by complementary biophysical or cell-based assays. Finally, we show how the amino acid resolution-binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.
Collapse
Affiliation(s)
- Caroline Benz
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Muhammad Ali
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | | | | | - Ahmed Sayadi
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Filip Mihalic
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Johanna Kliche
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Eva Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Per Jemth
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Identification of PDZ Interactions by Proteomic Peptide Phage Display. Methods Mol Biol 2021. [PMID: 34014515 DOI: 10.1007/978-1-0716-1166-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PSD95-Disc large-Zonula occludens (PDZ) domains are among the most abundant modular domains in the human proteome. They typically bind short carboxy-terminal sequence motifs of their ligand proteins, which may be transmembrane proteins such as ion channels and GPCRs, as well as soluble proteins. The identity of the endogenous ligands of many PDZ domains remains unclear despite more than two decades of PDZ research. Combinatorial peptide phage display and bioinformatics predictions have contributed to shed light on PDZ-mediated interactions. However, the efficiency of these methods for the identification of interactions of potential biological relevance is hampered by different biases. Proteomic peptide-phage display (ProP-PD) was developed to overcome these limitations. Here we describe a ProP-PD protocol for the identification of C-terminal PDZ domain ligands. The method efficiently identifies peptide ligands within a proteome of interest, and pinpoint targets of potential biological relevance.
Collapse
|
7
|
Ali M, Simonetti L, Ivarsson Y. Screening Intrinsically Disordered Regions for Short Linear Binding Motifs. Methods Mol Biol 2021; 2141:529-552. [PMID: 32696376 DOI: 10.1007/978-1-0716-0524-0_27] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intrinsically disordered regions of the proteome are enriched in short linear motifs (SLiMs) that serve as binding sites for peptide binding proteins. These interactions are often of low-to-mid micromolar affinities and are challenging to screen for experimentally. However, a range of dedicated methods have been developed recently, which open for screening of SLiM-based interactions on large scale. A variant of phage display, termed proteomic peptide phage display (ProP-PD), has proven particularly useful for the purpose. Here, we describe a complete high-throughput ProP-PD protocol for screening intrinsically disordered regions for SLiMs. The protocol requires some basic bioinformatics skills for the design of the library and for data analysis but can be performed in a standard biochemistry lab. The protocol starts from the construction of a library, followed by the high-throughput expression and purification of bait proteins, the phage selection, and the analysis of the binding-enriched phage pools using next-generation sequencing. As the protocol generates rather large data sets, we also emphasize the importance of data management and storage.
Collapse
|
8
|
Hong ST, Su YC, Wang YJ, Cheng TL, Wang YT. Anti-TNF Alpha Antibody Humira with pH-dependent Binding Characteristics: A constant-pH Molecular Dynamics, Gaussian Accelerated Molecular Dynamics, and In Vitro Study. Biomolecules 2021; 11:334. [PMID: 33672169 PMCID: PMC7926962 DOI: 10.3390/biom11020334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Humira is a monoclonal antibody that binds to TNF alpha, inactivates TNF alpha receptors, and inhibits inflammation. Neonatal Fc receptors can mediate the transcytosis of Humira-TNF alpha complex structures and process them toward degradation pathways, which reduces the therapeutic effect of Humira. Allowing the Humira-TNF alpha complex structures to dissociate to Humira and soluble TNF alpha in the early endosome to enable Humira recycling is crucial. We used the cytoplasmic pH (7.4), the early endosomal pH (6.0), and pKa of histidine side chains (6.0-6.4) to mutate the residues of complementarity-determining regions with histidine. Our engineered Humira (W1-Humira) can bind to TNF alpha in plasma at neutral pH and dissociate from the TNF alpha in the endosome at acidic pH. We used the constant-pH molecular dynamics, Gaussian accelerated molecular dynamics, two-dimensional potential mean force profiles, and in vitro methods to investigate the characteristics of W1-Humira. Our results revealed that the proposed Humira can bind TNF alpha with pH-dependent affinity in vitro. The W1-Humira was weaker than wild-type Humira at neutral pH in vitro, and our prediction results were close to the in vitro results. Furthermore, our approach displayed a high accuracy in antibody pH-dependent binding characteristics prediction, which may facilitate antibody drug design. Advancements in computational methods and computing power may further aid in addressing the challenges in antibody drug design.
Collapse
Affiliation(s)
- Shih-Ting Hong
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yu-Cheng Su
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsin-Chu 300, Taiwan;
| | - Yu-Jen Wang
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yeng-Tseng Wang
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Emerging Strategies for Therapeutic Antibody Discovery from Human B Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32949403 DOI: 10.1007/978-981-15-4494-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Monoclonal antibodies from human sources are being increasingly recognized as valuable options in many therapeutic areas. These antibodies can show exquisite specificity and high potency while maintaining a desirable safety profile, having been matured and tolerized within human patients. However, the discovery of these antibodies presents important challenges, since the B cells encoding therapeutic antibodies can be rare in a typical blood draw and are short-lived ex vivo. Furthermore, the unique pairing of VH and VL domains in each B cell contributes to specificity and function; therefore, maintaining antibody chain pairing presents a throughput limitation. This work will review the various approaches aimed at addressing these challenges with an eye to next-generation methods for high-throughput discovery from the human B-cell repertoire.
Collapse
|
10
|
Barreto K, Maruthachalam BV, Hill W, Hogan D, Sutherland AR, Kusalik A, Fonge H, DeCoteau JF, Geyer CR. Next-generation sequencing-guided identification and reconstruction of antibody CDR combinations from phage selection outputs. Nucleic Acids Res 2019; 47:e50. [PMID: 30854567 PMCID: PMC6511873 DOI: 10.1093/nar/gkz131] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have been employed in several phage display platforms for analyzing natural and synthetic antibody sequences and for identifying and reconstructing single-chain variable fragments (scFv) and antigen-binding fragments (Fab) not found by conventional ELISA screens. In this work, we developed an NGS-assisted antibody discovery platform by integrating phage-displayed, single-framework, synthetic Fab libraries. Due to limitations in attainable read and amplicon lengths, NGS analysis of Fab libraries and selection outputs is usually restricted to either VH or VL. Since this information alone is not sufficient for high-throughput reconstruction of Fabs, we developed a rapid and simple method for linking and sequencing all diversified CDRs in phage Fab pools. Our method resulted in a reliable and straightforward platform for converting NGS information into Fab clones. We used our NGS-assisted Fab reconstruction method to recover low-frequency rare clones from phage selection outputs. While previous studies chose rare clones for rescue based on their relative frequencies in sequencing outputs, we chose rare clones for reconstruction from less-frequent CDRH3 lengths. In some cases, reconstructed rare clones (frequency ∼0.1%) showed higher affinity and better specificity than high-frequency top clones identified by Sanger sequencing, highlighting the significance of NGS-based approaches in synthetic antibody discovery.
Collapse
Affiliation(s)
- Kris Barreto
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Wayne Hill
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ashley R Sutherland
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - John F DeCoteau
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
11
|
Turowec JP, Lau EWT, Wang X, Brown KR, Fellouse FA, Jawanda KK, Pan J, Moffat J, Sidhu SS. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. J Biol Chem 2019; 294:1396-1409. [PMID: 30523157 DOI: 10.1074/jbc.ra118.004420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/25/2018] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of the ErbB family of receptor tyrosine kinases is involved in the progression of many cancers. Antibodies targeting the dimerization domains of family members EGFR and HER2 are approved cancer therapeutics, but efficacy is restricted to a subset of tumors and resistance often develops in response to treatment. A third family member, HER3, heterodimerizes with both EGFR and HER2 and has also been implicated in cancer. Consequently, there is strong interest in developing antibodies that target HER3, but to date, no therapeutics have been approved. To aid the development of anti-HER3 antibodies as cancer therapeutics, we combined antibody engineering and functional genomics screens to identify putative mechanisms of resistance or synthetic lethality with antibody-mediated anti-proliferative effects. We developed a synthetic antibody called IgG 95, which binds to HER3 and promotes ubiquitination, internalization, and receptor down-regulation. Using an shRNA library targeting enzymes in the ubiquitin proteasome system, we screened for genes that effect response to IgG 95 and uncovered the E3 ubiquitin ligase RNF41 as a driver of IgG 95 anti-proliferative activity. RNF41 has been shown previously to regulate HER3 levels under normal conditions and we now show that it is also responsible for down-regulation of HER3 upon treatment with IgG 95. Moreover, our findings suggest that down-regulation of RNF41 itself may be a mechanism for acquired resistance to treatment with IgG 95 and perhaps other anti-HER3 antibodies. Our work deepens our understanding of HER3 signaling by uncovering the mechanistic basis for the anti-proliferative effects of potential anti-HER3 antibody therapeutics.
Collapse
Affiliation(s)
- Jacob P Turowec
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Esther W T Lau
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Xiaowei Wang
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kevin R Brown
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Frederic A Fellouse
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Kamaldeep K Jawanda
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - James Pan
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Jason Moffat
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
12
|
Newsted D, Banerjee S, Watt K, Nersesian S, Truesdell P, Blazer LL, Cardarelli L, Adams JJ, Sidhu SS, Craig AW. Blockade of TGF-β signaling with novel synthetic antibodies limits immune exclusion and improves chemotherapy response in metastatic ovarian cancer models. Oncoimmunology 2018; 8:e1539613. [PMID: 30713798 DOI: 10.1080/2162402x.2018.1539613] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a leading cause of cancer-related death in women. EOC is often diagnosed at late stages, with peritoneal metastases and ascites production. Current surgery and platinum-based chemotherapy regimes fail to prevent recurrence in most patients. High levels of Transforming growth factor-β (TGF-β) within ascites has been linked to poor prognosis. TGF-β signaling promotes epithelial-mesenchymal transition (EMT) in EOC tumor cells, and immune suppression within the tumor microenvironment, with both contributing to chemotherapy resistance and metastasis. The goal of this study was to develop specific synthetic inhibitory antibodies to the Type II TGF-β receptor (TGFBR2), and test these antibodies in EOC cell and tumor models. Following screening of a phage-displayed synthetic antigen-binding fragment (Fab) library with the extracellular domain of TGFBR2, we identified a lead inhibitory Fab that suppressed TGF-β signaling in mouse and human EOC cell lines. Affinity maturation of the lead inhibitory Fab resulted in several derivative Fabs with increased affinity for TGFBR2 and efficacy as suppressors of TGF-β signaling, EMT and EOC cell invasion. In EOC xenograft and syngeneic tumor models, blockade of TGFBR2 with our lead antibodies led to improved chemotherapy response. This correlated with reversal of EMT and immune exclusion in these tumor models with TGFBR2 blockade. Together, these results describe new inhibitors of the TGF-β pathway that improve antitumor immunity, and response to chemotherapy in preclinical EOC models.
Collapse
Affiliation(s)
- Daniel Newsted
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | | | - Kathleen Watt
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Sarah Nersesian
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Levi L Blazer
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Lia Cardarelli
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jarrett J Adams
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Andrew W Craig
- Department of Biomedical and Molecular Sciences, Queen's University; Cancer Biology & Genetics division, Queen's Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
13
|
Pavlovic Z, Adams JJ, Blazer LL, Gakhal AK, Jarvik N, Steinhart Z, Robitaille M, Mascall K, Pan J, Angers S, Moffat J, Sidhu SS. A synthetic anti-Frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs 2018; 10:1157-1167. [PMID: 30183492 DOI: 10.1080/19420862.2018.1515565] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Secreted Wnt ligands play a major role in the development and progression of many cancers by modulating signaling through cell-surface Frizzled receptors (FZDs). In order to achieve maximal effect on Wnt signaling by targeting the cell surface, we developed a synthetic antibody targeting six of the 10 human FZDs. We first identified an anti-FZD antagonist antibody (F2) with a specificity profile matching that of OMP-18R5, a monoclonal antibody that inhibits growth of many cancers by targeting FZD7, FZD1, FZD2, FZD5 and FZD8. We then used combinatorial antibody engineering by phage display to develop a variant antibody F2.A with specificity broadened to include FZD4. We confirmed that F2.A blocked binding of Wnt ligands, but not binding of Norrin, a ligand that also activates FZD4. Importantly, F2.A proved to be much more efficacious than either OMP-18R5 or F2 in inhibiting the growth of multiple RNF43-mutant pancreatic ductal adenocarcinoma cell lines, including patient-derived cells.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Jarrett J Adams
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Levi L Blazer
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Amandeep K Gakhal
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Nick Jarvik
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Zachary Steinhart
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - Mélanie Robitaille
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - Keith Mascall
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - James Pan
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Stephane Angers
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada.,c Department of Biochemistry , University of Toronto , Toronto , Canada
| | - Jason Moffat
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada.,d Department of Molecular Genetics , University of Toronto , Toronto , Canada.,e Canadian Institute for Advanced Research , Toronto , Canada
| | - Sachdev S Sidhu
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada.,d Department of Molecular Genetics , University of Toronto , Toronto , Canada
| |
Collapse
|
14
|
Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Güntert P, Chi CN, Ivarsson Y. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol Syst Biol 2018; 14:e8129. [PMID: 30126976 PMCID: PMC6100724 DOI: 10.15252/msb.20178129] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
A key function of reversible protein phosphorylation is to regulate protein-protein interactions, many of which involve short linear motifs (3-12 amino acids). Motif-based interactions are difficult to capture because of their often low-to-moderate affinities. Here, we describe phosphomimetic proteomic peptide-phage display, a powerful method for simultaneously finding motif-based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C-terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD-95/Dlg/ZO-1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR We uncover site-specific phospho-regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho-regulation of motif-based interactions on a large scale.
Collapse
Affiliation(s)
- Gustav N Sundell
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Piangfan Naksukpaiboon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Julien Orts
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Maruthachalam BV, El-Sayed A, Liu J, Sutherland AR, Hill W, Alam MK, Pastushok L, Fonge H, Barreto K, Geyer CR. A Single-Framework Synthetic Antibody Library Containing a Combination of Canonical and Variable Complementarity-Determining Regions. Chembiochem 2017; 18:2247-2259. [DOI: 10.1002/cbic.201700279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 12/21/2022]
Affiliation(s)
| | - Ayman El-Sayed
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Jianghai Liu
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Ashley R. Sutherland
- Department of Biochemistry; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Wayne Hill
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Md Kausar Alam
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Landon Pastushok
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - Humphrey Fonge
- Department of Medical Imaging; University of Saskatchewan; Saskatoon SK S7N 0W8 Canada
| | - Kris Barreto
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| | - C. Ronald Geyer
- Department of Pathology; University of Saskatchewan; Saskatoon SK S7N 5E5 Canada
| |
Collapse
|
16
|
Tiller KE, Chowdhury R, Li T, Ludwig SD, Sen S, Maranas CD, Tessier PM. Facile Affinity Maturation of Antibody Variable Domains Using Natural Diversity Mutagenesis. Front Immunol 2017; 8:986. [PMID: 28928732 PMCID: PMC5591402 DOI: 10.3389/fimmu.2017.00986] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
The identification of mutations that enhance antibody affinity while maintaining high antibody specificity and stability is a time-consuming and laborious process. Here, we report an efficient methodology for systematically and rapidly enhancing the affinity of antibody variable domains while maximizing specificity and stability using novel synthetic antibody libraries. Our approach first uses computational and experimental alanine scanning mutagenesis to identify sites in the complementarity-determining regions (CDRs) that are permissive to mutagenesis while maintaining antigen binding. Next, we mutagenize the most permissive CDR positions using degenerate codons to encode wild-type residues and a small number of the most frequently occurring residues at each CDR position based on natural antibody diversity. This mutagenesis approach results in antibody libraries with variants that have a wide range of numbers of CDR mutations, including antibody domains with single mutations and others with tens of mutations. Finally, we sort the modest size libraries (~10 million variants) displayed on the surface of yeast to identify CDR mutations with the greatest increases in affinity. Importantly, we find that single-domain (VHH) antibodies specific for the α-synuclein protein (whose aggregation is associated with Parkinson’s disease) with the greatest gains in affinity (>5-fold) have several (four to six) CDR mutations. This finding highlights the importance of sampling combinations of CDR mutations during the first step of affinity maturation to maximize the efficiency of the process. Interestingly, we find that some natural diversity mutations simultaneously enhance all three key antibody properties (affinity, specificity, and stability) while other mutations enhance some of these properties (e.g., increased specificity) and display trade-offs in others (e.g., reduced affinity and/or stability). Computational modeling reveals that improvements in affinity are generally not due to direct interactions involving CDR mutations but rather due to indirect effects that enhance existing interactions and/or promote new interactions between the antigen and wild-type CDR residues. We expect that natural diversity mutagenesis will be useful for efficient affinity maturation of a wide range of antibody fragments and full-length antibodies.
Collapse
Affiliation(s)
- Kathryn E Tiller
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Tong Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Seth D Ludwig
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Sabyasachi Sen
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Peter M Tessier
- Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
17
|
Ling B, Watt K, Banerjee S, Newsted D, Truesdell P, Adams J, Sidhu SS, Craig AWB. A novel immunotherapy targeting MMP-14 limits hypoxia, immune suppression and metastasis in triple-negative breast cancer models. Oncotarget 2017; 8:58372-58385. [PMID: 28938563 PMCID: PMC5601659 DOI: 10.18632/oncotarget.17702] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/22/2017] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinase-14 (MMP-14) is a clinically relevant target in metastatic cancers due to its role in tumor progression and metastasis. Since active MMP-14 is localized on the cell surface, it is amenable to antibody-mediated blockade in cancer, and here we describe our efforts to develop novel inhibitory anti-MMP-14 antibodies. A phage-displayed synthetic humanized Fab library was screened against the extracellular domain of MMP-14 and a panel of MMP14-specific Fabs were identified. A lead antibody that inhibits the catalytic domain of MMP-14 (Fab 3369) was identified and treatment of MDA-MB-231 breast cancer cells with Fab 3369 led to significant loss of extracellular matrix degradation and cell invasion abilities. In mammary orthotopic tumor xenograft assays, MMP-14 blockade by IgG 3369 limited tumor growth and metastasis. Analysis of tumor tissue sections revealed that MMP-14 blockade limited tumor neoangiogenesis and hypoxia. Similar effects of MMP-14 blockade in syngeneic 4T1 mammary tumors were observed, along with increased detection of cytotoxic immune cell markers. In conclusion, we show that immunotherapies targeting MMP-14 can limit immune suppression, tumor progression, and metastasis in triple-negative breast cancer.
Collapse
Affiliation(s)
- Binbing Ling
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Kathleen Watt
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | | | - Daniel Newsted
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Peter Truesdell
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| | - Jarrett Adams
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Sachdev S Sidhu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Andrew W B Craig
- Department of Biomedical and Molecular Sciences, Queen's University, Cancer Biology and Genetics Division, Queen's Cancer Research Institute, Kingston, ON, Canada
| |
Collapse
|
18
|
Davey NE, Seo MH, Yadav VK, Jeon J, Nim S, Krystkowiak I, Blikstad C, Dong D, Markova N, Kim PM, Ivarsson Y. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS J 2017; 284:485-498. [PMID: 28002650 DOI: 10.1111/febs.13995] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/04/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
The intrinsically disordered regions of eukaryotic proteomes are enriched in short linear motifs (SLiMs), which are of crucial relevance for cellular signaling and protein regulation; many mediate interactions by providing binding sites for peptide-binding domains. The vast majority of SLiMs remain to be discovered highlighting the need for experimental methods for their large-scale identification. We present a novel proteomic peptide phage display (ProP-PD) library that displays peptides representing the disordered regions of the human proteome, allowing direct large-scale interrogation of most potential binding SLiMs in the proteome. The performance of the ProP-PD library was validated through selections against SLiM-binding bait domains with distinct folds and binding preferences. The vast majority of identified binding peptides contained sequences that matched the known SLiM-binding specificities of the bait proteins. For SHANK1 PDZ, we establish a novel consensus TxF motif for its non-C-terminal ligands. The binding peptides mostly represented novel target proteins, however, several previously validated protein-protein interactions (PPIs) were also discovered. We determined the affinities between the VHS domain of GGA1 and three identified ligands to 40-130 μm through isothermal titration calorimetry, and confirmed interactions through coimmunoprecipitation using full-length proteins. Taken together, we outline a general pipeline for the design and construction of ProP-PD libraries and the analysis of ProP-PD-derived, SLiM-based PPIs. We demonstrated the methods potential to identify low affinity motif-mediated interactions for modular domains with distinct binding preferences. The approach is a highly useful complement to the current toolbox of methods for PPI discovery.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | - Moon-Hyeong Seo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | - Jouhyun Jeon
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | | | - Debbie Dong
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada.,Department of Molecular Genetics and Department of Computer Science, University of Toronto, Canada
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Sweden
| |
Collapse
|
19
|
Genome-wide CRISPR screens reveal a Wnt–FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med 2016; 23:60-68. [DOI: 10.1038/nm.4219] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/30/2016] [Indexed: 02/08/2023]
|
20
|
Nilvebrant J, Tessier PM, Sidhu SS. Engineered Autonomous Human Variable Domains. Curr Pharm Des 2016; 22:6527-6537. [PMID: 27655414 PMCID: PMC5326600 DOI: 10.2174/1381612822666160921143011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The complex multi-chain architecture of antibodies has spurred interest in smaller derivatives that retain specificity but can be more easily produced in bacteria. Domain antibodies consisting of single variable domains are the smallest antibody fragments and have been shown to possess enhanced ability to target epitopes that are difficult to access using multidomain antibodies. However, in contrast to natural camelid antibody domains, human variable domains typically suffer from low stability and high propensity to aggregate. METHODS This review summarizes strategies to improve the biophysical properties of heavy chain variable domains from human antibodies with an emphasis on aggregation resistance. Several protein engineering approaches have targeted antibody frameworks and complementarity determining regions to stabilize the native state and prevent aggregation of the denatured state. CONCLUSION Recent findings enable the construction of highly diverse libraries enriched in aggregation-resistant variants that are expected to provide binders to diverse antigens. Engineered domain antibodies possess unique advantages in expression, epitope preference and flexibility of formatting over conventional immunoreagents and are a promising class of antibody fragments for biomedical development.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| | - Peter M. Tessier
- Center for Biotechnology and Interdisciplinary Studies, Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Structural basis of Sorcin-mediated calcium-dependent signal transduction. Sci Rep 2015; 5:16828. [PMID: 26577048 PMCID: PMC4649501 DOI: 10.1038/srep16828] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022] Open
Abstract
Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resistance phenotype to drug-sensitive cancer cells and to reduce Endoplasmic Reticulum stress and cell death. Sorcin silencing blocks cell cycle progression in mitosis and induces cell death by triggering apoptosis. Sorcin participates in the modulation of calcium homeostasis and in calcium-dependent cell signalling in normal and cancer cells. The molecular basis of Sorcin action is yet unknown. The X-ray structures of Sorcin in the apo (apoSor) and in calcium bound form (CaSor) reveal the structural basis of Sorcin action: calcium binding to the EF1-3 hands promotes a large conformational change, involving a movement of the long D-helix joining the EF1-EF2 sub-domain to EF3 and the opening of EF1. This movement promotes the exposure of a hydrophobic pocket, which can accommodate in CaSor the portion of its N-terminal domain displaying the consensus binding motif identified by phage display experiments. This domain inhibits the interaction of sorcin with PDCD6, a protein that carries the Sorcin consensus motif, co-localizes with Sorcin in the perinuclear region of the cell and in the midbody and is involved in the onset of apoptosis.
Collapse
|
22
|
Van Deventer JA, Kelly RL, Rajan S, Wittrup KD, Sidhu SS. A switchable yeast display/secretion system. Protein Eng Des Sel 2015; 28:317-25. [PMID: 26333274 PMCID: PMC4596280 DOI: 10.1093/protein/gzv043] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/13/2022] Open
Abstract
Display technologies such as yeast and phage display offer powerful alternatives to traditional immunization-based antibody discovery, but require conversion of displayed proteins into soluble form prior to downstream characterization. Here we utilize amber suppression to implement a yeast-based switchable display/secretion system that enables the immediate production of soluble, antibody-like reagents at the end of screening efforts. Model selections in the switchable format remain efficient, and library screening in the switchable format yields renewable sources of affinity reagents exhibiting nanomolar binding affinities. These results confirm that this system provides a seamless link between display-based screening and the production and evaluation of soluble forms of candidate binding proteins. Switchable display/secretion libraries provide a cloning-free, accessible approach to affinity reagent generation.
Collapse
Affiliation(s)
- James A Van Deventer
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering
| | - Ryan L Kelly
- Koch Institute for Integrative Cancer Research Department of Biological Engineering, Massachusetts Institute of Technology, 500 Main Street, Building 76 Room 289, Cambridge, MA 02139, USA
| | - Saravanan Rajan
- Department of Molecular Genetics, The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering Department of Biological Engineering, Massachusetts Institute of Technology, 500 Main Street, Building 76 Room 289, Cambridge, MA 02139, USA
| | - Sachdev S Sidhu
- Department of Molecular Genetics, The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
23
|
Wang X, Kim HY, Wahlberg B, Edwards WB. Selection and characterization of high affinity VEGFR1 antibodies from a novel human binary code scFv phage library. Biochem Biophys Rep 2015; 3:169-174. [PMID: 26457328 PMCID: PMC4594834 DOI: 10.1016/j.bbrep.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
VEGFR1 is a receptor tyrosine kinase that has been implicated in cancer pathogenesis. It is upregulated in angiogenic endothelial cells and expressed on human tumor cells as well. VEGFR1 positive hematopoietic progenitor cells home to sites of distant metastases prior to the arrival of the tumor cells thus establishing a pre-metastatic niche. To discover high affinity human antibodies selective for VEGFR1 molecular imaging or for molecularly targeted therapy, a novel phage display scFv library was assembled and characterized. The library was constructed from the humanized 4D5 framework that was mostly comprised tyrosine and serine residues in four complimentarity determining regions (CDRs). The library produced diverse and functional antibodies against a panel of proteins, some of which are of biomedical interest including, CD44, VEGFA, and VEGFR1. After panning, these antibodies had affinity strong enough for molecular imaging or targeted drug delivery without the need for affinity maturation. One of the anti-VEGFR1 scFvs recognized its cognate receptor and was selective for the VEGFR1. VEGFR1 contributes to the pathogenesis cancer. To obtain VEGFR1 specific antibodies, a phage displayed scFv library was constructed. Four complimentarity determining regions were principally comprised of tyrosine and serine. High affinity antibody fragments were isolated and characterized. This is the first human antibody fragment specific for VEGFR1 from a phage displayed library.
Collapse
Affiliation(s)
- Xiaolei Wang
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219
| | - Hye-Yeong Kim
- Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine and Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520
| | - Brendon Wahlberg
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219
| | - W Barry Edwards
- Molecular Imaging Laboratory, Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15219
| |
Collapse
|
24
|
Barker SL, Pastor J, Carranza D, Quiñones H, Griffith C, Goetz R, Mohammadi M, Ye J, Zhang J, Hu MC, Kuro-o M, Moe OW, Sidhu SS. The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody. Nephrol Dial Transplant 2014; 30:223-33. [PMID: 25324355 DOI: 10.1093/ndt/gfu291] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND αKlotho is the prototypic member of the Klotho family and is most highly expressed in the kidney. αKlotho has pleiotropic biologic effects, and in the kidney, its actions include regulation of ion transport, cytoprotection, anti-oxidation and anti-fibrosis. In rodent models of chronic kidney disease (CKD), αKlotho deficiency has been shown to be an early biomarker as well as a pathogenic factor. The database for αKlotho in human CKD remains controversial even after years of study. METHODS We used a synthetic antibody library to identify a high-affinity human antigen-binding fragment that recognizes human, rat and mouse αKlotho primarily in its native, rather than denatured, form. RESULTS Using an immunoprecipitation-immunoblot (IP-IB) assay, we measured both serum and urinary levels of full-length soluble αKlotho in humans and established that human CKD is associated with αKlotho deficiency in serum and urine. αKlotho levels were detectably lower in early CKD preceding disturbances in other parameters of mineral metabolism and progressively declined with CKD stages. We also found that exogenously added αKlotho is inherently unstable in the CKD milieu suggesting that decreased production may not be the sole reason for αKlotho deficiency. CONCLUSION Synthetic antibody libraries harbor tremendous potential for a variety of biomedical and clinical applications. Using such a reagent, we furnish data in support of αKlotho deficiency in human CKD, and we set the foundation for the development of diagnostic and therapeutic applications of anti-αKlotho antibodies.
Collapse
Affiliation(s)
- Sarah L Barker
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Johanne Pastor
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Danielle Carranza
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Henry Quiñones
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carolyn Griffith
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Regina Goetz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Jianfeng Ye
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jianning Zhang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Makoto Kuro-o
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orson W Moe
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Interaction analysis through proteomic phage display. BIOMED RESEARCH INTERNATIONAL 2014; 2014:176172. [PMID: 25295249 PMCID: PMC4177731 DOI: 10.1155/2014/176172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance.
Collapse
|
26
|
Jost C, Plückthun A. Engineered proteins with desired specificity: DARPins, other alternative scaffolds and bispecific IgGs. Curr Opin Struct Biol 2014; 27:102-12. [PMID: 25033247 DOI: 10.1016/j.sbi.2014.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 05/13/2014] [Accepted: 05/23/2014] [Indexed: 12/22/2022]
Abstract
Specific binding proteins have become essential for diagnostic and therapeutic applications, and traditionally these have been antibodies. Nowadays an increasing number of alternative scaffolds have joined these ranks. These additional folds have raised a lot of interest and expectations within the last decade. It appears that they have come of age and caught up with antibodies in many fields of applications. The last years have seen an exploration of possibilities in research, diagnostics and therapy. Some scaffolds have received further improvements broadening their fields of application, while others have started to occupy their respective niche. Protein engineering, the prerequisite for the advent of all alternative scaffolds, remains the driving force in this process, for both non-immunoglobulins and immunoglobulins alike.
Collapse
Affiliation(s)
- Christian Jost
- Department of Biochemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
27
|
Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc Natl Acad Sci U S A 2014; 111:2542-7. [PMID: 24550280 DOI: 10.1073/pnas.1312296111] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions.
Collapse
|
28
|
Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation. Methods Mol Biol 2014; 1131:151-81. [PMID: 24515465 DOI: 10.1007/978-1-62703-992-5_10] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Antibodies play key roles as reagents, diagnostics, and therapeutics in numerous biological and biomedical research settings. Although many antibodies are commercially available, oftentimes, specific applications require the development of antibodies with customized properties. Yeast surface display is a robust, versatile, and quantitative method for generating these antibodies and is accessible to single-investigator laboratories. This protocol details the key aspects of yeast surface display library construction and screening.
Collapse
|
29
|
Abstract
In order to comprehensively manipulate the human proteome we require a vast repertoire of pharmacological reagents. To address these needs we have developed repertoires of synthetic antibodies by phage display, where diversified oligonucleotides are used to modify the complementarity-determining regions (CDRs) of a human antigen-binding fragment (Fab) scaffold. As diversity is produced outside the confines of the mammalian immune system, synthetic antibody libraries allow us to bypass several limitations of hybridoma technology while improving the experimental parameters under which pharmacological reagents are produced. Here we describe the methodologies used to produce synthetic antibody libraries from a single human framework with diversity restricted to four CDRs. These synthetic repertoires can be extremely functional as they produce highly selective, high affinity Fabs to the majority of soluble human antigens. Finally we describe selection methodologies that allow us to overcome immuno-dominance in our selections to target a variety of epitopes per antigen. Together these methodologies allow us to produce human monoclonal antibodies to manipulate the human proteome.
Collapse
Affiliation(s)
- Jarrett J Adams
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
30
|
Pantazes RJ, Maranas CD. MAPs: a database of modular antibody parts for predicting tertiary structures and designing affinity matured antibodies. BMC Bioinformatics 2013; 14:168. [PMID: 23718826 PMCID: PMC3687570 DOI: 10.1186/1471-2105-14-168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The de novo design of a novel protein with a particular function remains a formidable challenge with only isolated and hard-to-repeat successes to date. Due to their many structurally conserved features, antibodies are a family of proteins amenable to predictable rational design. Design algorithms must consider the structural diversity of possible naturally occurring antibodies. The human immune system samples this design space (2 1012) by randomly combining variable, diversity, and joining genes in a process known as V-(D)-J recombination. DESCRIPTION By analyzing structural features found in affinity matured antibodies, a database of Modular Antibody Parts (MAPs) analogous to the variable, diversity, and joining genes has been constructed for the prediction of antibody tertiary structures. The database contains 929 parts constructed from an analysis of 1168 human, humanized, chimeric, and mouse antibody structures and encompasses all currently observed structural diversity of antibodies. CONCLUSIONS The generation of 260 antibody structures shows that the MAPs database can be used to reliably predict antibody tertiary structures with an average all-atom RMSD of 1.9 Å. Using the broadly neutralizing anti-influenza antibody CH65 and anti-HIV antibody 4E10 as examples, promising starting antibodies for affinity maturation are identified and amino acid changes are traced as antibody affinity maturation occurs.
Collapse
|