1
|
Chen X, Wang L, Xie J, Nowak JS, Luo B, Zhang C, Jia G, Zou J, Huang D, Glatt S, Yang Y, Su Z. RNA sample optimization for cryo-EM analysis. Nat Protoc 2025; 20:1114-1157. [PMID: 39548288 DOI: 10.1038/s41596-024-01072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
RNAs play critical roles in most biological processes. Although the three-dimensional (3D) structures of RNAs primarily determine their functions, it remains challenging to experimentally determine these 3D structures due to their conformational heterogeneity and intrinsic dynamics. Cryogenic electron microscopy (cryo-EM) has recently played an emerging role in resolving dynamic conformational changes and understanding structure-function relationships of RNAs including ribozymes, riboswitches and bacterial and viral noncoding RNAs. A variety of methods and pipelines have been developed to facilitate cryo-EM structure determination of challenging RNA targets with small molecular weights at subnanometer to near-atomic resolutions. While a wide range of conditions have been used to prepare RNAs for cryo-EM analysis, correlations between the variables in these conditions and cryo-EM visualizations and reconstructions remain underexplored, which continue to hinder optimizations of RNA samples for high-resolution cryo-EM structure determination. Here we present a protocol that describes rigorous screenings and iterative optimizations of RNA preparation conditions that facilitate cryo-EM structure determination, supplemented by cryo-EM data processing pipelines that resolve RNA dynamics and conformational changes and RNA modeling algorithms that generate atomic coordinates based on moderate- to high-resolution cryo-EM density maps. The current protocol is designed for users with basic skills and experience in RNA biochemistry, cryo-EM and RNA modeling. The expected time to carry out this protocol may range from 3 days to more than 3 weeks, depending on the many variables described in the protocol. For particularly challenging RNA targets, this protocol could also serve as a starting point for further optimizations.
Collapse
Affiliation(s)
- Xingyu Chen
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Wang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Xie
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jakub S Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Bingnan Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Chong Zhang
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guowen Jia
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zou
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dingming Huang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Cardiology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Yang Yang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Shetty M, Shenoy S, Amuthan A, Devi V, Kumar N, Kiran A, Shenoy G, Chinta DR, Prasada K S, Shetty A, Rao K G M. Kadukkai maathirai (Indian herbal drug) prevents hepatocellular cancer progression by enhancing GSTM1 expression and modulating β catenin transcription: in-silico and in-vivo study. F1000Res 2024; 13:639. [PMID: 39916986 PMCID: PMC11800331 DOI: 10.12688/f1000research.145961.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/09/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is an aggressive malignancy with poor clinical outcomes. Hence cost-effective drugs with fewer side effects as a standard supportive therapy might yield substantial advantages in efficacy and safety. Kadukkai maathirai (KM) is being used as a supplement in hepatocellular carcinoma. We evaluated whether KM has any preventive action on cancer progression in diethyl nitrosamine (DEN) - induced HCC in rats. Methods DEN was injected to produce HCC in rats, which was confirmed after 16 weeks. All the rats were orally administered KM for 4 weeks. Hepatoprotective potential (serum AST, ALT, ALP, Bilirubin) and anticancer efficacy (body weight, nodule count, tumor progression by histopathology, expression of GSTM1 by Liquid chromatography-mass spectrometry (LC-MS), and In-silico analysis of phytoconstituents against β catenin and LRP analysis were evaluated. Results KM prevented cancer progression against DEN-induced HCC by an increase in GSTM1, a phase II detoxifying enzyme. It significantly reversed altered nodule count, relative liver weight, body weight, and histopathological features of HCC. In silico analysis of phytoconstituents of KM showed that they modulate the intracellular transcription process by inhibiting the armadillo repeat region of β catenin. Conclusions Our results elucidate the potential of KM as a supplement in HCC by reducing nodule count, protecting the liver from further damage, GSTM1 expression, and inhibiting armadillo repeat region of β catenin.
Collapse
Affiliation(s)
- Manjunath Shetty
- Centre Of Excellence, Ocular Nanoscience, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arul Amuthan
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Vaishali, Bihar, 844102, India
| | - Amruth Kiran
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ganesh Shenoy
- Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Diya Rajasekhar Chinta
- Department of Pharmacology, Manipal University College Malaysia, Bukit Baru, Melaka, 75150, Malaysia
| | - Shama Prasada K
- Department of Cell and Molecular Biology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, Manipal, Karnataka, 576104, India
| | - Akshatha Shetty
- Department of Research and Development, Muniyal Institute of Ayurveda and Medical Sciences, Manipal, Manipal, Karnataka, 576104, India
| | - Mohandas Rao K G
- Division of Anatomy, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Ohanyan N, Abelyan N, Manukyan A, Hayrapetyan V, Chailyan S, Tiratsuyan S, Danielyan K. Tannin-albumin particles as stable carriers of medicines. Nanomedicine (Lond) 2024; 19:689-708. [PMID: 38348681 DOI: 10.2217/nnm-2023-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Background: The effectiveness of a drug is dependent on its accumulation at the site of therapeutic action, as well as its time in circulation. The aim of the research was the creation of stable albumin/tannin (punicalagin, punicalin) particles, which might serve for the delivery of medicines. Methods: Numerous chromatographic and analytical methods, docking analyses and in vivo testing were applied and used. Results: Stable tannin-albumin/medicine particles with a diameter of ∼100 nm were obtained. The results of in vivo experiments proved that tannin-albumin particles are more stable than albumin particles. Conclusion: Based on the experiments and docking analyses, these stable particles can carry an extended number of medicines, with diverse chemical structures.
Collapse
Affiliation(s)
- Nelli Ohanyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | | | - Arpi Manukyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | - Vardan Hayrapetyan
- Institute of Chemical Physics named after A.B. Nalbandyan, NAS RA, Yerevan 0014, Armenia
| | - Samvel Chailyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
| | | | - Kristine Danielyan
- Institute of Biochemistry named after H Buniatian, NAS RA, Yerevan 0014, Armenia
- Pharmacy Department, Eurasia International University, Yerevan 0014, Armenia
| |
Collapse
|
4
|
Yee DA, Niwa K, Perlatti B, Chen M, Li Y, Tang Y. Genome mining for unknown-unknown natural products. Nat Chem Biol 2023; 19:633-640. [PMID: 36702957 PMCID: PMC10159913 DOI: 10.1038/s41589-022-01246-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/20/2022] [Indexed: 01/27/2023]
Abstract
Genome mining of biosynthetic pathways with no identifiable core enzymes can lead to discovery of the so-called unknown (biosynthetic route)-unknown (molecular structure) natural products. Here we focused on a conserved fungal biosynthetic pathway that lacks a canonical core enzyme and used heterologous expression to identify the associated natural product, a highly modified cyclo-arginine-tyrosine dipeptide. Biochemical characterization of the pathway led to identification of a new arginine-containing cyclodipeptide synthase (RCDPS), which was previously annotated as a hypothetical protein and has no sequence homology to non-ribosomal peptide synthetase or bacterial cyclodipeptide synthase. RCDPS homologs are widely encoded in fungal genomes; other members of this family can synthesize diverse cyclo-arginine-Xaa dipeptides, and characterization of a cyclo-arginine-tryptophan RCDPS showed that the enzyme is aminoacyl-tRNA dependent. Further characterization of the biosynthetic pathway led to discovery of new compounds whose structures would not have been predicted without knowledge of RCDPS function.
Collapse
Affiliation(s)
- Danielle A Yee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Hexagon Bio, Menlo Park, CA, USA
| | - Kanji Niwa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bruno Perlatti
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Hexagon Bio, Menlo Park, CA, USA
| | - Mengbin Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Yuqing Li
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Stable Cavitation-Mediated Delivery of miR-126 to Endothelial Cells. Pharmaceutics 2022; 14:pharmaceutics14122656. [PMID: 36559150 PMCID: PMC9784098 DOI: 10.3390/pharmaceutics14122656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
In endothelial cells, microRNA-126 (miR-126) promotes angiogenesis, and modulating the intracellular levels of this gene could suggest a method to treat cardiovascular diseases such as ischemia. Novel ultrasound-stimulated microbubbles offer a means to deliver therapeutic payloads to target cells and sites of disease. The purpose of this study was to investigate the feasibility of gene delivery by stimulating miR-126-decorated microbubbles using gentle acoustic conditions (stable cavitation). A cationic DSTAP microbubble was formulated and characterized to carry 6 µg of a miR-126 payload per 109 microbubbles. Human umbilical vein endothelial cells (HUVECs) were treated at 20−40% duty cycle with miR-126-conjugated microbubbles in a custom ultrasound setup coupled with a passive cavitation detection system. Transfection efficiency was assessed by RT-qPCR, Western blotting, and endothelial tube formation assay, while HUVEC viability was monitored by MTT assay. With increasing duty cycle, the trend observed was an increase in intracellular miR-126 levels, up to a 2.3-fold increase, as well as a decrease in SPRED1 (by 33%) and PIK3R2 (by 46%) expression, two salient miR-126 targets. Under these ultrasound parameters, HUVECs maintained >95% viability after 96 h. The present work describes the delivery of a proangiogenic miR-126 using an ultrasound-responsive cationic microbubble with potential to stimulate therapeutic angiogenesis while minimizing endothelial damage.
Collapse
|
6
|
Wang Q, Xue Y, Zhang L, Zhong Z, Feng S, Wang C, Xiao L, Yang Z, Harris JC, Wu Z, Zhai J, Yang M, Li S, Jacobsen SE, Du J. A SYBR Gold-based Label-free in vitro Dicing Assay. Bio Protoc 2022; 12:e4382. [PMID: 35530519 PMCID: PMC9018436 DOI: 10.21769/bioprotoc.4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 12/29/2022] Open
Abstract
In Arabidopsis, DICER-LIKE PROTEIN 3 (DCL3) cuts the substrate pre-siRNA into a product siRNA duplex, encompassing one 23-nt strand and one 24-nt strand. To monitor the separation of the siRNA duplex with only 1-nt difference, we developed this protocol to evaluate the in vitro dicing activity of DCL3. The method can be applied for measuring the lengths of single-stranded RNA separated through denaturing urea polyacrylamide gel electrophoresis (urea PAGE), which are visualized by a label-free fluorescence SYBR Gold, and quantified in a multi-function imager. This label-free method is easy to conduct, has low cost, and lacks the hazard of the traditional radio-labeled method. This method can also be adapted to the other Dicers and small RNAs.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Xue
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Changshi Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lifan Xiao
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhenlin Yang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jake C. Harris
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jixian Zhai
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sisi Li
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, China,*For correspondence: , ,
| | - Steven E. Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA,Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA,*For correspondence: , ,
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China,*For correspondence: , ,
| |
Collapse
|
7
|
Penkavova V, Spalova A, Tomas J, Tihon J. Polyacrylamide hydrogels prepared by varying water content during polymerization: Material characterization, reswelling ability, and aging resistance. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vera Penkavova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Prague Czech Republic
| | - Anna Spalova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Tomas
- University of Chemistry and Technology Prague Czech Republic
| | - Jaroslav Tihon
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
8
|
Brandão KO, Grandela C, Yiangou L, Mummery CL, Davis RP. CRISPR/Cas9-Mediated Introduction of Specific Heterozygous Mutations in Human Induced Pluripotent Stem Cells. Methods Mol Biol 2022; 2454:531-557. [PMID: 33755904 PMCID: PMC7612905 DOI: 10.1007/7651_2021_368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Advances in genome editing and our ability to derive and differentiate human induced pluripotent stem cells (hiPSCs) into a wide variety of cell types present in the body is revolutionizing how we model human diseases in vitro. Central to this has been the development of the CRISPR/Cas9 system as an inexpensive and highly efficient tool for introducing or correcting disease-associated mutations. However, the ease with which CRISPR/Cas9 enables genetic modification is a double-edged sword, with the challenge now being to introduce changes precisely to just one allele without disrupting the other.In this chapter, we describe strategies to introduce specific mutations into hiPSCs without enrichment steps. Monoallelic modification is contingent on the target activity of the guide RNA, delivery method of the CRISPR/Cas9 components and design of the oligonucleotide(s) transfected. As well as addressing these aspects, we detail high throughput culturing, freezing and screening methods to identify clonal hiPSCs with the desired nucleotide change. This set of protocols offers an efficient and ultimately time- and labor-saving approach for generating isogenic pairs of hiPSCs to detect subtle phenotypic differences caused by the disease variant.
Collapse
Affiliation(s)
- Karina O Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
González-González L, Gallego-Gutiérrez H, Martin-Tapia D, Avelino-Cruz JE, Hernández-Guzmán C, Rangel-Guerrero SI, Alvarez-Salas LM, Garay E, Chávez-Munguía B, Gutiérrez-Ruiz MC, Hernández-Melchor D, López-Bayghen E, González-Mariscal L. ZO-2 favors Hippo signaling, and its re-expression in the steatotic liver by AMPK restores junctional sealing. Tissue Barriers 2021; 10:1994351. [PMID: 34689705 DOI: 10.1080/21688370.2021.1994351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ZO-2 is a peripheral tight junction (TJ) protein whose silencing in renal epithelia induces cell hypertrophy. Here, we found that in ZO-2 KD MDCK cells, in compensatory renal hypertrophy triggered in rats by a unilateral nephrectomy and in liver steatosis of obese Zucker (OZ) rats, ZO-2 silencing is accompanied by the diminished activity of LATS, a kinase of the Hippo pathway, and the nuclear concentration of YAP, the final effector of this signaling route. ZO-2 appears to function as a scaffold for the Hippo pathway as it associates to LATS1. ZO-2 silencing in hypertrophic tissue is due to a diminished abundance of ZO-2 mRNA, and the Sp1 transcription factor is critical for ZO-2 transcription in renal cells. Treatment of OZ rats with metformin, an activator of AMPK that blocks JNK activity, augments ZO-2 and claudin-1 expression in the liver, reduces the paracellular permeability of hepatocytes, and serum bile acid content. Our results suggest that ZO-2 silencing is a common feature of hypertrophy, and that ZO-2 is a positive regulator of the Hippo pathway that regulates cell size. Moreover, our observations highlight the importance of AMPK, JNK, and ZO-2 as therapeutic targets for blood-bile barrier dysfunction.
Collapse
Affiliation(s)
- Laura González-González
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Dolores Martin-Tapia
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - José Everardo Avelino-Cruz
- Laboratory of Molecular Cardiology, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Christian Hernández-Guzmán
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Sergio Israel Rangel-Guerrero
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Luis Marat Alvarez-Salas
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Erika Garay
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Department of Health Sciences, Autonomous Metropolitan University- Iztapalapa (UAM-I), Mexico City, Mexico; Laboratory of Experimental Medicine, Unit of Translational Medicine, Institute of Biomedical Research, Unam, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | | | - Esther López-Bayghen
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
10
|
Rapid and optimized protocol for efficient PCR-SSCP genotyping for wide ranges of species. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00776-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Till P. RNA Characterization in Trichoderma reesei. Methods Mol Biol 2021; 2234:191-235. [PMID: 33165790 DOI: 10.1007/978-1-0716-1048-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This chapter provides an overview on different methods for the characterization of RNAs in Trichoderma reesei. In the first section, protocols for the extraction of total RNA from fungal mycelia and the identification of 5' and 3' ends of certain RNAs of interest via rapid amplification of cDNA ends (RACE) are presented. In the next section, this knowledge on the transcriptional start and end points is used for in vitro synthesis and fluorescence labeling of the RNA of interest. The in vitro synthesized RNA can then be applied for in vitro analyses such as RNA electrophoretic mobility shift assays (RNA-EMSA) and RNA in vitro footprinting. RNA-EMSA is a method suitable for the identification and characterization of RNA-protein interactions or interactions of an RNA with other nucleic acids. RNA in vitro footprinting allows exact mapping of protein-binding sites on RNA molecules and also the determination of RNA secondary and tertiary structures at singe-nucleotide resolution. All protocols presented in this chapter are optimized for the analysis of noncoding RNAs (ncRNAs), especially long ncRNAs (lncRNAs) or other specific RNA species of more than 200 nt in length.
Collapse
Affiliation(s)
- Petra Till
- Christian Doppler laboratory for optimized expression of carbohydrate-active enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.
| |
Collapse
|
12
|
Pillon MC, Stanley RE. Nonradioactive Assay to Measure Polynucleotide Phosphorylation of Small Nucleotide Substrates. J Vis Exp 2020. [PMID: 32449708 DOI: 10.3791/61258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polynucleotide kinases (PNKs) are enzymes that catalyze the phosphorylation of the 5' hydroxyl end of DNA and RNA oligonucleotides. The activity of PNKs can be quantified using direct or indirect approaches. Presented here is a direct, in vitro approach to measure PNK activity that relies on a fluorescently-labeled oligonucleotide substrate and polyacrylamide gel electrophoresis. This approach provides resolution of the phosphorylated products while avoiding the use of radiolabeled substrates. The protocol details how to set up the phosphorylation reaction, prepare and run large polyacrylamide gels, and quantify the reaction products. The most technically challenging part of this assay is pouring and running the large polyacrylamide gels; thus, important details to overcome common difficulties are provided. This protocol was optimized for Grc3, a PNK that assembles into an obligate pre-ribosomal RNA processing complex with its binding partner, the Las1 nuclease. However, this protocol can be adapted to measure the activity of other PNK enzymes. Moreover, this assay can also be modified to determine the effects of different components of the reaction, such as the nucleoside triphosphate, metal ions, and oligonucleotides.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health;
| |
Collapse
|
13
|
A review on native and denaturing purification methods for non-coding RNA (ncRNA). J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1120:71-79. [PMID: 31071581 DOI: 10.1016/j.jchromb.2019.04.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
Recently, non-coding RNA (ncRNA) became the centerpiece of human genome research. Modern ncRNA-based research has revolutionized disease diagnosis and therapeutics. However, decoding structural/functional information of ncRNA requires large amount of pure RNA, and hence effective RNA preparation and purification protocols. This review focuses on purification schemes of synthetic oligonucleotides, particularly liquid chromatographic (LC) techniques as improved alternatives to urea-polyacrylamide gel electrophoresis (urea-PAGE) purification. Moreover, the review summarizes the shortcomings of urea-PAGE purification method and details the chromatographic purification such as affinity, ion-exchange (IE) or size-exclusion (SE) chromatography. Specifically, we discuss denaturing and native RNA purification schemes with newest developments. In short, the review evaluates nucleic acid purification schemes required for various structural analyses.
Collapse
|
14
|
Easy In Vitro Synthesis of Optimised Functioning Reporter mRNA from Common eGFP Plasmid. Mol Biotechnol 2018; 60:762-771. [PMID: 30120676 DOI: 10.1007/s12033-018-0112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The extensive growth in number and importance of experiments and clinical-aimed techniques based solely or majorly on the activity of RNA strands, e.g. CRSPR/Cas9 and siRNA, has put emphasis on the necessity of standardisation of experiments with RNA. Considering RNA degradation during its handling seems to be a major hindrance in all RNA-based tools, the assessment of its integrity is of utmost importance. Furthermore, evaluating whether the RNA to be transfected is intact requires time-consuming electrophoresis protocol. In view of the RNA lability and the necessity for controlling experiments performed with this molecule, the transfection of a reporter mRNA may be of aid in optimising experiments. Nevertheless, commercial reporter mRNAs are far less available than plasmids for such purpose. Thus, in this work, we aimed at the optimisation of an easily performed protocol to produce a suitable eGFP mRNA. By utilising molecular biology kits customarily employed in molecular biology laboratories working with RNA-based techniques and starting from any eGFP coding vector, we produced four mRNA molecules: (1) eGFP mRNA (non-polyadenylated); (2) Kozak-eGFP mRNA (non-polyadenylated, produced from the Kozak-containing amplicon); (3) eGFP-PolyA mRNA (polyadenylated); (4) Kozak-eGFP-PolyA mRNA (containing both signals, Kozak sequence and poly(A) tail). These mRNA molecules were transfected into HEK 293 FT cells, readily transfectable, and into the MDBK bovine lineage, which has been observed as difficult-to-transfect DNA constructs. eGFP expression could be detected both by flow cytometry and by fluorescence microscopy after transfection with the polyadenylated mRNAs. Upon cytometric analysis, we noted a marked difference among the mRNA groups (p < 0.01), both in fluorescent population percentage and in florescence intensity. We showed here the necessity of the polyadenylation step in order to achieve cell expression of the eGFP observable under fluorescence microscopy. The presence of the Kozak sequence, as a 5' element, seems to augment significantly the level of protein produced upon mRNA transfection. We presented here an easy protocol to allow production of functioning mRNAs from any DNA construct. The molecules produced may aid in the standardisation and controlling most of the RNA-related experiments as well as it gives proper guidance for researchers performing expression of other proteins through mRNA transfection.
Collapse
|
15
|
Zhang Q, Lv H, Wang L, Chen M, Li F, Liang C, Yu Y, Jiang F, Lu A, Zhang G. Recent Methods for Purification and Structure Determination of Oligonucleotides. Int J Mol Sci 2016; 17:E2134. [PMID: 27999357 PMCID: PMC5187934 DOI: 10.3390/ijms17122134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022] Open
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemistry
- Chromatography, High Pressure Liquid/methods
- Chromatography, Ion Exchange/methods
- Chromatography, Reverse-Phase/methods
- Crystallography, X-Ray/methods
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/ultrastructure
- Electrophoresis, Gel, Two-Dimensional/methods
- Nuclear Magnetic Resonance, Biomolecular/methods
Collapse
Affiliation(s)
- Qiulong Zhang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Huanhuan Lv
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Lili Wang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Man Chen
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Fangfei Li
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Chao Liang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Yuanyuan Yu
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Feng Jiang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| | - Ge Zhang
- Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU (Haimen) Institute of Science and Technology, Haimen 226100, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
| |
Collapse
|