1
|
Saint K, Nemirovsky D, Lessing A, Chen Y, Yang M, Underwood WP, Galantino ML, Jones LW, Bao T. Impact of exercise on chemotherapy-induced peripheral neuropathy in survivors with post-treatment primary breast cancer. Breast Cancer Res Treat 2024; 206:667-675. [PMID: 38713289 DOI: 10.1007/s10549-024-07342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of neurotoxic chemotherapy. Exercise activates neuromuscular function and may improve CIPN. We examined the association between exercise and CIPN symptoms in breast cancer survivors. METHODS In a retrospective cross-sectional study, we included patients completing a survey assessing exercise exposure and neuropathy symptoms in a tertiary cancer center survivorship clinic. We evaluated exercise duration and intensity using a standardized questionnaire quantified in metabolic equivalent tasks (MET-h/wk). We defined exercisers as patients meeting the National Physical Activity Guidelines' criteria. We used multivariable logistic regressions to examine the relationship between exercise and CIPN and if this differed as a function of chemotherapy regimen adjusting for age, gender, and race. RESULTS We identified 5444 breast cancer survivors post-chemotherapy (median age 62 years (interquartile range [IQR]: 55, 71); median 4.7 years post-chemotherapy (IQR: 3.3, 7.6)) from 2017 to 2022. CIPN overall prevalence was 34% (95% confidence interval [CI]: 33%, 36%), 33% for non-taxane, and 37% for taxane-based chemotherapy. CIPN prevalence was 28% (95% CI: 26%, 30%) among exercisers and 38% (95% CI: 37%, 40%) among non-exercisers (difference 11%; 95% CI: 8%, 13%; p < 0.001). Compared to patients with low (<6 MET-h/wk) levels of exercise (42%), 11% fewer patients with moderate (6-20.24 MET-h/wk) to high (>20.25 MET-h/wk) levels of exercise reported CIPN. Exercise was associated with reduced prevalence of all CIPN symptoms regardless of chemotherapy type. CONCLUSION CIPN may persist several years following chemotherapy among patients with breast cancer but is significantly reduced by exercise in a dose-dependent manner.
Collapse
Affiliation(s)
- Kirin Saint
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | - Yuan Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Mary Lou Galantino
- Stockton University, Galloway, NJ, USA
- University of Witwatersrand, Johannesburg, South Africa
- Weill Cornell Medicine, New York, NY, USA
| | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Ting Bao
- Leonard P. Zakim Center for Integrative Therapies and Healthy Living, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Longo D, Ammannati L, Melchiorre D, Serafini I, Bagni MA, Ferrarello F. The Muscle Shortening Maneuver: a noninvasive approach to the treatment of peroneal nerve injury. A case report. Physiother Theory Pract 2024; 40:176-183. [PMID: 35912501 DOI: 10.1080/09593985.2022.2106915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND The treatment of peripheral nerve injuries is a debated topic. The Muscle Shortening Maneuver (MSM), a physiotherapy approach, is noninvasive and free of side effects; it consists of a muscle shortening and a solicitation in traction applied simultaneously. OBJECTIVE The focus of this report is to describe the effects of the MSM combined with walking retraining in a patient with incomplete injury of the peroneal nerve. DESCRIPTION The patient was a 17-year-old man, who underwent osteotomy surgery of the proximal two-thirds of the fibula, due to an Ewing sarcoma that caused a partial injury of the left peroneal nerve. Our assessment plan of the left ankle movement ability comprised range of movement, muscle strength, and surface electromyography (EMG); and a gait analysis was conducted by using an iPhone application. MSM and walking retraining were administered twice and once a week, respectively, for 4 weeks. OUTCOMES The active range of movement substantially improved in dorsiflexion (≥15°), whereas slightly decreased in plantar flexion (-5°). Aside from the tibialis anterior, an increase in muscle strength was detected. Surface EMG showed an increased activation, particularly in the peroneus longus. A decrease in gait speed and step length was recorded from the gait analysis, with a better bilateral symmetry. CONCLUSIONS Positive outcomes were reported without evidence of risk or adverse events for the participant.
Collapse
Affiliation(s)
- Diego Longo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Biological Systems Movement Research Laboratory, Pistoia Italy
| | - Lorenzo Ammannati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Melchiorre
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Biological Systems Movement Research Laboratory, Pistoia Italy
| | - Isabella Serafini
- Department of Functional Rehabilitation Activities, Azienda USL Toscana Centro, Ex Filanda, V. Cesare Battisti 30, Pescia, Italy
| | - Maria Angela Bagni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Biological Systems Movement Research Laboratory, Pistoia Italy
| | - Francesco Ferrarello
- Department of Functional Rehabilitation Activities, Azienda USL Toscana Centro, c/o CSS Giovannini, Prato, Italy
| |
Collapse
|
3
|
Koop MA, Sleijser-Koehorst MLS, Hooijmans CR, Tdlohreg PQ, Lutke Schipholt IJ, Scholten-Peeters GGM, Coppieters MW. The potential protective effects of pre-injury exercise on neuroimmune responses following experimentally-induced traumatic neuropathy: a systematic review with meta-analysis. Front Immunol 2023; 14:1215566. [PMID: 37767095 PMCID: PMC10520553 DOI: 10.3389/fimmu.2023.1215566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Pre-clinical evidence shows that neuropathy is associated with complex neuroimmune responses, which in turn are associated with increased intensity and persistence of neuropathic pain. Routine exercise has the potential to mitigate complications of future nerve damage and persistence of pain through neuroimmune regulation. This systematic review aimed to explore the effect of pre-injury exercise on neuroimmune responses, and other physiological and behavioural reactions following peripheral neuropathy in animals. Three electronic databases were searched from inception to July 2022. All controlled animal studies assessing the influence of an active exercise program prior to experimentally-induced traumatic peripheral neuropathy compared to a non-exercise control group on neuroimmune, physiological and behavioural outcomes were selected. The search identified 17,431 records. After screening, 11 articles were included. Meta-analyses showed that pre-injury exercise significantly reduced levels of IL-1β (SMD: -1.06, 95% CI: -1.99 to -0.13, n=40), but not iNOS (SMD: -0.71 95% CI: -1.66 to 0.25, n=82). From 72 comparisons of different neuroimmune outcomes at different anatomical locations, vote counting revealed reductions in 23 pro-inflammatory and increases in 6 anti-inflammatory neuroimmune outcomes. For physiological outcomes, meta-analyses revealed that pre-injury exercise improved one out of six nerve morphometric related outcomes (G-ratio; SMD: 1.95, 95%CI: 0.77 to 3.12, n=20) and one out of two muscle morphometric outcomes (muscle fibre cross-sectional area; SMD: 0.91, 95%CI: 0.27 to 1.54, n=48). For behavioural outcomes, mechanical allodynia was significantly less in the pre-injury exercise group (SMD -1.24, 95%CI: -1.87 to -0.61) whereas no overall effect was seen for sciatic function index. Post hoc subgroup analysis suggests that timing of outcome measurement may influence the effect of pre-injury exercise on mechanical allodynia. Risk of bias was unclear in most studies, as the design and conduct of the included experiments were poorly reported. Preventative exercise may have potential neuroprotective and immunoregulatory effects limiting the sequalae of nerve injury, but more research in this field is urgently needed.
Collapse
Affiliation(s)
- Meghan A. Koop
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Marije L. S. Sleijser-Koehorst
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Carlijn R. Hooijmans
- Meta Research Team, Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands
| | - Paul Q. Tdlohreg
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Ivo J. Lutke Schipholt
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam University Medical Centre, Location VUmc, Amsterdam, Netherlands
| | | | - Michel W. Coppieters
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Camuzard O, Lu JCY, Abbadi SE, Chang TNJ, Chuang DCC. The Impact of Exercise on Motor Recovery after Long Nerve Grafting-Experimental Rat Study. J Reconstr Microsurg 2023; 39:508-516. [PMID: 36693393 DOI: 10.1055/s-0043-1761207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Long nerve grafting often results in unsatisfactory functional outcomes. In this study we aim to investigate the effect of swimming exercise on nerve regeneration and functional outcomes after long nerve grafting. METHODS A reversed long nerve graft was interposed between C6 and the musculocutaneous nerve in 40 rats. The rats were divided into four groups with 10 in each based on different postoperative swimming regimes for rehabilitation: group A, continuous exercise; group B, early exercise; group C, late exercise; and group D, no exercise (control group). A grooming test was assessed at 4, 8, 12, and 16 weeks postoperatively. Biceps muscle compound action potential (MCAP), muscle tetanic contraction force (MTCF), and muscle weights were assessed after 16 weeks. Histomorphometric analyses of the musculocutaneous nerves were performed to examine nerve regeneration. RESULTS The grooming test showed all groups except group D demonstrated a trend of progressive improvement over the whole course of 16 weeks. Biceps MCAP, MTCF, and muscle weights all showed significant better results in the exercise group in comparison to the group D at 16 weeks, which is especially true in groups A and B. Nerve analysis at 16 weeks, however, showed no significant differences between the exercise groups and the control group. CONCLUSIONS Swimming after long nerve grafting can significantly improve muscle functional behavior and volume. The effect is less evident on nerve regeneration. Continuous exercise and early exercise after surgery show more optimal outcomes than late or no exercise. Having a good habit with exercise in the early period is thought as the main reason. Further studies are needed to determine the optimal exercise regimen.
Collapse
Affiliation(s)
- Olivier Camuzard
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
- Department of Plastic and Reconstructive Surgery, Hôpital Pasteur 2, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Johnny Chuieng-Yi Lu
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - Sam El Abbadi
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - Tommy Nai-Jen Chang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| | - David Chwei-Chin Chuang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang-Gung University, Taipei, Taiwan
| |
Collapse
|
5
|
Setton-Avruj CP, Soto P, Fernández van Raap M. The best of both worlds: mastering nerve regeneration combining biological and nanotechnological tools. Neural Regen Res 2023; 18:556-557. [DOI: 10.4103/1673-5374.350201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Liu M, An Z, Zhang Y, Xiao Y, Xu J, Zhao Z, Huang C, Wang A, Zhou G, Li P, Fan Y. Mechanical Stretch Promotes Neurite Outgrowth of Primary Cultured Dorsal Root Ganglion Neurons via Suppression of Semaphorin 3A-Neuropilin-1/Plexin-A1 Signaling. ACS Chem Neurosci 2022; 13:3416-3426. [PMID: 36413805 DOI: 10.1021/acschemneuro.2c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Significant attempts have been made to promote neuronal extension and migration in nerve development and regeneration. Although mechanical stretch induces persistent elongation of the axon, the underlying molecular mechanisms are not yet clear. Some axonal guidance cues secreted in the growth cone that affect the axonal growth could attract or repel axons in neurite connection. As semaphorin 3A (Sema3A) is an important repulsion guidance molecule, inhibition of Sema3A has been postulated to promote neuronal development. In this study, the effects of mechanical stretch on dorsal root ganglion neuronal growth and the underlying mechanisms were investigated by assessing the extension direction, neurite length, cell body size, mitochondrial membrane potential, and the expression of Sema3A and its receptors. Our results showed that cell viability significantly increased at tensile strains of 2.5, 5, and 10% for 4 h, with the most prominent effect at 5% tensile strain. Moreover, neurons migrated closer to the stretching direction at 5% tensile strain (0-12 h), while the neurons of the control group moved in a disorderly manner. Furthermore, Sema3A-Neuropilin-1/Plexin-A1 signaling pathway was found to be suppressed after mechanical stretch at 5% tensile strain for 4 h by immunofluorescence staining, immunoprecipitation, and western blot assay. Finally, a Sema3A-SiRNA (SiRNA = small interfering RNA) treatment led to remarkable guidance growth in the stretch-grown neurons. Importantly, there was significant decrease of repulsive cue Sema3A expression and remarkable increase of attractive molecule Netrin-1 expression after mechanical stretching treatment, which jointly promoted neurite outgrowth. This study provides a promising new approach for the development of mechanical stretching therapy or guidance factor-related drugs in injured neuronal regeneration.
Collapse
Affiliation(s)
- Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zitong An
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yu Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yuchen Xiao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zhijun Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Chongquan Huang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Anqing Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Gang Zhou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
7
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
8
|
Guo Y, Gao F, Li J, Yang M, Li J, Yang D, Du L. Effect of electromyographic biofeedback training on motor function of quadriceps femoris in patients with incomplete spinal cord injury: A randomized controlled trial. NeuroRehabilitation 2021; 48:345-351. [PMID: 33814474 DOI: 10.3233/nre-201647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Electromyographic biofeedback (EMG BF) training is an effective method of promoting motor learning and control in neurorehabilitation, but its effect on quadriceps femoris muscle in individuals with spinal cord injury (SCI) is unknown. OBJECTIVE The aim of the study was to investigate the therapeutic effect of EMG BF training on motor function of quadriceps femoris in patients with incomplete SCI. METHODS Thirty-three incomplete paraplegic patients with quadriceps femoris strength ranging grade 1 to grade 3 less than 6 months post-injury were enrolled. Control group (n = 16) received conventional physical therapy to enhance quadriceps femoris strength, while intervention group (n = 17) was treated with conventional physical therapy and EMG BF training. All received treatment once a day for 30 days. Surface electromyograph (sEMG), muscle strength and thigh circumference size were assessed to evaluate motor function of quadriceps femoris. Activities of daily living (ADL) was evaluated by Modified Barthel Index (MBI). All the measures evaluated three times in total. RESULTS Compared to the control group, intervention group significantly improved on sEMG values and strength of quadriceps femoris (PsEMG < 0.001, Pstrength < 0.05). sEMG values of quadriceps femoris increased earlier than strength of quadriceps femoris in intervention group (Prest = 0.07, Pactive = 0.031). There were no statistical differences in thigh circumference size and ADL scores between groups (Pthigh > 0.05, PADL = 0.423). CONCLUSIONS EMG BF training appeared to be a useful tool to enhance motor function of quadriceps femoris in patients with incomplete SCI. sEMG could quantify the changes of single muscle myodynamia precisely before visible or touchable changes occur.
Collapse
Affiliation(s)
- Yun Guo
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Mingliang Yang
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, P.R. China.,Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, P.R. China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, P.R. China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, P.R. China.,Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, P.R. China
| |
Collapse
|
9
|
Kleckner IR, Park SB, Streckmann F, Wiskemann J, Hardy S, Mohile N. Systematic Review of Exercise for Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy. DIAGNOSIS, MANAGEMENT AND EMERGING STRATEGIES FOR CHEMOTHERAPY-INDUCED NEUROPATHY 2021:183-241. [DOI: 10.1007/978-3-030-78663-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Kampanis V, Tolou-Dabbaghian B, Zhou L, Roth W, Puttagunta R. Cyclic Stretch of Either PNS or CNS Located Nerves Can Stimulate Neurite Outgrowth. Cells 2020; 10:cells10010032. [PMID: 33379276 PMCID: PMC7824691 DOI: 10.3390/cells10010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
The central nervous system (CNS) does not recover from traumatic axonal injury, but the peripheral nervous system (PNS) does. We hypothesize that this fundamental difference in regenerative capacity may be based upon the absence of stimulatory mechanical forces in the CNS due to the protective rigidity of the vertebral column and skull. We developed a bioreactor to apply low-strain cyclic axonal stretch to adult rat dorsal root ganglia (DRG) connected to either the peripheral or central nerves in an explant model for inducing axonal growth. In response, larger diameter DRG neurons, mechanoreceptors and proprioceptors showed enhanced neurite outgrowth as well as increased Activating Transcription Factor 3 (ATF3).
Collapse
Affiliation(s)
- Vasileios Kampanis
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
| | - Bahardokht Tolou-Dabbaghian
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
| | - Luming Zhou
- Laboratory of NeuroRegeneration and Repair, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany;
| | - Wolfgang Roth
- Laboratory for Experimental Neurorehabilitation, Heidelberg University Hospital, 69118 Heidelberg, Germany;
| | - Radhika Puttagunta
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, 69118 Heidelberg, Germany; (V.K.); (B.T.-D.)
- Correspondence:
| |
Collapse
|
11
|
Luvisetto S. Botulinum Toxin and Neuronal Regeneration after Traumatic Injury of Central and Peripheral Nervous System. Toxins (Basel) 2020; 12:E434. [PMID: 32630737 PMCID: PMC7404966 DOI: 10.3390/toxins12070434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are toxins produced by the bacteria Clostridiumbotulinum, the causing agent for botulism, in different serotypes, seven of which (A-G) are well characterized, while others, such as H or FA, are still debated. BoNTs exert their action by blocking SNARE (soluble N-ethylmale-imide-sensitive factor-attachment protein receptors) complex formation and vesicle release from the neuronal terminal through the specific cleavage of SNARE proteins. The action of BoNTs at the neuromuscular junction has been extensively investigated and knowledge gained in this field has set the foundation for the use of these toxins in a variety of human pathologies characterized by excessive muscle contractions. In parallel, BoNTs became a cosmetic drug due to its power to ward off facial wrinkles following the activity of the mimic muscles. Successively, BoNTs became therapeutic agents that have proven to be successful in the treatment of different neurological disorders, with new indications emerging or being approved each year. In particular, BoNT/A became the treatment of excellence not only for muscle hyperactivity conditions, such as dystonia and spasticity, but also to reduce pain in a series of painful states, such as neuropathic pain, lumbar and myofascial pain, and to treat various dysfunctions of the urinary bladder. This review summarizes recent experimental findings on the potential efficacy of BoNTs in favoring nerve regeneration after traumatic injury in the peripheral nervous system, such as the injury of peripheral nerves, like sciatic nerve, and in the central nervous system, such as spinal cord injury.
Collapse
Affiliation(s)
- Siro Luvisetto
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, via Ramarini 32, Monterotondo Scalo, 00015 Rome, Italy
| |
Collapse
|
12
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
Kim JE, Cho YH, Seo TB. Treadmill exercise activates ATF3 and ERK1/2 downstream molecules to facilitate axonal regrowth after sciatic nerve injury. J Exerc Rehabil 2020; 16:141-147. [PMID: 32509698 PMCID: PMC7248442 DOI: 10.12965/jer.2040188.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to investigate the effect of treadmill exer-cise on activating transcription factors such as activating transcription factor 3 (ATF3) and extracellular signal-regulated kinase (ERK1/2) sig-naling pathway to facilitate axonal regrowth after sciatic nerve injury (SNI). The experimental rats divided into the normal control (n=10), sedentary groups for 7 (n=10) and 14 days (n=10) post crush, exercise group for 7 (n=10) and 14 days (n=10) post crush (dpc). The rats in ex-ercise groups run on treadmill device at a speed of 8 m/min for 20 min once a day according to exercise duration. In order to evaluate specific regeneration markers and axonal elongation in injured sciatic nerve, we applied immunofluorescence staining and western blot techniques. Treadmill exercise further increased growth-associated protein (GAP-43) expression and axonal regrowth at 7 and 14 dpc than those in sed-entary group. Among mitogen-activated protein kinase downstream molecules, phospho-ERK1/2 (p-ERK1/2) was enhanced by treadmill ex-ercise at only 7 dpc and decreased to basal level 14 days later. But c-Jun N-terminal kinase, c-Jun, and phospho-cyclic adenosine mono-phosphate response element-binding protein showed a tendency to in-crease continuously until 14 dpc by exercise. ATF3 expression in exer-cise group was upregulated at both 7 and 14 dpc compared to the sed-entary group. These results indicate that treadmill exercise had benefi-cial effect on expression of regeneration-related proteins after SNI, suggesting that exercise might be one of various therapeutic strategies for sciatic nerve regeneration.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
14
|
Andersen Hammond E, Pitz M, Steinfeld K, Lambert P, Shay B. An Exploratory Randomized Trial of Physical Therapy for the Treatment of Chemotherapy-Induced Peripheral Neuropathy. Neurorehabil Neural Repair 2020; 34:235-246. [PMID: 31976819 DOI: 10.1177/1545968319899918] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background. Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of taxane treatment and cannot currently be prevented or adequately treated. Physical therapy is often used for neural rehabilitation following injury but has not been evaluated in this patient population. Methods. Single-blind, randomized controlled exploratory study compared standard care to a physical therapy home program (4 visits) throughout adjuvant taxane chemotherapy for stage I-III patients with breast cancer (n = 48). Patient questionnaires and quantitative sensory testing evaluated the treatment effect throughout chemotherapy to 6 months post treatment. Nonrandomized subgroup analysis observed effect of general exercise on sensory preservation comparing those reporting moderate exercise throughout chemotherapy to those that did not exercise regularly. Clinical Trial Registration. clinicaltrials.gov (NCT02239601). Results. The treatment group showed strong trends toward less pain (odds ratio [OR] 0.41, 95% confidence interval [CI] 0.17-1.01; P = .053) and pain decreased over time (OR 0.85, 95% CI 0.76-0.94; P = .002). Pain pressure thresholds (P = .034) and grip dynamometry (P < .001) were improved in the treatment group. For the nonrandomized subgroup analysis, participants reporting general exercise had preservation of vibration (Left P = .001, Right P = .001) and normal heat pain thresholds (Left P = .021, Right P = .039) compared with more sedentary participants. Conclusion. Physical therapy home program may improve CIPN pain in the upper extremity for patients with breast cancer, and general exercise throughout chemotherapy treatment was observed to have correlated to preservation of sensory function. Further research is required to confirm the impact of a physical therapy home program on CIPN symptoms.
Collapse
Affiliation(s)
| | - Marshall Pitz
- University of Manitoba, Winnipeg, Manitoba, Canada.,CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Barbara Shay
- University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
15
|
Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res 2019; 98:780-795. [PMID: 31608497 DOI: 10.1002/jnr.24538] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Traumatic peripheral nerve injury represents a major clinical and public health problem that often leads to significant functional impairment and permanent disability. Despite modern diagnostic procedures and advanced microsurgical techniques, functional recovery after peripheral nerve repair is often unsatisfactory. Therefore, there is an unmet need for new therapeutic or adjunctive strategies to promote the functional recovery in nerve injury patients. In contrast to the central nervous system, Schwann cells in the peripheral nervous system play a pivotal role in several aspects of nerve repair such as degeneration, remyelination, and axonal growth. Several non-surgical approaches, including pharmacological, electrical, cell-based, and laser therapies, have been employed to promote myelination and enhance functional recovery after peripheral nerve injury. This review will succinctly discuss the potential therapeutic strategies in the context of myelination following peripheral neurotrauma.
Collapse
Affiliation(s)
- Max Modrak
- School of Medicine & Dentistry, The University of Rochester Medical Center, Rochester, New York, USA
| | - M A Hassan Talukder
- Department of Orthopaedics & Rehabilitation, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Khatuna Gurgenashvili
- Department of Neurology, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mark Noble
- Department of Biomedical Genetics, The University of Rochester Medical Center, Rochester, New York, USA
| | - John C Elfar
- Department of Orthopaedics & Rehabilitation, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
16
|
Andersen Hammond E, Pitz M, Shay B. Neuropathic Pain in Taxane-Induced Peripheral Neuropathy: Evidence for Exercise in Treatment. Neurorehabil Neural Repair 2019; 33:792-799. [PMID: 31342880 DOI: 10.1177/1545968319860486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One in 2 Canadians is expected to acquire cancer in their lifetime. Many cancers, including breast, ovarian, and lung cancer, are treated using taxane chemotherapy with curative intent. A major adverse effect with the use of taxane chemotherapeutic agents is taxane-induced peripheral neuropathy (TIPN). Both positive (spontaneous pain, heightened sensitivity with light touch, tingling, itching, burning) and negative (loss of touch, loss of hot/cold sensations, and loss of pain) sensory symptoms can be experienced in the hands and feet and worsen with increasing dose and treatment duration. The pathophysiology of TIPN is still unknown but likely involves multiple mechanisms, including microtubule impairment, neuroimmune and inflammatory changes, ion channel remodeling, impaired mitochondrial function, and genetic predisposition. This review highlights current theories on the pathophysiology for TIPN, the cellular responses thought to maintain neuropathic pain, and the growing support for exercise in the treatment and prevention of peripheral neuropathy and neuropathic pain in both animal and human models.
Collapse
|
17
|
Ferreira MC, Oliveira MX, Souza JI, Souza RA, Machado TPG, Santos AP. Effects of two intensities of treadmill exercise on neuromuscular recovery after median nerve crush injury in Wistar rats. J Exerc Rehabil 2019; 15:392-400. [PMID: 31316931 PMCID: PMC6614769 DOI: 10.12965/jer.19.328126.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023] Open
Abstract
Considering the potential action of exercise on neuroplasticity and the need to adapt protocols to enhance functional recovery after nerve injury, this study evaluated the effects of two intensities of treadmill exercise on nervous and muscular tissues and functional recovery after nerve crush injury. Wistar rats were distributed into sedentary group (SED), and 10 m/min (EG10) and 17 m/min (EG17) exercise groups. The exercise started one week after the injury. Ten daily sessions were performed with a 2-day interval after the fifth day. The flexor digitorum muscle and two segments of the median nerve were analysed histomorphometrically by light microscopy and computer analysis. Function was evaluated by grasping test, in 3 moments. Approval number: 016/2013. In the proximal segments of the median nerve, the diameter of myelinated fibres and axon, the myelin sheath thickness and the ratio of axon diameter to fibre diameter (g ratio) were significantly larger (P<0.05) in the EG10. The number of myelinated fibres was lesser in the EG17 than the other groups (P<0.05). No difference in the number of myelinated fibres among groups was observed in the distal segments, but the SED presented significantly larger axon and fibre diameters than those that performed exercise. The EG10 presented greater area and diameter of muscle fibres (P<0.05) and functional improvement observed on the 21st day after injury (P<0.05) compared with the EG17 and SED. Continuous exercise at 10 m/min accentuates nerve regeneration, accelerating functional recovery and preventing muscle atrophy.
Collapse
Affiliation(s)
- Marcílio Coelho Ferreira
- Postgraduate Program in Rehabilitation and Functional Performance, Department of Physiotherapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Murilo X Oliveira
- Postgraduate Program in Rehabilitation and Functional Performance, Department of Physiotherapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Josiane I Souza
- Animal Experimentation Center, Department of Physiotherapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Renato A Souza
- Federal Institute of South of Minas Gerais, Campus Muzambinho, Muzambinho, Minas Gerais, Brazil
| | - Thaís P G Machado
- Postgraduate Program in Rehabilitation and Functional Performance, Department of Physiotherapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Postgraduate Program in Rehabilitation and Functional Performance, Department of Physiotherapy, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
18
|
Ye H, Du X, Hua Q. Effects of voluntary exercise on antiretroviral therapy-induced neuropathic pain in mice. J Physiol Sci 2018; 68:521-530. [PMID: 28975573 PMCID: PMC10717227 DOI: 10.1007/s12576-017-0570-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) often results in painful peripheral neuropathy. Given that voluntary exercise has been shown to be beneficial in terms of modulating pain-like behaviors in various animal models of peripheral neuropathy, we have investigated the effects of voluntary wheel running on neuropathic pain induced by chronic ART. We first established an animal model of peripheral neuropathy induced by chronic 2',3'-dideoxycytidine (ddC) treatment. We showed that mice receiving ddC (3 mg/kg/day) had increased mechanical and thermal sensitivity at 9 weeks after the onset of the treatment. We also found that voluntary wheel running attenuated or delayed the onset of ddC-induced peripheral neuropathy. This phenomenon was associated with the attenuation of dorsal root ganglion nociceptive neuron membrane excitability and reduction in the expression of the transient receptor potential cation channel subfamily V member 1 (TRPV1). Taken together, these results suggest that voluntary exercise is an effective strategy by which ART-induced peripheral neuropathy can be alleviated.
Collapse
Affiliation(s)
- Hong Ye
- Department of Anesthesiology, Daqing Oil Field General Hospital, No. 9 Saertu District, Daqing, 163000, Heilongjiang, China
| | - Xingguang Du
- Department of Anesthesiology, Daqing Oil Field General Hospital, No. 9 Saertu District, Daqing, 163000, Heilongjiang, China
| | - Qingli Hua
- Department of Anesthesiology, Daqing Longnan Hospital, No. 35 Patriotic Road, Ranghulu District, Daqing, 163000, Heilongjiang, China.
| |
Collapse
|
19
|
Sports and martial arts activities for public health purposes: the musician’s risk profiles and exercise-based health care as a model. J Public Health (Oxf) 2017. [DOI: 10.1007/s10389-017-0789-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
20
|
Sachdeva R, Theisen CC, Ninan V, Twiss JL, Houlé JD. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes. Exp Neurol 2015; 276:72-82. [PMID: 26366525 DOI: 10.1016/j.expneurol.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023]
Abstract
Insufficient regeneration of central nervous system (CNS) axons contributes to persisting neurological dysfunction after spinal cord injury (SCI). Peripheral nerve grafts (PNGs) support regeneration by thousands of injured intraspinal axons and help them bypass some of the extracellular barriers that form after SCI. However this number represents but a small portion of the total number of axons that are injured. Here we tested if rhythmic sensory stimulation during cycling exercise would boost the intrinsic regenerative state of neurons to enhance axon regeneration into PNGs after a lower thoracic (T12) spinal transection of adult rats. Using True Blue retrograde tracing, we show that 4 weeks of cycling improves regeneration into a PNG from lumbar interneurons but not by primary sensory neurons. The majority of neurons that regenerate their axon are within 5 mm of the lesion and their number increased 70% with exercise. Importantly propriospinal neurons in more distant regions (5-20 mm from the lesion) that routinely exhibit very limited regeneration responded to exercise by increasing the number of regenerating neurons by 900%. There was no exercise-associated increase in regeneration from sensory neurons. Analyses using fluorescent in situ hybridization showed that this increase in regenerative response is associated with changes in levels of mRNAs encoding the regeneration associated genes (RAGs) GAP43, β-actin and Neuritin. While propriospinal neurons showed increased mRNA levels in response to SCI alone and then to grafting and exercise, sensory neurons did not respond to SCI, but there was a response to the presence of a PNG. Thus, exercise is a non-invasive approach to modulate gene expression in injured neurons leading to an increase in regeneration. This sets the stage for future studies to test whether exercise will promote axon outgrowth beyond the PNG and reconnection with spinal cord neurons, thereby demonstrating a potential clinical application of this combined therapeutic intervention.
Collapse
Affiliation(s)
- Rahul Sachdeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Catherine C Theisen
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vinu Ninan
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John D Houlé
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
21
|
Abstract
Both clinical and animal studies suggest that exercise may be an effective way to manage inflammatory and neuropathic pain conditions. However, existing animal studies commonly use forced exercise paradigms that incorporate varying degrees of stress, which itself can elicit analgesia, and thus may complicate the interpretation of the effects of exercise on pain. We investigated the analgesic potential of voluntary wheel running in the formalin model of acute inflammatory pain and the spared nerve injury model of neuropathic pain in mice. In uninjured, adult C57BL/6J mice, 1 to 4 weeks of exercise training did not alter nociceptive thresholds, lumbar dorsal root ganglia neuronal excitability, or hindpaw intraepidermal innervation. Further, exercise training failed to attenuate formalin-induced spontaneous pain. Lastly, 2 weeks of exercise training was ineffective in reversing spared nerve injury-induced mechanical hypersensitivity or in improving muscle wasting or hindpaw denervation. These findings indicate that in contrast to rodent forced exercise paradigms, short durations of voluntary wheel running do not improve pain-like symptoms in mouse models of acute inflammation and peripheral nerve injury.
Collapse
|
22
|
Yang CC, Wang J, Chen SC, Jan YM, Hsieh YL. Enhanced functional recovery from sciatic nerve crush injury through a combined treatment of cold-water swimming and mesenchymal stem cell transplantation. Neurol Res 2015; 37:816-26. [DOI: 10.1179/1743132815y.0000000060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Park JS, Höke A. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors. PLoS One 2014; 9:e90245. [PMID: 24618564 PMCID: PMC3949693 DOI: 10.1371/journal.pone.0090245] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/27/2014] [Indexed: 01/01/2023] Open
Abstract
Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF), brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration.
Collapse
Affiliation(s)
- Jae-Sung Park
- Departments of Neurology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ahmet Höke
- Departments of Neurology and Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Geuna S, Gnavi S, Perroteau I, Tos P, Battiston B. Tissue Engineering and Peripheral Nerve Reconstruction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:35-57. [DOI: 10.1016/b978-0-12-410499-0.00002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|