1
|
Paredes J, Wang Z, Patel P, Rose KL, Schey KL. Dehydroalanine and dehydrobutyrine in aging and cataractous lenses reveal site-specific consequences of spontaneous protein degradation. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1241001. [PMID: 38983090 PMCID: PMC11182102 DOI: 10.3389/fopht.2023.1241001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 07/11/2024]
Abstract
Introduction Protein post-translational modifications (PTMs) have been associated with aging and age-related diseases. PTMs are particularly impactful in long-lived proteins, such as those found in the ocular lens, because they accumulate with age. Two PTMs that lead to protein-protein crosslinks in aged and cataractous lenses are dehydroalanine (DHA) and dehydrobutyrine (DHB); formed from cysteine/serine and threonine residues, respectively. The purpose of this study was to quantitate DHA and DHB in human lens proteins as a function of age and cataract status. Methods Human lenses of various ages were divided into five donor groups: transparent lenses (18-22-year-old, 48-64-year-old, and 70-93-year-old) and cataractous human lenses of two age groups (48-64-year-old lenses, and 70-93-year-old lenses) and were subjected to proteomic analysis. Relative DHA and DHB peptide levels were quantified and compared to their non-modified peptide counterparts. Results For most lens proteins containing DHA or DHB, higher amounts of DHA- and DHB-modified peptides were detected in aged and cataractous lenses. DHA-containing peptides were classified into three groups based on abundance changes with age and cataract: those that (1) increased only in age-related nuclear cataract (ARNC), (2) increased in aged and cataractous lenses, and (3) decreased in aged lenses and ARNC. There was no indication that DHA or DHB levels were dependent on lens region. In most donor groups, proteins with DHA and DHB were more likely to be found among urea-insoluble proteins rather than among water- or urea-soluble proteins. Discussion DHA and DHB formation may induce structural effects that make proteins less soluble in water that leads to age-related protein insolubility and possibly aggregation and light scattering.
Collapse
Affiliation(s)
- Jessica Paredes
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Zhen Wang
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kristie L. Rose
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Kevin L. Schey
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
2
|
Oppong D, Schiff W, Shivamadhu MC, Ahn YH. Chemistry and biology of enzymes in protein glutathionylation. Curr Opin Chem Biol 2023; 75:102326. [PMID: 37245422 PMCID: PMC10524987 DOI: 10.1016/j.cbpa.2023.102326] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/30/2023]
Abstract
Protein S-glutathionylation is emerging as a central oxidation that regulates redox signaling and biological processes linked to diseases. In recent years, the field of protein S-glutathionylation has expanded by developing biochemical tools for the identification and functional analyses of S-glutathionylation, investigating knockout mouse models, and developing and evaluating chemical inhibitors for enzymes involved in glutathionylation. This review will highlight recent studies of two enzymes, glutathione transferase omega 1 (GSTO1) and glutaredoxin 1 (Grx1), especially introducing their glutathionylation substrates associated with inflammation, cancer, and neurodegeneration and showcasing the advancement of their chemical inhibitors. Lastly, we will feature protein substrates and chemical inducers of LanC-like protein (LanCL), the first enzyme in protein C-glutathionylation.
Collapse
Affiliation(s)
- Daniel Oppong
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | - William Schiff
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA
| | | | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
4
|
Kukulage DSK, Matarage Don NNJ, Ahn YH. Emerging chemistry and biology in protein glutathionylation. Curr Opin Chem Biol 2022; 71:102221. [PMID: 36223700 PMCID: PMC9844265 DOI: 10.1016/j.cbpa.2022.102221] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Protein S-glutathionylation serves a regulatory role in proteins and modulates distinct biological processes implicated in health and diseases. Despite challenges in analyzing the dynamic and reversible nature of S-glutathionylation, recent chemical and biological methods have significantly advanced the field of S-glutathionylation, culminating in selective identification and detection, structural motif analysis, and functional studies of S-glutathionylation. This review will highlight emerging studies of protein glutathionylation, beginning by introducing biochemical tools that enable mass spectrometric identification and live-cell imaging of S-glutathionylation. Next, it will spotlight recent examples of S-glutathionylation regulating physiology and inflammation. Lastly, we will feature two emerging lines of glutathionylation research in cryptic cysteine glutathionylation and protein C-glutathionylation.
Collapse
Affiliation(s)
| | | | - Young-Hoon Ahn
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Richardson RB, Mailloux RJ. WITHDRAWN: Mitochondria need their sleep: Sleep-wake cycling and the role of redox, bioenergetics, and temperature regulation, involving cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Free Radic Biol Med 2022:S0891-5849(22)01013-9. [PMID: 36462628 DOI: 10.1016/j.freeradbiomed.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada; McGill Medical Physics Unit, McGill University, Cedars Cancer Centre - Glen Site, Montreal, Quebec QC, H4A 3J1, Canada.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
6
|
Li LX, Chen MS, Zhang ZY, Paulsen BS, Rise F, Huang C, Feng B, Chen XF, Jia RY, Ding CB, Feng SL, Li YP, Chen YL, Huang Z, Zhao XH, Yin ZQ, Zou YF. Structural features and antioxidant activities of polysaccharides from different parts of Codonopsis pilosula var. modesta (Nannf.) L. T. Shen. Front Pharmacol 2022; 13:937581. [PMID: 36091763 PMCID: PMC9449496 DOI: 10.3389/fphar.2022.937581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, three acidic polysaccharides from different plant parts of Codonopsis pilosula var. Modesta (Nannf.) L. T. Shen were obtained by ion exchange chromatography and gel filtration chromatography, and the yields of these three polysaccharides were different. According to the preliminary experimental results, the antioxidant activities of the polysaccharides from rhizomes and fibrous roots (CLFP-1) were poor, and was thus not studied further. Due to this the structural features of polysaccharides from roots (CLRP-1) and aerial parts (CLSP-1) were the object for this study and were structurally characterized, and their antioxidant activities were evaluated. As revealed by the results, the molecular weight of CLRP-1and CLSP-1 were 15.9 kDa and 26.4 kDa, respectively. The monosaccharide composition of CLRP-1 was Ara, Rha, Fuc, Xyl, Man, Gal, GlcA, GalA in a ratio of 3.8: 8.4: 1.0: 0.8: 2.4: 7.4: 7.5: 2.0: 66.7, and Ara, Rha, Gal, GalA in a ratio of 5.8: 8.9: 8.0: 77.0 in for CLSP-1. The results of structural elucidation indicated that both CLRP-1 and CLSP-1 were pectic polysaccharides, mainly composed of 1, 4-linked galacturonic acid with long homogalacturonan regions. Arabinogalactan type I and arabinogalactan type II were presented as side chains. The antioxidant assay in IPEC-J2 cells showed that both CLRP-1 and CLSP-1 promoted cell viability and antioxidant activity, which significantly increase the level of total antioxidant capacity and the activity of superoxide dismutase, catalase, and decrease the content of malondialdehyde. Moreover, CLRP-1 and CLSP-1 also showed powerful antioxidant abilities in Caenorhabditis elegans and might regulate the nuclear localization of DAF-16 transcription factor, induced antioxidant enzymes activities, and further reduced reactive oxygen species and malondialdehyde contents to increase the antioxidant ability of Caenorhabditis elegans. Thus, these finding suggest that CLRP-1 and CLSP-1 could be used as potential antioxidants.
Collapse
Affiliation(s)
- Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meng-Si Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zi-Yu Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chun-Bang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shi-Ling Feng
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yang-Ping Li
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yu-Long Chen
- Sichuan Academy of Forestry, Ecology Restoration and Conservation on Forestry and Wetland Key Laboratory of Sichuan Province, Chengdu, China
- *Correspondence: Yu-Long Chen, ; Yuan-Feng Zou,
| | - Zhen Huang
- Sichuan Academy of Forestry, Ecology Restoration and Conservation on Forestry and Wetland Key Laboratory of Sichuan Province, Chengdu, China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yu-Long Chen, ; Yuan-Feng Zou,
| |
Collapse
|
7
|
The Role of BRG1 in Antioxidant and Redox Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6095673. [PMID: 33014273 PMCID: PMC7512085 DOI: 10.1155/2020/6095673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Redox homeostasis is regulated by critical molecules that modulate antioxidant and redox signaling (ARS) within the cell. Imbalances among these molecules can lead to oxidative stress and damage to cell functions, causing a variety of diseases. Brahma-related gene 1 (BRG1), also known as SMARCA4, is the central ATPase catalytic subunit of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, which plays a core role in DNA replication, repair, recombination, and transcriptional regulation. Numerous recent studies show that BRG1 is involved in the regulation of various cellular processes associated with ARS. BRG1, as a major factor in chromatin remodeling, is essential for the repair of oxidative stress-induced DNA damage and the activation of antioxidant genes under oxidative stress. Consequently, a comprehensive understanding of the roles of BRG1 in redox homeostasis is crucial to understand the normal functioning as well as pathological mechanisms. In this review, we summarized and discussed the role of BRG1 in the regulation of ARS.
Collapse
|
8
|
Nevirapine Biotransformation Insights: An Integrated In Vitro Approach Unveils the Biocompetence and Glutathiolomic Profile of a Human Hepatocyte-Like Cell 3D Model. Int J Mol Sci 2020; 21:ijms21113998. [PMID: 32503263 PMCID: PMC7312429 DOI: 10.3390/ijms21113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The need for competent in vitro liver models for toxicological assessment persists. The differentiation of stem cells into hepatocyte-like cells (HLC) has been adopted due to its human origin and availability. Our aim was to study the usefulness of an in vitro 3D model of mesenchymal stem cell-derived HLCs. 3D spheroids (3D-HLC) or monolayer (2D-HLC) cultures of HLCs were treated with the hepatotoxic drug nevirapine (NVP) for 3 and 10 days followed by analyses of Phase I and II metabolites, biotransformation enzymes and drug transporters involved in NVP disposition. To ascertain the toxic effects of NVP and its major metabolites, the changes in the glutathione net flux were also investigated. Phase I enzymes were induced in both systems yielding all known correspondent NVP metabolites. However, 3D-HLCs showed higher biocompetence in producing Phase II NVP metabolites and upregulating Phase II enzymes and MRP7. Accordingly, NVP-exposure led to decreased glutathione availability and alterations in the intracellular dynamics disfavoring free reduced glutathione and glutathionylated protein pools. Overall, these results demonstrate the adequacy of the 3D-HLC model for studying the bioactivation/metabolism of NVP representing a further step to unveil toxicity mechanisms associated with glutathione net flux changes.
Collapse
|
9
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
10
|
Eckstein M, Vaeth M, Aulestia FJ, Costiniti V, Kassam SN, Bromage TG, Pedersen P, Issekutz T, Idaghdour Y, Moursi AM, Feske S, Lacruz RS. Differential regulation of Ca 2+ influx by ORAI channels mediates enamel mineralization. Sci Signal 2019; 12:12/578/eaav4663. [PMID: 31015290 DOI: 10.1126/scisignal.aav4663] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Store-operated Ca2+ entry (SOCE) channels are highly selective Ca2+ channels activated by the endoplasmic reticulum (ER) sensors STIM1 and STIM2. Their direct interaction with the pore-forming plasma membrane ORAI proteins (ORAI1, ORAI2, and ORAI3) leads to sustained Ca2+ fluxes that are critical for many cellular functions. Mutations in the human ORAI1 gene result in immunodeficiency, anhidrotic ectodermal dysplasia, and enamel defects. In our investigation of the role of ORAI proteins in enamel, we identified enamel defects in a patient with an ORAI1 null mutation. Targeted deletion of the Orai1 gene in mice showed enamel defects and reduced SOCE in isolated enamel cells. However, Orai2-/- mice showed normal enamel despite having increased SOCE in the enamel cells. Knockdown experiments in the enamel cell line LS8 suggested that ORAI2 and ORAI3 modulated ORAI1 function, with ORAI1 and ORAI2 being the main contributors to SOCE. ORAI1-deficient LS8 cells showed altered mitochondrial respiration with increased oxygen consumption rate and ATP, which was associated with altered redox status and enhanced ER Ca2+ uptake, likely due to S-glutathionylation of SERCA pumps. Our findings demonstrate an important role of ORAI1 in Ca2+ influx in enamel cells and establish a link between SOCE, mitochondrial function, and redox homeostasis.
Collapse
Affiliation(s)
- Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Francisco J Aulestia
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Veronica Costiniti
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Serena N Kassam
- Department of Pediatric Dentistry, New York University College of Dentistry, New York, NY 10010, USA
| | - Timothy G Bromage
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.,Department of Biomaterials, New York University College of Dentistry, New York, NY 10010, USA
| | - Pal Pedersen
- Carl Zeiss Microscopy, LLC, Thornwood, NY 10594, USA
| | - Thomas Issekutz
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amr M Moursi
- Department of Pediatric Dentistry, New York University College of Dentistry, New York, NY 10010, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
11
|
Beiraghi-Toosi A, Askarian R, Sadrabadi Haghighi F, Safarian M, Kalantari F, Hashemy SI. Burn-induced Oxidative Stress and Serum Glutathione Depletion; a Cross Sectional Study. EMERGENCY (TEHRAN, IRAN) 2018; 6:e54. [PMID: 30584570 PMCID: PMC6289156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Several studies have shown the role of oxidative stress in pathophysiology of burn injuries. This study aimed to evaluate the changes of oxidant-antioxidant levels during the week following burn injuries and its correlation with grade of burn. METHODS In this prospective cross-sectional study, changes of total glutathione, reduced glutathione (GSH), oxidized GSH (GSSG), GSH/GSSG ratio, as well as Pro-oxidant-antioxidant balance (PAB) were investigated on the 1st, 2nd and 7th days of admission in patients with > 15 % burns. RESULTS 40 patients with the mean age of 21.1 ± 14.5 were studied (47.5% male). More than 50% of patients were in the 18 - 55 years age range and over 70% had 20% - 60% grade of burn. Total serum glutathione level and GSH had significant decreasing trends (P < 0.001) and GSSG and GSH/GSSG ratio had increasing trends (p < 0.001). No significant correlation was observed between serum GSH level and the total body surface area (TBSA) of burn injury (r = 0.047; p = 0.779). The evaluation of PAB and its correlation with TBSA showed a significant and direct association between them on the 1st (coefficient = 0.516; p = 0.001), 2nd (coefficient = 0.62; p <0.001), and 3rd (coefficient = 0.471; p = 0.002) day of follow up. CONCLUSION According to this study, the redox perturbation occurred in burn injury which was measured and proved by decreased GSH/GSSG ratio as well as the shift of PAB in favour of oxidants. Besides, since PAB positively correlated with the severity of dermal damage, it might suggest the application of antioxidants as a part of therapeutic protocol for which the dosage should be proportionate to the surface area of the damaged skin.
Collapse
Affiliation(s)
- Arash Beiraghi-Toosi
- Surgical Oncology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Plastic Surgery, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roya Askarian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Sadrabadi Haghighi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Safarian
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Kalantari
- Surgical Oncology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Quantification of thioether-linked glutathione modifications in human lens proteins. Exp Eye Res 2018; 175:83-89. [PMID: 29879394 DOI: 10.1016/j.exer.2018.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/10/2018] [Accepted: 06/03/2018] [Indexed: 11/20/2022]
Abstract
Dehydroalanine (DHA) and dehydrobutyrine (DHB) intermediates, formed through β-elimination, induce protein irreversible glutathionylation and protein-protein crosslinking in human lens fiber cells. In total, irreversible glutathionylation was detected on 52 sites including cysteine, serine and threonine residues in 18 proteins in human lenses. In this study, the levels of GSH modification on three serine residues and four cysteine residues located in seven different lens proteins isolated from different regions and different aged lenses were quantified. The relative levels of modification (modified/nonmodified) were site-specific and age-related, ranging from less than 0.05% to about 500%. The levels of modification on all of the sites quantified in the lens cortex increased with age and GSH modification also increased from cortex to outer nucleus region suggesting an age-related increase of modification. The levels of modification on sites located in stable regions of the proteins such as Cys117 of βA3, Cys80 of βB1 and Cys27 of γS, continued increasing in inner nucleus, but modification on sites located in regions undergoing degradation with age decreased in the inner nucleus suggesting GSH modified proteins were more susceptible to further modification. Irreversible GSH modification in cataract lenses was typically higher than in age-matched normal lenses, but the difference did not reach statistical significance for a majority of sites, with the exception Cys117 of βA3 crystallin in WSF. Except for S59 of αA and αB crystallins, GSH modification did not induce protein insolubility suggesting a possible role for this modification in protection from protein-protein crosslinking.
Collapse
|
13
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
14
|
Castilho DG, Navarro MV, Chaves AFA, Xander P, Batista WL. Recovery of the Paracoccidioides brasiliensis virulence after animal passage promotes changes in the antioxidant repertoire of the fungus. FEMS Yeast Res 2018; 18:4835518. [DOI: 10.1093/femsyr/foy007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/31/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Daniele G Castilho
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Marina V Navarro
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Alison F A Chaves
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil
| | - Patricia Xander
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, Brazil
| | - Wagner L Batista
- Department of Microbiology, Immunology and Parasitology, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil
- Department of Pharmaceutical Sciences, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Rua São Nicolau, 210, Diadema 09913-030, Brazil
| |
Collapse
|
15
|
Zhang J, Ye ZW, Chen W, Manevich Y, Mehrotra S, Ball L, Janssen-Heininger Y, Tew KD, Townsend DM. S-Glutathionylation of estrogen receptor α affects dendritic cell function. J Biol Chem 2018; 293:4366-4380. [PMID: 29374060 DOI: 10.1074/jbc.m117.814327] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/18/2018] [Indexed: 12/27/2022] Open
Abstract
Glutathione S-transferase Pi (GSTP) is a thiolase that catalyzes the addition of glutathione (GSH) to receptive cysteines in target proteins, producing an S-glutathionylated residue. Accordingly, previous studies have reported that S-glutathionylation is constitutively decreased in cells from mice lacking GSTP (Gstp1/p2-/-). Here, we found that bone marrow-derived dendritic cells (BMDDCs) from Gstp1/p2-/- mice have proliferation rates that are greater than those in their WT counterparts (Gstp1/p2+/+). Moreover, Gstp1/p2-/- BMDDCs had increased reactive oxygen species (ROS) levels and decreased GSH:glutathione disulfide (GSSG) ratios. Estrogen receptor α (ERα) is linked to myeloproliferation and differentiation, and we observed that its steady-state levels are elevated in Gstp1/p2-/- BMDDCs, indicating a link between GSTP and ERα activities. BMDDCs differentiated by granulocyte-macrophage colony-stimulating factor had elevated ERα levels, which were more pronounced in Gstp1/p2-/- than WT mice. When stimulated with lipopolysaccharide for maturation, Gstp1/p2-/- BMDDCs exhibited augmented endocytosis, maturation rate, cytokine secretion, and T-cell activation; heightened glucose uptake and glycolysis; increased Akt signaling (in the mTOR pathway); and decreased AMPK-mediated phosphorylation of proteins. Of note, GSTP formed a complex with ERα, stimulating ERα S-glutathionylation at cysteines 221, 245, 417, and 447; altering ERα's binding affinity for estradiol; and reducing overall binding potential (receptor density and affinity) 3-fold. Moreover, in Gstp1/p2-/- BMDDCs, ERα S-glutathionylation was constitutively decreased. Taken together, these findings suggest that GSTP-mediated S-glutathionylation of ERα controls BMDDC differentiation and affects metabolic function in dendritic cells.
Collapse
Affiliation(s)
- Jie Zhang
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - Zhi-Wei Ye
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - Wei Chen
- Department of Infectious Disease, the Second Affiliated Hospital of Medical School of the Southeast University, 1-1 Zhongfu Road, Nanjing 210003, China, and
| | - Yefim Manevich
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - Shikhar Mehrotra
- Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lauren Ball
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics
| | - Yvonne Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405
| | - Kenneth D Tew
- From the Departments of Cell and Molecular Pharmacology and Experimental Therapeutics,
| | | |
Collapse
|
16
|
Abstract
Many potentially toxic electrophilic xenobiotics and some endogenous compounds are detoxified by conversion to the corresponding glutathione S-conjugate, which is metabolized to the N-acetylcysteine S-conjugate (mercapturate) and excreted. Some mercapturate pathway components, however, are toxic. Bioactivation (toxification) may occur when the glutathione S-conjugate (or mercapturate) is converted to a cysteine S-conjugate that undergoes a β-lyase reaction. If the sulfhydryl-containing fragment produced in this reaction is reactive, toxicity may ensue. Some drugs and halogenated workplace/environmental contaminants are bioactivated by this mechanism. On the other hand, cysteine S-conjugate β-lyases occur in nature as a means of generating some biologically useful sulfhydryl-containing compounds.
Collapse
|
17
|
Ye ZW, Zhang J, Ancrum T, Manevich Y, Townsend DM, Tew KD. Glutathione S-Transferase P-Mediated Protein S-Glutathionylation of Resident Endoplasmic Reticulum Proteins Influences Sensitivity to Drug-Induced Unfolded Protein Response. Antioxid Redox Signal 2017; 26:247-261. [PMID: 26838680 PMCID: PMC5312626 DOI: 10.1089/ars.2015.6486] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS S-glutathionylation of cysteine residues, catalyzed by glutathione S-transferase Pi (GSTP), alters structure/function characteristics of certain targeted proteins. Our goal is to characterize how S-glutathionylation of proteins within the endoplasmic reticulum (ER) impact cell sensitivity to ER-stress inducing drugs. RESULTS We identify GSTP to be an ER-resident protein where it demonstrates both chaperone and catalytic functions. Redox based proteomic analyses identified a cluster of proteins cooperatively involved in the regulation of ER stress (immunoglobulin heavy chain-binding protein [BiP], protein disulfide isomerase [PDI], calnexin, calreticulin, endoplasmin, sarco/endoplasmic reticulum Ca2+-ATPase [SERCA]) that individually co-immunoprecipitated with GSTP (implying protein complex formation) and were subject to reactive oxygen species (ROS) induced S-glutathionylation. S-glutathionylation of each of these six proteins was attenuated in cells (liver, embryo fibroblasts or bone marrow dendritic) from mice lacking GSTP (Gstp1/p2-/-) compared to wild type (Gstp1/p2+/+). Moreover, Gstp1/p2-/- cells were significantly more sensitive to the cytotoxic effects of the ER-stress inducing drugs, thapsigargin (7-fold) and tunicamycin (2-fold). INNOVATION Within the family of GST isozymes, GSTP has been ascribed the broadest range of catalytic and chaperone functions. Now, for the first time, we identify it as an ER resident protein that catalyzes S-glutathionylation of critical ER proteins within this organelle. Of note, this can provide a nexus for linkage of redox based signaling and pathways that regulate the unfolded protein response (UPR). This has novel importance in determining how some drugs kill cancer cells. CONCLUSIONS Contextually, these results provide mechanistic evidence that GSTP can exert redox regulation in the oxidative ER environment and indicate that, within the ER, GSTP influences the cellular consequences of the UPR through S-glutathionylation of a series of key interrelated proteins. Antioxid. Redox Signal. 26, 247-261.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Jie Zhang
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Tiffany Ancrum
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Yefim Manevich
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Danyelle M Townsend
- 2 Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
| | - Kenneth D Tew
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
18
|
Scian M, Guttman M, Bouldin SD, Outten CE, Atkins WM. The Myeloablative Drug Busulfan Converts Cysteine to Dehydroalanine and Lanthionine in Redoxins. Biochemistry 2016; 55:4720-30. [PMID: 27490699 DOI: 10.1021/acs.biochem.6b00622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The myeloablative agent busulfan (1,4-butanediol dimethanesulfonate) is an old drug that is used routinely to eliminate cancerous bone marrow prior to hematopoietic stem cell transplant. The myeloablative activity and systemic toxicity of busulfan have been ascribed to its ability to cross-link DNA. In contrast, here we demonstrate that incubation of busulfan with the thiol redox proteins glutaredoxin or thioredoxin at pH 7.4 and 37 °C results in the formation of putative S-tetrahydrothiophenium adducts at their catalytic Cys residues, followed by β-elimination to yield dehydroalanine. Both proteins contain a second Cys, in their catalytic C-X-X-C motif, which reacts with the dehydroalanine, the initial Cys adduct with busulfan, or the S-tetrahydrothiophenium, to form novel intramolecular cross-links. The reactivity of the dehydroalanine (DHA) formed is further demonstrated by adduction with glutathione to yield a lanthionine and by a novel reaction with the reducing agent tris(2-carboxyethyl)phosphine (TCEP), which yields a phosphine adduct via Michael addition to the DHA. Formation of a second quaternary organophosphonium salt via nucleophilic substitution with TCEP on the initial busulfan-protein adduct or on the THT(+)-Redoxin species is also observed. These results reveal a rich potential for reactions of busulfan with proteins in vitro, and likely in vivo. It is striking that several of the chemically altered protein products retain none of the atoms of busulfan, in contrast to typical drug-protein adducts or traditional protein modification reagents. In particular, the ability of a clinically used drug to convert Cys to dehydrolanine in intact proteins, and its subsequent reaction with biological thiols, is unprecedented.
Collapse
Affiliation(s)
- Michele Scian
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Samantha D Bouldin
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| |
Collapse
|
19
|
Semchyshyn HM, Valishkevych BV. Hormetic Effect of H2O2 in Saccharomyces cerevisiae: Involvement of TOR and Glutathione Reductase. Dose Response 2016; 14:1559325816636130. [PMID: 27099601 PMCID: PMC4822199 DOI: 10.1177/1559325816636130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the relationship between target of rapamycin (TOR) and H2O2-induced hormetic response in the budding yeast Saccharomyces cerevisiae grown on glucose or fructose. In general, our data suggest that: (1) hydrogen peroxide (H2O2) induces hormesis in a TOR-dependent manner; (2) the H2O2-induced hormetic dose-response in yeast depends on the type of carbohydrate in growth medium; (3) the concentration-dependent effect of H2O2 on yeast colony growth positively correlates with the activity of glutathione reductase that suggests the enzyme involvement in the H2O2-induced hormetic response; and (4) both TOR1 and TOR2 are involved in the reciprocal regulation of the activity of glucose-6-phosphate dehydrogenase and glyoxalase 1.
Collapse
Affiliation(s)
- Halyna M Semchyshyn
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Bohdana V Valishkevych
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
20
|
Lushchak VI. Time-course and intensity-based classifications of oxidative stresses and their potential application in biomedical, comparative and environmental research. Redox Rep 2016; 21:262-70. [PMID: 26828292 DOI: 10.1080/13510002.2015.1126940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE We propose some clues for classification of oxidative stresses based on their intensity and time-course. BACKGROUND Oxidative stress is studied for more than three decades and it is clear that it may differ on the parameters of interest. But up to now there is no any system for formal discrimination between different types of the stress. Such approach can provide important benefits at description of experimental data. METHOD We briefly review information on oxidative stresses and show that the theoretical concept is actually poorly developed since introduction of the first definition in 1985 by H. Sies. We argue that the stresses can differ on their intensities and time-curses, but there was no theoretical basis for discrimination between them. RESULTS On the basis of these analyses, we propose two systems of classifications of oxidative stresses enabling their description taking into account their intensity and time-course. We analyze essential biomarkers of oxidative stress to be used for classification such as levels of modified by reactive oxygen species proteins, lipids, nucleic acids, and low molecular mass compounds. Finally, we describe potential applications of the proposed classifications to biomedical, comparative and environmental research. CONCLUSION The proposed classifications of oxidative stress may facilitate description of experimental data and their comparison between different organisms and methods of induction of oxidative stresses. Additionally this work may provide some clues to develop quantitative approaches for formal categorization of oxidative stresses. APPLICATION Most applications of the classifications proposed are theoretical and applied studies where oxidative stress takes place.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- a Department of Biochemistry and Biotechnology , Vasyl Stefanyk Precarpathian National University , 57 Shevchenko Str., Ivano-Frankivsk 76018 , Ukraine
| |
Collapse
|
21
|
Scian M, Atkins WM. The busulfan metabolite EdAG irreversibly glutathionylates glutaredoxins. Arch Biochem Biophys 2015; 583:96-104. [PMID: 26278353 DOI: 10.1016/j.abb.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 01/05/2023]
Abstract
The DNA alkylating agent busulfan is used to 'precondition' patients with leukemia, lymphomas and other hematological disorders prior to hematopoietic stem cell transplants. Busulfan is metabolized via conjugation with glutathione (GSH) followed by intramolecular rearrangement to the GSH analog γ-glutamyl-dehydroalanyl -glycine (EdAG). EdAG contains the electrophilic dehydroalanine, which is expected to react with protein nucleophiles, particularly proteins with GSH binding sites such as glutaredoxins (Grx's). Incubation of EdAG with human Grx-1 or Grx-2 results in facile adduction of cys-23 and cys-77, respectively, as determined by ESI-MS/MS. The resulting modified proteins are catalytically inactive. In contrast, the glutathione transferase A1-1 includes a GSH binding site with a potentially reactive tyrosinate (Tyr-9) but it does not react with EdAG. Similarly, Cys-112 of GSTA1-1, which lies outside the active site and is known to form disulfides with GSH, does not react with EdAG. The results provide the first demonstration of the reactivity of any busulfan metabolites with intact proteins, and they suggest that GSH-binding sites containing thiolates are most susceptible. The adduction of Grx's by EdAG suggests the possible alteration of proteins that are normally regulated via Grx-dependent reversible glutathionylation or deglutathionylation. Dysregulation of Grx-dependent processes could contribute to cellular toxicity of busulfan.
Collapse
Affiliation(s)
- Michele Scian
- The Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, USA
| | - William M Atkins
- The Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA 98195-7610, USA.
| |
Collapse
|
22
|
Hensley K, Denton TT. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med 2015; 78:123-34. [PMID: 25463282 PMCID: PMC4280296 DOI: 10.1016/j.freeradbiomed.2014.10.581] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
Scientific appreciation for the subtlety of brain sulfur chemistry has lagged, despite understanding that the brain must maintain high glutathione (GSH) to protect against oxidative stress in tissue that has both a high rate of oxidative respiration and a high content of oxidation-prone polyunsaturated fatty acids. In fact, the brain was long thought to lack a complete transsulfuration pathway (TSP) for cysteine synthesis. It is now clear that not only does the brain possess a functional TSP, but brain TSP enzymes catalyze a rich array of alternative reactions that generate novel species including the gasotransmitter hydrogen sulfide (H2S) and the atypical amino acid lanthionine (Lan). Moreover, TSP intermediates can be converted to unusual cyclic ketimines via transamination. Cell-penetrating derivatives of one such compound, lanthionine ketimine (LK), have potent antioxidant, neuroprotective, neurotrophic, and antineuroinflammatory actions and mitigate diverse neurodegenerative conditions in preclinical rodent models. This review will explore the source and function of alternative TSP products, and lanthionine-derived metabolites in particular. The known biological origins of lanthionine and its ketimine metabolite will be described in detail and placed in context with recent discoveries of a GSH- and LK-binding brain protein called LanCL1 that is proving essential for neuronal antioxidant defense; and a related LanCL2 homolog now implicated in immune sensing and cell fate determinations. The review will explore possible endogenous functions of lanthionine metabolites and will discuss the therapeutic potential of lanthionine ketimine derivatives for mitigating diverse neurological conditions including Alzheimer׳s disease, stroke, motor neuron disease, and glioma.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Travis T Denton
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, P.O. Box 1495, Spokane, WA 99201, USA.
| |
Collapse
|
23
|
Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 2014; 224:164-75. [PMID: 25452175 DOI: 10.1016/j.cbi.2014.10.016] [Citation(s) in RCA: 908] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis.
Collapse
Affiliation(s)
- Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|