1
|
Hatkevich T, Wilhelm D. Editorial: Proceedings of the 9th international symposium on the biology of vertebrate sex determination 2023. Front Cell Dev Biol 2024; 12:1530367. [PMID: 39703695 PMCID: PMC11655486 DOI: 10.3389/fcell.2024.1530367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Affiliation(s)
- Talia Hatkevich
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Dagmar Wilhelm
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Tan JL, Major AT, Smith CA. Mini review: Asymmetric Müllerian duct development in the chicken embryo. Front Cell Dev Biol 2024; 12:1347711. [PMID: 38380340 PMCID: PMC10877723 DOI: 10.3389/fcell.2024.1347711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Müllerian ducts are paired embryonic tubes that give rise to the female reproductive tract. In humans, the Müllerian ducts differentiate into the Fallopian tubes, uterus and upper portion of the vagina. In birds and reptiles, the Müllerian ducts develop into homologous structures, the oviducts. The genetic and hormonal regulation of duct development is a model for understanding sexual differentiation. In males, the ducts typically undergo regression during embryonic life, under the influence of testis-derived Anti-Müllerian Hormone, AMH. In females, a lack of AMH during embryogenesis allows the ducts to differentiate into the female reproductive tract. In the chicken embryo, a long-standing model for development and sexual differentiation, Müllerian duct development in females in asymmetric. Only the left duct forms an oviduct, coincident with ovary formation only on the left side of the body. The right duct, together with the right gonad, becomes vestigial. The mechanism of this avian asymmetry has never been fully resolved, but is thought to involve local interplay between AMH and sex steroid hormones. This mini-review re-visits the topic, highlighting questions in the field and proposing a testable model for asymmetric duct development. We argue that current molecular and imaging techniques will shed new light on this curious asymmetry. Information on asymmetric duct development in the chicken model will inform our understanding of sexual differentiation in vertebrates more broadly.
Collapse
Affiliation(s)
| | | | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Milnes MR, Robinson CD, Foley AP, Stepp C, Hale MD, John-Alder HB, Cox RM. Effects of testosterone on urogenital tract morphology and androgen receptor expression in immature Eastern Fence lizards (Sceloporus undulatus). Gen Comp Endocrinol 2024; 346:114418. [PMID: 38036014 DOI: 10.1016/j.ygcen.2023.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
In non-avian reptiles, the onset of sexual dimorphism of the major structures of the urogenital tract varies temporally relative to gonadal differentiation, more so than in other amniote lineages. In the current study, we used tonic-release implants to investigate the effects of exogenous testosterone (T) on postnatal development of the urogenital tract in juvenile Eastern Fence Lizards (Sceloporus undulatus) to better understand the mechanisms underlying the ontogeny of sexual differentiation in reptiles. We examined gonads, mesonephric kidneys and ducts (male reproductive tract primordia), paramesonephric ducts (oviduct primordia), sexual segments of the kidneys (SSKs), and hemiphalluses to determine which structures were sexually dimorphic independent of T treatment and which structures exhibited sexually dimorphic responses to T. To better understand tissue-level responsiveness to T treatment, we also characterized androgen receptor (AR) expression by immunohistochemistry. At approximately 4 months after hatching in control animals, gonads were well differentiated but quiescent; paramesonephric ducts had fully degenerated in males; mesonephric kidneys, mesonephric ducts, and SSKs remained sexually undifferentiated; and hemiphalluses could not be everted in either sex. Exogenous T caused enlargement, regionalization, and secretory activity of the mesonephric ducts and SSKs in both sexes; enlargement and regionalization of the oviducts in females; and enlargement of male hemipenes. The most responsive tissues exhibited moderate but diffuse staining for AR in control lizards and intense nuclear staining in T-treated lizards, suggestive of autoregulation of AR. The similarity between sexes in the responsiveness of the mesonephric ducts and SSK to T indicates an absence of sexually dimorphic organizational effects in these structures prior to treatment, which was initiated approximately 2 months after hatching. In contrast, the sex-specific responses in oviducts and hemipenes indicate that significant organization and/or differentiation had taken place prior to treatment.
Collapse
Affiliation(s)
- Matthew R Milnes
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | | | - Alexis P Foley
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Charleigh Stepp
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA.
| | - Matthew D Hale
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
4
|
Gautier C, Aurich J, Melchert M, Wagner LH, Kaps M, Okada CTC, Ertl R, Walter I, Aurich C. Endocrine changes induced by GnRH immunisation and subsequent early re-stimulation of testicular function with a GnRH agonist in stallions. Reprod Fertil Dev 2024; 36:RD23185. [PMID: 38237640 DOI: 10.1071/rd23185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/23/2023] [Indexed: 04/11/2024] Open
Abstract
CONTEXT Resumption of testicular function after gonadotrophin-releasing hormone (GnRH) immunisation varies among individual animals and some stallions regain fertility only after a prolonged time. AIMS This study evaluated endocrine effects of GnRH immunisation and early subsequent re-stimulation with a GnRH agonist. We hypothesised that GnRH agonist treatment advances resumption of normal endocrine function in GnRH-vaccinated stallions. METHODS Shetland stallions were assigned to an experimental and a control group (n =6 each). Experimental stallions were GnRH-immunised twice, 4weeks apart. Each experimental stallion was hemicastrated together with an age-matched control animal when testosterone concentration decreased below 0.3ng/mL. Three weeks later, daily treatment with the GnRH agonist buserelin was initiated (4μg/day for 4weeks followed by 8μg/day). The remaining testicle was removed when testosterone concentration exceeded 0.5ng/mL in vaccinated stallions. Blood was collected for LH, FSH, oestradiol and anti-müllerian hormone (AMH) analyses, and testicular and epididymal tissue were conserved for real-time qPCR and histology. KEY RESULTS GnRH vaccination reduced blood concentrations of LH and FSH, with a structural deterioration of testicular tissue and disruption of spermatogenesis. Daily buserelin treatment for approximately 60days partially restored gonadotropin secretion and induced a recovery of the functional organisation of the testicular tissue with effective spermatogenesis. CONCLUSIONS Endocrine testicular function can be restored in GnRH-vaccinated stallions by daily low-dose buserelin treatment. The buserelin treatment protocol may potentially be improved regarding the dose, interval and duration. IMPLICATIONS Daily buserelin treatment can be recommended for treatment of GnRH-vaccinated stallions with prolonged inhibition of testicular function.
Collapse
Affiliation(s)
- Camille Gautier
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Jörg Aurich
- Obstetrics, Gynecology and Andrology, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Maria Melchert
- Obstetrics, Gynecology and Andrology, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Lisa-Hélène Wagner
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Martim Kaps
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Carolina T C Okada
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Reinhard Ertl
- VetCore Facility for Research, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Ingrid Walter
- VetCore Facility for Research, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria; and Institute of Morphology, Department of Pathobiology, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Christine Aurich
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| |
Collapse
|
5
|
Iwase A, Hasegawa Y, Tsukui Y, Kobayashi M, Hiraishi H, Nakazato T, Kitahara Y. Anti-Müllerian hormone beyond an ovarian reserve marker: the relationship with the physiology and pathology in the life-long follicle development. Front Endocrinol (Lausanne) 2023; 14:1273966. [PMID: 38027144 PMCID: PMC10657644 DOI: 10.3389/fendo.2023.1273966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Anti-Müllerian hormone (AMH), an indirect indicator of the number of remaining follicles, is clinically used as a test for ovarian reserve. Typically, a decline suggests a decrease in the number of remaining follicles in relation to ovarian toxicity caused by interventions, which may implicate fertility. In contrast, serum AMH levels are elevated in patients with polycystic ovary syndrome. AMH is produced primarily in the granulosa cells of the preantral and small antral follicles. Thus it varies in association with folliculogenesis and the establishment and shrinking of the follicle cohort. Ovarian activity during the female half-life, from the embryonic period to menopause, is based on folliculogenesis and maintenance of the follicle cohort, which is influenced by developmental processes, life events, and interventions. AMH trends over a woman's lifetime are associated with in vivo follicular cohort transitions that cannot be observed directly.
Collapse
Affiliation(s)
- Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Jiménez R, Burgos M, Barrionuevo FJ. The Biology and Evolution of Fierce Females (Moles and Hyenas). Annu Rev Anim Biosci 2023; 11:141-162. [PMID: 36130099 DOI: 10.1146/annurev-animal-050622-043424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Talpid moles and spotted hyenas have become the paradigms of anatomical and behavioral female masculinization. Females of many mole species develop ovotestes that produce testosterone, show external genitalia that resemble that of males, and close their vaginal orifice after every estrus, and female spotted hyenas lack an external vaginal orifice and develop a pseudoscrotum and a large pseudopenis through which they urinate, mate, and give birth. We review current knowledge about several significant aspects of the biology and evolution of these females, including (a) their specific study methods; (b) their unique anatomical features, and how these peculiarities influence certain physiological functions; and (c) the role that steroid hormones as well as genetic and environmental factors may have in urogenital system development, aggressive behavior, and social dominance. Nevertheless, both mole and hyena females are exceptionally efficient mothers, so their peculiar genitalia should not call into question their femininity.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| | - Miguel Burgos
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| | - Francisco J Barrionuevo
- Department of Genetics, Institute of Biotechnology, and Center of Biomedical Research (CIBM), University of Granada, Armilla, Granada, Spain; , ,
| |
Collapse
|
7
|
Moses MM, Mullen RD, Idowu DI, Maye P, Jamin SP, Behringer RR. A transgenic bacterial artificial chromosome approach to identify regulatory regions that direct Amhr2 and Osterix expression in Müllerian duct mesenchyme. Front Cell Dev Biol 2022; 10:1006087. [PMID: 36313563 PMCID: PMC9597298 DOI: 10.3389/fcell.2022.1006087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
A transgenic mouse approach using bacterial artificial chromosomes (BAC) was used to identify regulatory regions that direct Müllerian duct expression for Amhr2 and Osterix (Osx, also known as Sp7). Amhr2 encodes the receptor that mediates anti-Müllerian hormone (AMH) signaling for Müllerian duct regression in male embryos. Amhr2 is expressed in the Müllerian duct mesenchyme of both male and female embryos. A ∼147-kb BAC clone containing the Amhr2 locus was used to generate transgenic mice. The transgene was able to rescue the block in Müllerian duct regression of Amhr2-null males, suggesting that the BAC clone contains regulatory sequences active in male embryos. Osx is expressed in the developing skeleton of male and female embryos but is also an AMH-induced gene that is expressed in the Müllerian duct mesenchyme exclusively in male embryos. Osx-Cre transgenic mice were previously generated using a ∼204-kb BAC clone. Crosses of Osx-Cre mice to Cre-dependent lacZ reporter mice resulted in reporter expression in the developing skeleton and in the Müllerian duct mesenchyme of male but not female embryos. Osx-Cherry transgenic mice were previously generated using a 39-kb genomic region surrounding the Osx locus. Osx-Cherry embryos expressed red fluorescence in the developing skeleton and Müllerian duct mesenchyme of male but not female embryos. In addition, female Osx-Cherry embryos ectopically expressing human AMH from an Mt1-AMH transgene activated red fluorescence in the Müllerian duct mesenchyme. These results suggest that the 39-kb region used to generate Osx-Cherry contains male-specific Müllerian duct mesenchyme regulatory sequences that are responsive to AMH signaling. These BAC transgenic mouse approaches identify two distinct regions that direct Müllerian duct mesenchyme expression and contribute fundamental knowledge to define a gene regulatory network for sex differentiation.
Collapse
Affiliation(s)
- Malcolm M. Moses
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Rachel D. Mullen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Daniel I. Idowu
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Soazik P. Jamin
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate Program in Genetics and Epigenetics, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
8
|
Mullen RD, Bellessort B, Levi G, Behringer RR. Distal-less homeobox genes Dlx5/6 regulate Müllerian duct regression. Front Endocrinol (Lausanne) 2022; 13:916173. [PMID: 35909540 PMCID: PMC9334558 DOI: 10.3389/fendo.2022.916173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Dlx5 and Dlx6 encode distal-less homeodomain transcription factors that are present in the genome as a linked pair at a single locus. Dlx5 and Dlx6 have redundant roles in craniofacial, skeletal, and uterine development. Previously, we performed a transcriptome comparison for anti-Müllerian hormone (AMH)-induced genes expressed in the Müllerian duct mesenchyme of male and female mouse embryos. In that study, we found that Dlx5 transcripts were nearly seven-fold higher in males compared to females and Dlx6 transcripts were found only in males, suggesting they may be AMH-induced genes. Therefore, we investigated the role of Dlx5 and Dlx6 during AMH-induced Müllerian duct regression. We found that Dlx5 was detected in the male Müllerian duct mesenchyme from E14.5 to E16.5. In contrast, in female embryos Dlx5 was detected in the Müllerian duct epithelium. Dlx6 expression in Müllerian duct mesenchyme was restricted to males. Dlx6 expression was not detected in female Müllerian duct mesenchyme or epithelium. Genetic experiments showed that AMH signaling is necessary for Dlx5 and Dlx6 expression. Müllerian duct regression was variable in Dlx5 homozygous mutant males at E16.5, ranging from regression like controls to a block in Müllerian duct regression. In E16.5 Dlx6 homozygous mutants, Müllerian duct tissue persisted primarily in the region adjacent to the testes. In Dlx5-6 double homozygous mutant males Müllerian duct regression was also found to be incomplete but more severe than either single mutant. These studies suggest that Dlx5 and Dlx6 act redundantly to mediate AMH-induced Müllerian duct regression during male differentiation.
Collapse
Affiliation(s)
- Rachel D. Mullen
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brice Bellessort
- Département AVIV, Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Giovanni Levi
- Département AVIV, Physiologie Moléculaire et Adaptation, CNRS UMR7221, Muséum National d’Histoire Naturelle, Paris, France
| | - Richard R. Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Richard R. Behringer,
| |
Collapse
|
9
|
Papas M, Govaere J, Peere S, Gerits I, Van de Velde M, Angel-Velez D, De Coster T, Van Soom A, Smits K. Anti-Müllerian Hormone and OPU-ICSI Outcome in the Mare. Animals (Basel) 2021; 11:ani11072004. [PMID: 34359132 PMCID: PMC8300260 DOI: 10.3390/ani11072004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Anti-Müllerian hormone (AMH) reflects the population of growing follicles and has been related to mammalian fertility. In the horse, clinical application of ovum pick-up and intracytoplasmic sperm injection (OPU-ICSI) is increasing, but results depend largely on the individuality of the mare. The aim of this study was to assess AMH as a predictor for the OPU-ICSI outcome in horses. Therefore, 103 mares with a total follicle count above 10 were included in a commercial OPU-ICSI session and serum AMH was determined using ELISA. Overall, the AMH level was significantly correlated with the number of aspirated follicles and the number of recovered oocytes (p < 0.001). Mares with a high AMH level (≥2.5 µg/L) yielded significantly greater numbers of follicles (22.9 ± 1.2), oocytes (13.5 ± 0.8), and blastocysts (2.1 ± 0.4) per OPU-ICSI session compared to mares with medium (1.5-2.5 µg/L) or low AMH levels (<1.5 µg/L), but no significant differences in blastocyst rates were observed. Yet, AMH levels were variable and 58% of the mares with low AMH also produced an embryo. In conclusion, measurement of serum AMH can be used to identify mares with higher chances of producing multiple in vitro embryos, but not as an independent predictor of successful OPU-ICSI in horses.
Collapse
Affiliation(s)
- Marion Papas
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
- Correspondence:
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
| | - Sofie Peere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
| | - Ilse Gerits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
| | - Margot Van de Velde
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
| | - Daniel Angel-Velez
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
- Research Group in Animal Sciences-INCA-CES, Universidad CES, 050021 Medellin, Colombia
| | - Tine De Coster
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (J.G.); (S.P.); (I.G.); (M.V.d.V.); (D.A.-V.); (T.D.C.); (A.V.S.); (K.S.)
| |
Collapse
|
10
|
Santana Gonzalez L, Rota IA, Artibani M, Morotti M, Hu Z, Wietek N, Alsaadi A, Albukhari A, Sauka-Spengler T, Ahmed AA. Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct. Front Cell Dev Biol 2021; 9:605301. [PMID: 33763415 PMCID: PMC7982813 DOI: 10.3389/fcell.2021.605301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.
Collapse
Affiliation(s)
- Laura Santana Gonzalez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ioanna A Rota
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Developmental Immunology Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mara Artibani
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Stewart MK, Mattiske DM, Pask AJ. Exogenous Oestrogen Impacts Cell Fate Decision in the Developing Gonads: A Potential Cause of Declining Human Reproductive Health. Int J Mol Sci 2020; 21:E8377. [PMID: 33171657 PMCID: PMC7664701 DOI: 10.3390/ijms21218377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of testicular dysgenesis syndrome-related conditions and overall decline in human fertility has been linked to the prevalence of oestrogenic endocrine disrupting chemicals (EDCs) in the environment. Ectopic activation of oestrogen signalling by EDCs in the gonad can impact testis and ovary function and development. Oestrogen is the critical driver of ovarian differentiation in non-mammalian vertebrates, and in its absence a testis will form. In contrast, oestrogen is not required for mammalian ovarian differentiation, but it is essential for its maintenance, illustrating it is necessary for reinforcing ovarian fate. Interestingly, exposure of the bi-potential gonad to exogenous oestrogen can cause XY sex reversal in marsupials and this is mediated by the cytoplasmic retention of the testis-determining factor SOX9 (sex-determining region Y box transcription factor 9). Oestrogen can similarly suppress SOX9 and activate ovarian genes in both humans and mice, demonstrating it plays an essential role in all mammals in mediating gonad somatic cell fate. Here, we review the molecular control of gonad differentiation and explore the mechanisms through which exogenous oestrogen can influence somatic cell fate to disrupt gonad development and function. Understanding these mechanisms is essential for defining the effects of oestrogenic EDCs on the developing gonads and ultimately their impacts on human reproductive health.
Collapse
Affiliation(s)
- Melanie K. Stewart
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (D.M.M.); (A.J.P.)
| | | | | |
Collapse
|
12
|
Roly ZY, Godini R, Estermann MA, Major AT, Pocock R, Smith CA. Transcriptional landscape of the embryonic chicken Müllerian duct. BMC Genomics 2020; 21:688. [PMID: 33008304 PMCID: PMC7532620 DOI: 10.1186/s12864-020-07106-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Müllerian ducts are paired embryonic tubes that give rise to the female reproductive tract in vertebrates. Many disorders of female reproduction can be attributed to anomalies of Müllerian duct development. However, the molecular genetics of Müllerian duct formation is poorly understood and most disorders of duct development have unknown etiology. In this study, we describe for the first time the transcriptional landscape of the embryonic Müllerian duct, using the chicken embryo as a model system. RNA sequencing was conducted at 1 day intervals during duct formation to identify developmentally-regulated genes, validated by in situ hybridization. Results This analysis detected hundreds of genes specifically up-regulated during duct morphogenesis. Gene ontology and pathway analysis revealed enrichment for developmental pathways associated with cell adhesion, cell migration and proliferation, ERK and WNT signaling, and, interestingly, axonal guidance. The latter included factors linked to neuronal cell migration or axonal outgrowth, such as Ephrin B2, netrin receptor, SLIT1 and class A semaphorins. A number of transcriptional modules were identified that centred around key hub genes specifying matrix-associated signaling factors; SPOCK1, HTRA3 and ADGRD1. Several novel regulators of the WNT and TFG-β signaling pathway were identified in Müllerian ducts, including APCDD1 and DKK1, BMP3 and TGFBI. A number of novel transcription factors were also identified, including OSR1, FOXE1, PRICKLE1, TSHZ3 and SMARCA2. In addition, over 100 long non-coding RNAs (lncRNAs) were expressed during duct formation. Conclusions This study provides a rich resource of new candidate genes for Müllerian duct development and its disorders. It also sheds light on the molecular pathways engaged during tubulogenesis, a fundamental process in embryonic development.
Collapse
Affiliation(s)
- Zahida Yesmin Roly
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Rasoul Godini
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Martin A Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Roger Pocock
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.
| |
Collapse
|
13
|
Stewart MK, Mattiske DM, Pask AJ. Estrogen suppresses SOX9 and activates markers of female development in a human testis-derived cell line. BMC Mol Cell Biol 2020; 21:66. [PMID: 32933467 PMCID: PMC7493336 DOI: 10.1186/s12860-020-00307-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background The increasing incidence of reproductive disorders in humans has been attributed to in utero exposure to estrogenic endocrine disruptors. In particular, exposure of the developing testis to exogenous estrogen can negatively impact male reproductive health. To determine how estrogens impact human gonad function, we treated the human testis-derived cell line NT2/D1 with estrogen and examined its impact on SOX9 and the expression of key markers of granulosa (ovarian) and Sertoli (testicular) cell development. Results Estrogen successfully activated its cognate receptor (estrogen receptor alpha; ESR1) in NT2/D1 cells. We observed a significant increase in cytoplasmic SOX9 following estrogen treatment. After 48 h of estrogen exposure, mRNA levels of the key Sertoli cell genes SOX9, SRY, AMH, FGF9 and PTGDS were significantly reduced. This was followed by a significant increase in mRNA levels for the key granulosa cell genes FOXL2 and WNT4 after 96 h of estrogen exposure. Conclusions These results are consistent with estrogen's effects on marsupial gonads and show that estrogen has a highly conserved impact on gonadal cell fate decisions that has existed in mammals for over 160 million years. This effect of estrogen presents as a potential mechanism contributing to the significant decrease in male fertility and reproductive health reported over recent decades. Given our widespread exposure to estrogenic endocrine disruptors, their effects on SOX9 and Sertoli cell determination could have considerable impact on the adult testis.
Collapse
Affiliation(s)
- Melanie K Stewart
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
14
|
Washio K, Mizushima S, Jogahara T, Kuroiwa A. Regulation of the Sox3 Gene in an X0/X0 Mammal without Sry, the Amami Spiny Rat, Tokudaia osimensis. Cytogenet Genome Res 2019; 159:143-150. [PMID: 31760386 DOI: 10.1159/000504313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Two species of spiny rats, Tokudaia osimensis and Tokudaia tokunoshimensis, show an X0/X0 sex chromosome constitution due to the lack of a Y chromosome. The Sry gene has been completely lost from the genome of these species. We hypothesized that Sox3, which is thought to be originally a homologue of Sry, could function in sex determination in these animals in the absence of Sry. Sox3 was localized in a region of the X chromosome in T. osimensis homologous to mouse. A similar testis- and ovary-specific pattern of expression was observed in mouse and T. osimensis. Although the sequence of the Sox3 gene and its promoter are highly conserved, a 13-bp deletion was specifically found in the promoter region of the 2 spiny rat species. Reporter gene assays were performed to examine the effect of the 13-bp deletion in the promoter region on Sox3 regulation. Although an approximately 60% decrease in activity was observed using the Tokudaia promoters with the 13-bp deletion, the activity was recovered using a mutated promoter in which the deletion was filled with mouse sequence. To evaluate whether SOX3 could regulate Sox9 expression, a reporter gene assay was carried out using testis-specific enhancer of Sox9 core (TESCO). Co-transfection with a combination of mouse SF1 and mouse SOX3 or T. osimensis SOX3 resulted in a greater than 2-fold increase in activity of mouse and T. osimensis TESCO. These results support the idea that the function of SOX3 as a transcription factor, as has been reported in mice and humans, is conserved in T. osimensis. Therefore, we conclude that the Sox3 gene has no function in sex determination in Sry-lacking Tokudaia species.
Collapse
|
15
|
Tadaion Far F, Jahanian Sadatmahalleh S, Ziaei S, Kazemnejad A. Comparison of the umbilical cord Blood's anti-Mullerian hormone level in the newborns of mothers with polycystic ovary syndrome (PCOS) and healthy mothers. J Ovarian Res 2019; 12:111. [PMID: 31735163 PMCID: PMC6858970 DOI: 10.1186/s13048-019-0583-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/17/2019] [Indexed: 01/18/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is one of the most common endocrine diseases. At present, the cause of the disease is not fully understood, but many studies have shown that PCOS is associated with genetic and environmental factors. The present study aimed to assess the umbilical cord blood’s Anti-mullerian hormone (AMH) level in the newborns of mothers suffering from PCOS comparing to healthy mothers. Methods This prospective cohort study was conducted on 120 pregnant women with PCOS, who were selected through Rotterdam criteria, and 60 healthy pregnant women as the control group. The subjects in each group were divided into obese and non-obese mothers according to their body mass index (BMI) before pregnancy. The cord blood samples were collected from the offsprings on the time of childbirth. Finally, the circulating concentrations of AMH in both sexes of the newborns were determined by specific assays. Results The research results showed that the blood level of AMH was higher in the neonates of obese mothers with PCOS comparing to the controls (P < 0.001). Mean AMH level was higher in male neonates born from non-obese PCOS mothers than in the controls (P < 0.001); however, there was not a significant difference in the level of AMH in female neonates between these two groups (P = 0.264). Also the level of the above biomarker was higher in both sexes of the neonates belonging to obese PCOS mothers compared with the neonates born from non-obese PCOS mothers (P < 0.001). Conclusion(s) It can be said that the cord blood AMH level of neonates from obese women with PCOS is higher than that in the newborns of non-obese PCOS mothers. Further longitudinal studies are needed to confirm the clinical findings of the present research.
Collapse
Affiliation(s)
- Faezeh Tadaion Far
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Saeideh Ziaei
- Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Anoshirvan Kazemnejad
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
16
|
Kano M, Hsu JY, Saatcioglu HD, Nagykery N, Zhang L, Morris Sabatini ME, Donahoe PK, Pépin D. Neoadjuvant Treatment With Müllerian-Inhibiting Substance Synchronizes Follicles and Enhances Superovulation Yield. J Endocr Soc 2019; 3:2123-2134. [PMID: 31687639 PMCID: PMC6821214 DOI: 10.1210/js.2019-00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Müllerian-inhibiting substance (MIS), also known as anti-Müllerian hormone, is thought to be a negative regulator of primordial follicle activation. We have previously reported that treatment with exogenous MIS can induce complete ovarian suppression within 5 weeks of treatment in mice. To investigate the kinetics of the return of folliculogenesis following the reversal of suppression, we treated animals with recombinant human MIS (rhMIS) protein for 40 days in adult female Nu/Nu mice and monitored the recovery of each follicle type over time. Following cessation of MIS therapy, secondary, and antral follicles returned within 30 days, along with the normalization of reproductive hormones, including LH, FSH, MIS, and Inhibin B. Furthermore, 30 days following MIS pretreatment, the number of antral follicles were significantly higher than controls, and superovulation with timed pregnant mare serum gonadotropin and human chorionic gonadotropin stimulation at this time point resulted in an approximately threefold increased yield of eggs. Use of the combined rhMIS-gonadotropin superovulation regimen in a diminished ovarian reserve (DOR) mouse model, created by 4-vinylcyclohexene dioxide treatment, also resulted in a twofold improvement in the yield of eggs. In conclusion, treatment with rhMIS can induce a reversible ovarian suppression, following which a rapid and synchronized large initial wave of growing follicles can be harnessed to enhance the response to superovulation. Therapies modulating MIS signaling may therefore augment the response to current ovarian stimulation protocols and could be particularly useful to women with DOR or poor responders to controlled ovarian hyperstimulation during in vitro fertilization.
Collapse
Affiliation(s)
- Motohiro Kano
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Y Hsu
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts.,Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hatice D Saatcioglu
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Nicholas Nagykery
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - LiHua Zhang
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - Mary E Morris Sabatini
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts.,Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts.,Department of Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Oh SR, Choe SY, Cho YJ. Clinical application of serum anti-Müllerian hormone in women. Clin Exp Reprod Med 2019; 46:50-59. [PMID: 31181872 PMCID: PMC6572668 DOI: 10.5653/cerm.2019.46.2.50] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022] Open
Abstract
Anti-Müllerian hormone (AMH), a peptide growth factor of the transforming growth factor-β family, is a reliable marker of ovarian reserve. Regarding assisted reproductive technology, AMH has been efficiently used as a marker to predict ovarian response to stimulation. The clinical use of AMH has recently been extended and emphasized. The uses of AMH as a predictive marker of menopause onset, diagnostic tool for polycystic ovary syndrome, and assessment of ovarian function before and after gynecologic surgeries or gonadotoxic agents such as chemotherapy have been investigated. Serum AMH levels can also be affected by environmental and genetic factors; thus, the effects of factors that may alter AMH test results should be considered. This review summarizes the findings of recent studies focusing on the clinical application of AMH and factors that influence the AMH level and opinions on the use of the AMH level to assess the probability of conception before reproductive life planning as a “fertility test.”
Collapse
Affiliation(s)
- So Ra Oh
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Korea
| | - Sun Yi Choe
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Korea
| | - Yeon Jean Cho
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Korea
| |
Collapse
|
18
|
Miller WL, Auchus RJ. The "backdoor pathway" of androgen synthesis in human male sexual development. PLoS Biol 2019; 17:e3000198. [PMID: 30943210 PMCID: PMC6464227 DOI: 10.1371/journal.pbio.3000198] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/15/2019] [Indexed: 11/18/2022] Open
Abstract
Mammalian sex determination (male versus female) is largely controlled by genes, whereas sex differentiation (development of reproductive structures) is largely controlled by hormones. Work in the 20th century indicated that female external anatomy was a "default" pathway of development not requiring steroids, whereas male genital development required testicular testosterone plus dihydrotestosterone (DHT) made in genital skin according to a "classic" pathway. Recent work added the description of an alternative "backdoor" pathway of androgen synthesis discovered in marsupials. Unique "backdoor steroids" are found in human hyperandrogenic disorders, and genetic disruption of the pathway causes disordered male sexual development, suggesting it plays an essential role. O'Shaughnessy and colleagues now show that the principal human backdoor androgen is androsterone and provide strong evidence that it derives from placental progesterone that is metabolized to androsterone in nontesticular tissues. These studies are essential to understanding human sexual development and its disorders.
Collapse
Affiliation(s)
- Walter L. Miller
- Department of Pediatrics and Center for Reproductive Sciences, University of California-San Francisco, San Francisco, California, United States of America
| | - Richard J. Auchus
- Departments of Medicine and of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
19
|
Ferguson JM, Pépin D, Duru C, Matejtschuk P, Donahoe PK, Burns CJ. Towards international standardization of immunoassays for Müllerian inhibiting substance/anti-Müllerian hormone. Reprod Biomed Online 2018; 37:631-640. [PMID: 30241771 PMCID: PMC6302068 DOI: 10.1016/j.rbmo.2018.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022]
Abstract
Research question Is formulated and lyophilized, recombinant human Müllerian inhibiting substance, also known as anti-Müllerian hormone (AMH), suitable for the preparation of a WHO international standard to calibrate AMH immunoassays? Design The AMH content of a trial preparation, coded SS-581, was determined by five laboratories using seven immunoassay methods. Participants were requested to report the content of the preparation in terms of their method calibrators through the measurement of a minimum of five concentrations in the linear part of the dose-response curve. Participants were also asked to measure, concomitantly, a panel of six serum samples containing AMH at concentrations of 0.1–13.0 ng/ml. Results Across all assays, including two automated assays in development, the geometric mean content was 361.76 ng/ampoule with a geometric coefficient of variation (GCV%) of 39.95%. When measured by immunoassays that were commercially available at the time of the study, the mean content was 423.08 ng/ampoule, with a GCV% of 26.67%. The inter-method geometric means of five serum samples with an AMH concentration >0.3 ng/ml and measured concomitantly with dilutions of SS-581 varied with a range of GCV% of 14.90–22.35%, which may reflect the use of serum sample value transfer to calibrate current immunoassays, some of which use non-human AMH calibrators. The AMH in trial preparation SS-581 was shown to be biologically active in the Müllerian duct regression assay. Conclusions A reference material prepared using human recombinant AMH is a promising candidate for the preparation of an international standard for AMH for immunoassays calibrated to recombinant human AMH.
Collapse
Affiliation(s)
- Jackie Mc Ferguson
- Biotherapeutics Division, NIBSC, South Mimms, Potters Bar Hertfordshire, UK.
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, CPZN 6206, MA, USA
| | - Chinwe Duru
- Technology, Development and Infrastructure Division, NIBSC, South Mimms, Potters Bar Hertfordshire, UK
| | - Paul Matejtschuk
- Technology, Development and Infrastructure Division, NIBSC, South Mimms, Potters Bar Hertfordshire, UK
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, CPZN 6206, MA, USA
| | - Chris J Burns
- Biotherapeutics Division, NIBSC, South Mimms, Potters Bar Hertfordshire, UK
| |
Collapse
|
20
|
Osterix functions downstream of anti-Müllerian hormone signaling to regulate Müllerian duct regression. Proc Natl Acad Sci U S A 2018; 115:8382-8387. [PMID: 30061417 DOI: 10.1073/pnas.1721793115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In mammals, the developing reproductive tract primordium of male and female fetuses consists of the Wolffian duct and the Müllerian duct (MD), two epithelial tube pairs surrounded by mesenchyme. During male development, mesenchyme-epithelia interactions mediate MD regression to prevent its development into a uterus, oviduct, and upper vagina. It is well established that transforming growth factor-β family member anti-Müllerian hormone (AMH) secreted from the fetal testis and its type 1 and 2 receptors expressed in MD mesenchyme regulate MD regression. However, little is known about the molecular network regulating downstream actions of AMH signaling. To identify potential AMH-induced genes and regulatory networks controlling MD regression in a global nonbiased manner, we examined transcriptome differences in MD mesenchyme between males (AMH signaling on) and females (AMH signaling off) by RNA-seq analysis of purified fetal MD mesenchymal cells. This analysis found 82 genes up-regulated in males during MD regression and identified Osterix (Osx)/Sp7, a key transcriptional regulator of osteoblast differentiation and bone formation, as a downstream effector of AMH signaling during MD regression. Osx/OSX was expressed in a male-specific pattern in MD mesenchyme during MD regression. OSX expression was lost in mutant males without AMH signaling. In addition, transgenic mice ectopically expressing human AMH in females induced a male pattern of Osx expression. Together, these results indicate that AMH signaling is necessary and sufficient for Osx expression in the MD mesenchyme. In addition, MD regression was delayed in Osx-null males, identifying Osx as a factor that regulates MD regression.
Collapse
|
21
|
Roles of Two Sox9 Genes during Gonadal Development in Japanese Flounder: Sex Differentiation, Spermatogenesis and Gonadal Function Maintenance. Int J Mol Sci 2018; 19:ijms19020512. [PMID: 29419762 PMCID: PMC5855734 DOI: 10.3390/ijms19020512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
The transcription factor sox9 has been implicated in cartilage formation and testis determination in mammals. Here, two duplicates of sox9 were found in Japanese flounder (Paralichthys olivaceus) named Posox9a and Posox9b, respectively. Phylogenetic and gene structure analyses revealed that Posox9a and Posox9b were homologous to that of teleosts and tetrapods. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that both Posox9a and Posox9b expressed higher in testis than in ovary of adult tissues. The in situ hybridization (ISH) analysis of gonads showed that Posox9a and Posox9b mRNA were both detected in oocytes, Sertoli cells and spermatocytes. During sex differentiation, the expression of Posox9a exhibited obvious sexual dimorphic expression from 60 days after hatch (dah) with higher expression in male preferred individuals than female preferred individuals and increased gradually from 30 to 100 dah. A similar pattern was detected in Posox9b expression. After injection of androgen (17α-methyltestosterone) of different concentrations, the expression level of Posox9b increased significantly, whereas Posox9a did not change obviously. These results indicated that the two sox9 genes of Japanese flounder had converse functions in sex differentiation, whereas their differences in 17α-methyltestosterone administration were obvious and worthwhile for exploring evolutionary and adaptive significance. This study provided a foundation for further exploration of the roles of Posox9 genes during the sex determination and differentiation, spermatogenesis and gonadal function maintenance of Japanese flounder.
Collapse
|
22
|
Roly ZY, Backhouse B, Cutting A, Tan TY, Sinclair AH, Ayers KL, Major AT, Smith CA. The cell biology and molecular genetics of Müllerian duct development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e310. [DOI: 10.1002/wdev.310] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Zahida Yesmin Roly
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| | - Brendan Backhouse
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew Cutting
- Biology Laboratory, Faculty of ScienceThe University of MelbourneMelbourneVictoriaAustralia
| | - Tiong Yang Tan
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew H. Sinclair
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Katie L. Ayers
- Murdoch Children's Research Institute and Department of PaediatricsUniversity of Melbourne, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Andrew T. Major
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| | - Craig A. Smith
- Monash Biomedicine Discovery Institute, Department of Anatomy and Development BiologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
23
|
Engineered endothelium provides angiogenic and paracrine stimulus to grafted human ovarian tissue. Sci Rep 2017; 7:8203. [PMID: 28811567 PMCID: PMC5557862 DOI: 10.1038/s41598-017-08491-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/11/2017] [Indexed: 01/02/2023] Open
Abstract
Despite major advances in tissue cryopreservation and auto-transplantation, reperfusion ischemia and hypoxia have been reported as major obstacles to successful recovery of the follicular pool within grafted ovarian tissue. We demonstrate a benefit to follicular survival and function in human ovarian tissue that is co-transplanted with exogenous endothelial cells (ExEC). ExECs were capable of forming functionally perfused vessels at the host/graft interface and increased both viability and follicular volume in ExEC-assisted grafts with resumption of antral follicle development in long-term grafts. ExECs that were engineered to constitutively express anti-mullerian hormone (AMH) induced a greater proportion of quiescent primordial follicles than control ExECs, indicating suppression of premature mobilization that has been noted in the context of ovarian tissue transplantation. These findings present a cell-based strategy that combines accelerated perfusion with direct paracrine delivery of a bioactive payload to transplanted ovarian tissue.
Collapse
|
24
|
Serum variations of anti-mullerian hormone and total testosterone with aging in healthy adult Iranian men: A population-based study. PLoS One 2017; 12:e0179634. [PMID: 28715487 PMCID: PMC5513413 DOI: 10.1371/journal.pone.0179634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/01/2017] [Indexed: 01/30/2023] Open
Abstract
Background Literature proves anti-mullerian hormone (AMH) and total testosterone (TT) as two important reproductive hormones in male development, however evidence regarding age variations of these hormones is lacking. Aims To estimate the normal serum AMH values and to assess the age-specific TT levels in men aged 30–70, we conducted the present population-based study. Methods A total of 831 healthy eligible men, aged 30–70 years, were recruited from Tehran Lipid and Glucose study cohort. Centiles for AMH were estimated according to the exponential normal 3-parameter model. The parametric method of Royston available in general software was applied for the first time to estimate the age-specific AMH and TT percentiles of 5th, 10th, 25th, 50th, 75th, 90th and 95th. Results Mean AMH level was 6.93, ranging from 0.1 to 40.1 ng/ml. Serum AMH concentrations followed a steady reduction with increasing age. Mean TT level was 4.8, ranging from 0.44 to 11.4 ng/ml. Discussion A measurable serum concentrations of AMH in healthy males throughout lifespan with variations, based on age, confirming a slight age-related AMH decline. Fractional polynomial (FP) regression models revealed that the mean and standard deviation (SD) of the TT were not associated with age, so the percentiles estimated were not age-specific. Conclusion We presented a nomogram of age-specific AMH values in a healthy cohort of Iranian men. This finding might have clinical importance in dealing hormonal disorders in men.
Collapse
|
25
|
Mossa F, Jimenez-Krassel F, Scheetz D, Weber-Nielsen M, Evans ACO, Ireland JJ. Anti-Müllerian Hormone (AMH) and fertility management in agricultural species. Reproduction 2017; 154:R1-R11. [PMID: 28356501 DOI: 10.1530/rep-17-0104] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
A reliable, easy to assess marker for fertility in agricultural species would be highly desirable and Anti-Müllerian Hormone (AMH) is a promising candidate. This review summarizes recent findings concerning AMH and its role in fertility management, mainly in cattle. It focuses on (1) alterations in circulating AMH concentrations from birth to puberty and during estrous cycles; (2) correlation of circulating AMH concentrations with ovarian follicle numbers and ovarian reserve; (3) factors that impact circulating AMH concentrations; (4) use of AMH as a predictor of fertility. Circulating AMH concentrations can be easily and reliably measured with a single blood sample in adult cattle because AMH varies minimally during the estrous cycle and is repeatable across multiple cycles. Circulating AMH concentrations are positively associated with several measures of fertility. Dairy heifers with low compared with higher AMH concentrations subsequently had lower pregnancy rates, higher probability of being culled after birth of their first calf and shorter herd longevity. Also, AMH is predictive of response to superovulation in cattle and sheep. Several factors contribute to the variability in AMH concentrations among individuals; for example, beef cattle have higher AMH than dairy cattle. Nutritional imbalances, disease and endocrine disruptors during fetal life may negatively program the size of the ovarian reserve and consequently serum AMH concentrations and potential fertility in adulthood. We conclude that AMH may be a predictor of fertility and herd longevity in cattle, whereas in sheep and other farm species, the potential association between AMH and reproductive performance remains largely unexplored.Free Italian abstract: An Italian translation of this abstract is freely available at http://www.reproduction-online.org/content/154/1/R1/suppl/DC1.
Collapse
Affiliation(s)
- F Mossa
- Department of Veterinary MedicineUniversity of Sassari, Sassari, Italy
| | - F Jimenez-Krassel
- Department of Animal ScienceMichigan State University, East Lansing, Michigan, USA
| | - D Scheetz
- Department of Animal ScienceMichigan State University, East Lansing, Michigan, USA
| | - M Weber-Nielsen
- Department of Animal ScienceMichigan State University, East Lansing, Michigan, USA
| | - A C O Evans
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - J J Ireland
- Department of Animal ScienceMichigan State University, East Lansing, Michigan, USA
| |
Collapse
|
26
|
Edelsztein NY, Grinspon RP, Schteingart HF, Rey RA. Anti-Müllerian hormone as a marker of steroid and gonadotropin action in the testis of children and adolescents with disorders of the gonadal axis. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2016; 2016:20. [PMID: 27799946 PMCID: PMC5084469 DOI: 10.1186/s13633-016-0038-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/12/2016] [Indexed: 12/17/2022]
Abstract
In pediatric patients, basal testosterone and gonadotropin levels may be uninformative in the assessment of testicular function. Measurement of serum anti-Müllerian hormone (AMH) has become increasingly widespread since it provides information about the activity of the male gonad without the need for dynamic tests, and also reflects the action of FSH and androgens within the testis. AMH is secreted in high amounts by Sertoli cells from fetal life until the onset of puberty. Basal AMH expression is not dependent on gonadotropins or sex steroids; however, FSH further increases and testosterone inhibits AMH production. During puberty, testosterone induces Sertoli cell maturation, and prevails over FSH on AMH regulation. Therefore, AMH production decreases. Serum AMH is undetectable in patients with congenital or acquired anorchidism, or with complete gonadal dysgenesis. Low circulating levels of AMH may reflect primary testicular dysfunction, e.g. in certain patients with cryptorchidism, monorchidism, partial gonadal dysgenesis, or central hypogonadism. AMH is low in boys with precocious puberty, but it increases to prepubertal levels after successful treatment. Conversely, serum AMH remains at high, prepubertal levels in boys with constitutional delay of puberty. Serum AMH measurements are useful, together with testosterone determination, in the diagnosis of patients with ambiguous genitalia: both are low in patients with gonadal dysgenesis, including ovotesticular disorders of sex development, testosterone is low but AMH is in the normal male range or higher in patients with disorders of androgen synthesis, and both hormones are normal or high in patients with androgen insensitivity. Finally, elevation of serum AMH above normal male prepubertal levels may be indicative of rare cases of sex-cord stromal tumors or Sertoli cell-limited disturbance in the McCune Albright syndrome.
Collapse
Affiliation(s)
- Nadia Y Edelsztein
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina ; Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina P Grinspon
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Helena F Schteingart
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina ; Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
27
|
Claes ANJ, Ball BA. Biological Functions and Clinical Applications of Anti-Müllerian Hormone in Stallions and Mares. Vet Clin North Am Equine Pract 2016; 32:451-464. [PMID: 27726984 DOI: 10.1016/j.cveq.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anti-Müllerian hormone (AMH) plays a major role in sexual differentiation, Leydig cell differentiation, and folliculogenesis. In addition, AMH has clinical value in equine practice. In stallions, AMH can serve as an endocrine marker for equine cryptorchidism and as an immunohistochemical marker for Sertoli cell tumors. Considering that AMH is also an ovarian specific product, intact mares can be differentiated from ovariectomized mares. Peripheral AMH concentrations reflect the follicular population in mares, and therefore, are useful in the assessment of ovarian reserve and reproductive life-span of aged mares. Last, AMH is particularly suitable as a diagnostic marker for equine granulosa cell tumors.
Collapse
Affiliation(s)
- Anthony N J Claes
- Department of Equine Science, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, Utrecht 3584 CM, The Netherlands.
| | - Barry A Ball
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40546-0099 USA
| |
Collapse
|
28
|
Molecular mechanism of male differentiation is conserved in the SRY-absent mammal, Tokudaia osimensis. Sci Rep 2016; 6:32874. [PMID: 27611740 PMCID: PMC5017195 DOI: 10.1038/srep32874] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/16/2016] [Indexed: 01/22/2023] Open
Abstract
The sex-determining gene SRY induces SOX9 expression in the testes of eutherian mammals via two pathways. SRY binds to testis-specific enhancer of Sox9 (TESCO) with SF1 to activate SOX9 transcription. SRY also up-regulates ER71 expression, and ER71 activates Sox9 transcription. After the initiation of testis differentiation, SOX9 enhances Amh expression by binding to its promoter with SF1. SOX8, SOX9 and SOX10, members of the SOXE gene family, also enhance the activities of the Amh promoter and TESCO. In this study, we investigated the regulation of these sexual differentiation genes in Tokudaia osimensis, which lacks a Y chromosome and the SRY gene. The activity of the AMH promoter was stimulated by SOXE genes and SF1. Mutant AMH promoters, with mutations in its SOX and SF1 binding sites, did not show significant activity by SOX9 and SF1. These results indicate that AMH expression was regulated by the binding of SOX9 and SF1. By contrast, SOXE genes could not enhance TESCO activity. These results indicate that TESCO enhancer activity was lost in this species. Furthermore, the activity of the SOX9 promoter was enhanced by ER71, indicating that ER71 may play an important role in the testis-specific expression of SOX9.
Collapse
|
29
|
Eckersten D, Giwercman A, Christensson A. Male patients with terminal renal failure exhibit low serum levels of antimüllerian hormone. Asian J Androl 2016; 17:149-53. [PMID: 25130586 PMCID: PMC4291859 DOI: 10.4103/1008-682x.135124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Male reproductive function is impaired during end-stage renal disease (ESRD). Disturbance of the hypothalamic-pituitary-gonadal axis, and therefore the regulation of sex hormones, is one of the major causes. Our focus was to include antimüllerian hormone (AMH) and inhibin B concentrations. Twenty male patients on hemodialysis, median age 40 (26–48) years, were analyzed for follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, sex hormone-binding globulin (SHBG), testosterone, estradiol, AMH and inhibin B levels. We used 144 proven fertile men, median age 32 (19–44) years as a control group and analyzed differences using multiple linear regression. Males with ESRD demonstrated higher mean values for prolactin, 742 versus normal 210 mIE l−1 (95% confidence interval (CI): 60.3, 729), LH, 8.87 versus normal 4.5 IE l−1 (95% CI: 2.75, 6.14), and estradiol 89.7 versus normal 79.0 pmol l−1 (95% CI: −1.31, −0.15). Mean value for AMH was lower, 19.5 versus normal 47.3 pmol l−1 (95% CI: −37.6, −11.6). There were no differences found for FSH, SHBG, inhibin B and testosterone. The most important difference was found for AMH, a marker of Sertoli cell function in the testes, which decreased by close to 60% when compared with controls. Combined with an increase in LH, these findings may indicate a dysfunction of Sertoli cells and an effect on Leydig cells contributing to a potential mechanism of reproductive dysfunction in men with ESRD.
Collapse
Affiliation(s)
| | | | - Anders Christensson
- Department of Nephrology and Transplantation, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
30
|
Visser JA. Shaping up the function of anti-Müllerian hormone in ovaries of mono-ovulatory species. Hum Reprod 2016; 31:1403-5. [PMID: 27165619 DOI: 10.1093/humrep/dew101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jenny A Visser
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Petit FG, Deng C, Jamin SP. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice. Int J Biol Sci 2016; 12:667-76. [PMID: 27194944 PMCID: PMC4870710 DOI: 10.7150/ijbs.12300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/17/2016] [Indexed: 01/13/2023] Open
Abstract
Müllerian duct regression is a complex process which involves the AMH signalling pathway. We have previously demonstrated that besides AMH and its specific type II receptor (AMHRII), BMPR-IA and Smad5 are two essential factors implicated in this mechanism. Mothers against decapentaplegic homolog 4 (Smad4) is a transcription factor and the common Smad (co-Smad) involved in transforming growth factor beta (TGF-β) signalling pathway superfamily. Since Smad4 null mutants die early during gastrulation, we have inactivated Smad4 in the Müllerian duct mesenchyme. Specific inactivation of Smad4 in the urogenital ridge leads to the partial persistence of the Müllerian duct in adult male mice. Careful examination of the urogenital tract reveals that the Müllerian duct retention is randomly distributed either on one side or both sides. Histological analysis shows a uterus-like structure, which is confirmed by the expression of estrogen receptor α. As previously described in a β-catenin conditional mutant mouse model, β-catenin contributes to Müllerian duct regression. In our mutant male embryos, it appears that β-catenin expression is locally reduced along the urogenital ridge as compared to control mice. Moreover, the expression pattern is similar to those observed in control female mice. This study shows that reduced Smad4 expression disrupts the Wnt/β-catenin signalling leading to the partial persistence of Müllerian duct.
Collapse
Affiliation(s)
- Fabrice G Petit
- 1. Institut National de la Santé et de la Recherche Médicale, Institut de Recherche en Santé, Environnement et Travail, UMR1085, Université de Rennes 1, Rennes, France;; 2. Institut National de la Santé et de la Recherche Médicale, U782, Clamart, France
| | - Chuxia Deng
- 3. Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Soazik P Jamin
- 1. Institut National de la Santé et de la Recherche Médicale, Institut de Recherche en Santé, Environnement et Travail, UMR1085, Université de Rennes 1, Rennes, France;; 2. Institut National de la Santé et de la Recherche Médicale, U782, Clamart, France
| |
Collapse
|
32
|
Eckersten D, Giwercman A, Bruun L, Christensson A. Anti-Müllerian hormone, a Sertoli cell-derived marker, is decreased in plasma of male patients in all stages of chronic kidney disease. Andrology 2015; 3:1160-4. [PMID: 26452591 DOI: 10.1111/andr.12116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
Abstract
Male patients with terminal renal failure are often infertile and exhibit an abnormal sex hormone pattern in plasma. We studied patients in all chronic kidney disease (CKD) stages to determine plasma levels of anti-Müllerian hormone (AMH), a Sertoli cell-derived marker, and other sex hormones. Seventy-eight male patients with CKD stages 1-5 and a median age of 40 years (22-50 years), as well as 20 healthy controls with a median age of 37 years (26-44 years), were enrolled. The CKD patients were evenly distributed; 18 with CKD stages 1-2, 19 with CKD stage 3, 19 with CKD stage 4, and 22 with CKD stage 5. Cystatin C, follicle-stimulating hormone, luteinizing hormone, prolactin, sex hormone-binding globulin, testosterone, and AMH levels in plasma were analysed. AMH was analysed using the Ansh Labs UltraSensitive AMH assay. Several changes occurred in plasma levels of sex hormones in male patients with CKD. Plasma AMH levels were lower in CKD stages 1-4 by 30% (p = 0.041) and by 70% (p < 0.001) in CKD stage 5 compared with controls. Plasma luteinizing hormone and prolactin levels were higher and testosterone levels were lower compared with controls. The pathophysiological role of this reduction in AMH is unclear, but can be linked to altered Sertoli cell function.
Collapse
Affiliation(s)
- D Eckersten
- Department of Nephrology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - A Giwercman
- Reproductive Medicine Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| | - L Bruun
- Department of Nephrology, Skåne University Hospital, Lund University, Malmö, Sweden
| | - A Christensson
- Department of Nephrology, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
33
|
MURASE H, SAITO S, AMAYA T, SATO F, BALL BA, NAMBO Y. Anti-Müllerian hormone as an indicator of hemi-castrated unilateral cryptorchid horses. J Equine Sci 2015; 26:15-20. [PMID: 25829866 PMCID: PMC4379328 DOI: 10.1294/jes.26.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/30/2015] [Indexed: 11/21/2022] Open
Abstract
Anti-Müllerian hormone (AMH), a glycoprotein secreted from the fetal testis, is responsible for regression of the Müllerian duct in the male fetus. The aim of this study was to evaluate the usefulness of serum AMH as a biomarker for diagnosis of cryptorchidism in horses. Serum AMH concentrations were measured in intact stallions, hemi-castrated unilateral cryptorchid stallions, and geldings. In addition, expression of AMH was characterized in cryptorchid testes by immunohistochemistry. Serum AMH was detected in intact stallions (n=11, 13.3 ± 1.8 ng/ml) and in hemi-castrated cryptorchid stallions (n=8, 17.6 ± 3.0 ng/ml), but not in geldings (n=6, all data were below the limit of detection). Immunolabeling for AMH was detected in Sertoli cells of undescended testes from cryptorchid horses as well as those of normal testes. Our findings indicate that the cryptorchid testis after hemi-castration secretes AMH and that serum AMH concentrations may be a useful biomarker for diagnosis of equine cryptorchidism.
Collapse
Affiliation(s)
- Harutaka MURASE
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Shigeaki SAITO
- Yamato Kohgen Animal Medical Clinic, Osaka 583-0867, Japan
| | - Tomohiko AMAYA
- Yamato Kohgen Animal Medical Clinic, Osaka 583-0867, Japan
| | - Fumio SATO
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Barry Allen BALL
- Reproduction Laboratory, The Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, U.S.A
| | - Yasuo NAMBO
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
- Present address: Department of Clinical Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| |
Collapse
|
34
|
Eshel O, Shirak A, Dor L, Band M, Zak T, Markovich-Gordon M, Chalifa-Caspi V, Feldmesser E, Weller JI, Seroussi E, Hulata G, Ron M. Identification of male-specific amh duplication, sexually differentially expressed genes and microRNAs at early embryonic development of Nile tilapia (Oreochromis niloticus). BMC Genomics 2014; 15:774. [PMID: 25199625 PMCID: PMC4176596 DOI: 10.1186/1471-2164-15-774] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022] Open
Abstract
Background The probable influence of genes and the environment on sex determination in Nile tilapia suggests that it should be regarded as a complex trait. Detection of sex determination genes in tilapia has both scientific and commercial importance. The main objective was to detect genes and microRNAs that were differentially expressed by gender in early embryonic development. Results Artificial fertilization of Oreochromis niloticus XX females with either sex-reversed ΔXX males or genetically-modified YY ‘supermales’ resulted in all-female and all-male embryos, respectively. RNA of pools of all-female and all-male embryos at 2, 5 and 9 dpf were used as template for a custom Agilent eArray hybridization and next generation sequencing. Fifty-nine genes differentially expressed between genders were identified by a false discovery rate of p < 0.05. The most overexpressed genes were amh and tspan8 in males, and cr/20β-hsd, gpa33, rtn4ipl and zp3 in females (p < 1 × 10−9). Validation of gene expression using qPCR in embryos and gonads indicated copy number variation in tspan8, gpa33, cr/20β-hsd and amh. Sequencing of amh identified a male-specific duplication of this gene, denoted amhy, differing from the sequence of amh by a 233 bp deletion on exonVII, hence lacking the capability to encode the protein motif that binds to the transforming growth factor beta receptor (TGF-β domain). amh and amhy segregated in the mapping family in full concordance with SD-linked marker on LG23 signifying the QTL for SD. We discovered 831 microRNAs in tilapia embryos of which nine had sexually dimorphic expression patterns by a false discovery rate of p < 0.05. An up-regulated microRNA in males, pma-mir-4585, was characterized with all six predicted target genes including cr/20β-hsd, down-regulated in males. Conclusions This study reports the first discovery of sexually differentially expressed genes and microRNAs at a very early stage of tilapia embryonic development, i.e. from 2 dpf. Genes with sexually differential expression patterns are enriched for copy number variation. A novel male-specific duplication of amh, denoted amhy, lacking the TGF-β domain was identified and mapped to the QTL region on LG23 for SD, thus indicating its potential role in SD. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-774) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Micha Ron
- Institute of Animal Science, ARO, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
35
|
Mullen RD, Behringer RR. Molecular genetics of Müllerian duct formation, regression and differentiation. Sex Dev 2014; 8:281-96. [PMID: 25033758 DOI: 10.1159/000364935] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Müllerian duct (MD) forms the female reproductive tract (FRT) consisting of the oviducts, uterus, cervix, and upper vagina. FRT function is vital to fertility, providing the site of fertilization, embryo implantation and fetal development. Developmental defects in the formation and diseases of the FRT, including cancer and endometriosis, are prevalent in humans and can result in infertility and death. Furthermore, because the MDs are initially formed regardless of genotypic sex, mesenchymal to epithelial signaling is required in males to mediate MD regression and prevents the development of MD-derived organs. In males, defects in MD regression result in the retention of FRT organs and have been described in several human syndromes. Although to date not reported in humans, ectopic activation of MD regression signaling components in females can result in aplasia of the FRT. Clearly, MD development is important to human health; however, the molecular mechanisms remain largely undetermined. Molecular genetics studies of human diseases and mouse models have provided new insights into molecular signaling during MD development, regression and differentiation. This review will provide an overview of MD development and important genes and signaling mechanisms involved.
Collapse
Affiliation(s)
- Rachel D Mullen
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Tex., USA
| | | |
Collapse
|
36
|
Chi ML, Wen HS, Ni M, He F, Li JF, Qian K, Zhang P, Chai SH, Ding YX, Yin XH. Molecular identification of genes involved in testicular steroid synthesis and characterization of the responses to hormones stimulation in testis of Japanese sea bass (Lateolabrax japonicas). Steroids 2014; 84:92-102. [PMID: 24704264 DOI: 10.1016/j.steroids.2014.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 03/21/2014] [Indexed: 11/20/2022]
Abstract
Testicular steroids are critical hormones for the regulation of spermatogenesis in male teleosts and their productions have been reported to be regulated by gonadotropins and gonadotropin-releasing hormone. In the Japanese sea bass (Lateolabrax japonicas), the reproductive endocrine, particularly regarding the production and regulation of testicular steroids, are not well understood. For this reason, we first cloned and characterized the response of several key genes regulating the production of testicular steroids and, second, we analyzed the changes of mRNA profiles of these genes during testicular development cycle and in the administration of hCG and GnRHa with corresponding testosterone level in serum, GSI and histological analyses. We succeeded in cloning the full-length cDNAs for the fushi tarazu factor-1 (FTZ-F1) homologues (FTZ-F1a and FTZ-F1b), steroidogenic acute regulatory protein (StAR) and anti-Müllerian hormone (AMH) in Japanese sea bass. Multiple sequence alignment and phylogenetic analysis of these proteins clearly showed that these genes in Japanese sea bass were homologous to those of other piscine species. During the testicular development cycle and hCG/GnRHa administration, quantification of jsbStAR transcripts revealed a trend similar to their serum testosterone levels, while a reciprocal relationship was founded between the serum concentrations of testosterone and jsbAMH and the links between gonadal expression of jsbStAR, jsbAMH and jsbFTZ-F1 were also observed. Our results have identified for the first time several key genes involved in the regulation of steroid production and spermatogenesis in the Japanese sea bass testis and these genes are all detected under gonadotropic hormone and gonadotropin-releasing hormone control.
Collapse
Affiliation(s)
- Mei L Chi
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Hai S Wen
- Fisheries College, Ocean University of China, Qingdao 266003, China.
| | - Meng Ni
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Feng He
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Ji F Li
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Kun Qian
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Pei Zhang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Sen H Chai
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yu X Ding
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Xiang H Yin
- Fisheries College, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
37
|
Claes A, Ball BA, Corbin CJ, Conley AJ. Anti-Müllerian Hormone as a Diagnostic Marker for Equine Cryptorchidism in Three Cases with Equivocal Testosterone Concentrations. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2013.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Almeida J, Conley AJ, Ball BA. Expression of anti-Müllerian hormone, CDKN1B, connexin 43, androgen receptor and steroidogenic enzymes in the equine cryptorchid testis. Equine Vet J 2013; 45:538-45. [DOI: 10.1111/evj.12013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 10/19/2012] [Indexed: 01/24/2023]
Affiliation(s)
| | - A. J. Conley
- Department of Population Health and Reproduction; School of Veterinary Medicine; University of California; USA
| | - B. A. Ball
- Gluck Equine Research Center; Department of Veterinary Science; University of Kentucky; USA
| |
Collapse
|
39
|
Pawelczak M, Kenigsberg L, Milla S, Liu YH, Shah B. Elevated serum anti-Müllerian hormone in adolescents with polycystic ovary syndrome: relationship to ultrasound features. J Pediatr Endocrinol Metab 2012; 25:983-9. [PMID: 23426830 PMCID: PMC3763943 DOI: 10.1515/jpem-2012-0013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/11/2012] [Indexed: 11/15/2022]
Abstract
CONTEXT Serum anti-Müllerian hormone (AMH) is linked to the ovarian follicle pool. Little is known about the relationship between serum AMH and ovarian ultrasound (US) features in adolescents with polycystic ovary syndrome (PCOS). OBJECTIVES To confirm that serum AMH is elevated in adolescents with PCOS and to correlate serum AMH with ovarian US features in this population are the objectives of this study. DESIGN A retrospective chart review of clinical, biochemical, and ultrasonographic data in adolescents with PCOS and normal controls is the design of the study. Serum AMH was measured and compared between groups and correlated with ovarian US findings. SETTING The study was done in two urban tertiary academic medical centers. PARTICIPANTS Study groups included 23 adolescent females with PCOS and 12 age and BMI-matched female controls. MAIN OUTCOME MEASURES We hypothesized that serum AMH would be elevated in the PCOS group compared with the controls and would positively correlate with the follicle number, distribution, and ovarian volume. RESULTS Serum AMH was 6.78±3.55 ng/mL in the PCOS group vs. 3.38±1.48 ng/mL in the controls (p=0.0004). AMH positively correlated with ovarian volume (left ovary r=0.65, p=0.0007, right ovary r=0.55, p=0.0065) and peripheral follicle distribution (p=0.0027). Ten or more follicles were observed in 83% of USs. CONCLUSIONS There is a positive relationship between serum AMH and ovarian volume as well as peripheral follicular distribution in adolescents with PCOS. Our findings support the use of serum AMH as a useful marker to reflect ovarian US features typical of PCOS in cases where accurate USs are not available and for follow-up.
Collapse
Affiliation(s)
- Melissa Pawelczak
- Department of Pediatrics, Division of Pediatric Endocrinology, New York University School of Medicine, New York, New York 10016
| | - Lisa Kenigsberg
- Department of Pediatrics, Division of Pediatric Endocrinology, New York University School of Medicine, New York, New York 10016
| | - Sarah Milla
- Department of Radiology, New York University School of Medicine, New York, New York 10016
| | - Ying-Hua Liu
- Department of Pediatrics, New York University School of Medicine, New York, New York 10016
| | - Bina Shah
- Department of Pediatrics, Division of Pediatric Endocrinology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
40
|
Almeida J, Conley AJ, Mathewson L, Ball BA. Expression of anti-Müllerian hormone, cyclin-dependent kinase inhibitor (CDKN1B), androgen receptor, and connexin 43 in equine testes during puberty. Theriogenology 2011; 77:847-57. [PMID: 22115811 DOI: 10.1016/j.theriogenology.2011.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/17/2011] [Accepted: 09/03/2011] [Indexed: 11/27/2022]
Abstract
Sertoli cells are essential in development of a functional testis. During puberty, Sertoli cell maturation can be characterized by a number of markers, including anti-Müllerian hormone (AMH) and its receptor (AMHR2), androgen receptor (AR), cyclin-dependent kinase inhibitor (CDKN1B), and connexin 43 (Cx43). In the present study, immunohistochemistry (IHC) and real-time quantitative polymerase chain reaction (RT-qPCR) were used to characterize changes in expression of AMH, AMHR2, AR, CDKN1B, and Cx43 in prepubertal, postpubertal, and adult equine testes. During puberty, AMH expression decreased, and expression of AR as well as CDKN1B increased in Sertoli cells coinciding with the period of Sertoli cell maturation, arrest of cell proliferation, and presumptive AMH regulation by testosterone. Expression of AMHR2 appeared to decrease in Sertoli cells and increase in Leydig cells during pubertal maturation of the equine testis. In addition, expression and distribution of Cx43 changed during puberty in the stallion, suggesting a role for Cx43 in Sertoli cell signaling and maturation, hormone secretion, and blood-testis barrier formation. We concluded that Sertoli cell maturation during puberty in the stallion was accompanied by a reduced expression of AMH and its receptor, arrest of cell proliferation, increased expression of AR, and organization of gap-junctional communication.
Collapse
Affiliation(s)
- J Almeida
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | | | | | | |
Collapse
|
41
|
Tolikas A, Tsakos E, Gerou S, Prapas Y, Loufopoulos A. Anti-Mullerian hormone (AMH) levels in serum and follicular fluid as predictors of ovarian response in stimulated (IVF and ICSI) cycles. HUM FERTIL 2011; 14:246-53. [DOI: 10.3109/14647273.2011.608464] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Urushitani H, Katsu Y, Miyagawa S, Kohno S, Ohta Y, Guillette LJ, Iguchi T. Molecular cloning of anti-Müllerian hormone from the American alligator, Alligator mississippiensis. Mol Cell Endocrinol 2011; 333:190-9. [PMID: 21187121 DOI: 10.1016/j.mce.2010.12.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/12/2010] [Accepted: 12/21/2010] [Indexed: 11/26/2022]
Abstract
Anti-Müllerian hormone (AMH) plays an important role in male sex differentiation in vertebrates. AMH produced by Sertoli cells of the fetal testis induces regression of the Müllerian duct in mammalian species. In alligators, sexual differentiation is controlled by the temperature during egg incubation, termed temperature-dependent sex determination (TSD). The TSD mechanism inducing sex differentiation is thought to be unique and different from that of genetic sex determination as no gene such as the SRY of mammals has been identified. However, many of the genes associated with gonadal differentiation in mammals also are expressed in the developing gonads of species exhibiting TSD. To clarify the molecular mechanisms associated with gonad formation during the temperature-sensitive period (TSP), we have cloned the full length AMH gene in the alligator, and quantitatively compared mRNA expression patterns in the gonad-adrenal-mesonephros (GAM) complex isolated from alligator embryos incubated at male and female producing temperatures. The deduced amino acid sequence of the alligator AMH cDNA showed high identity (59-53%) to avian AMH genes. AMH mRNA expression was high in the GAM of male alligator embryos at stage 24 (immediately after sex determination) and hatchlings, but suppressed in the GAM of estrogen-exposed hatchlings incubated at the male-producing temperature. In the alligator AMH proximal promoter, a number of transcriptional factors (for SF-1. GATA, WT-1 and SOX9) binding elements were also identified and they exhibit a conserved pattern seen in other species. SOX9 up-regulates transcriptional activity through the amAMH promoter region. These results suggested that AMH and SOX9 play important roles in TSD of the American alligator.
Collapse
Affiliation(s)
- Hiroshi Urushitani
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Anti-Müllerian hormone in polycystic ovary syndrome and normo-ovulatory women: Correlation with clinical, hormonal and ultrasonographic parameters. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2010. [DOI: 10.1016/j.mefs.2010.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
44
|
Murai M, Takatori E, Omi H, Isurugi C, Honda T, Kumagai S, Shoji T, Oyama R, Yoshisaki A, Sugiyama T. Anti-Mϋllerian hormone and 3D-power Doppler histogram: markers of ovarian function with in vitro fertilization treatment. Reprod Med Biol 2010; 9:151-161. [PMID: 29699338 DOI: 10.1007/s12522-010-0051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/14/2010] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the ability of three-dimensional (3D) ultrasonography and anti-Mϋllerian hormone (AMH) to predict successful embryo development in patients undergoing in vitro fertilization (IVF) treatment. Methods We prospectively studied 28 patients undergoing IVF treatment, using 3D ultrasound Sono automatic volume calculation (AVC) and a 3D-power Doppler volume histogram. Sono AVC was used to automatically measure the number and volume of follicles. The volume histogram was used to measure the vascularization index (VI), flow index, and vascularization flow index in the ovaries. Serum AMH (S-AMH) was determined by enzyme immunoassay (ng/ml). Results The number of embryos isolated was 3.3 ± 2.8. The S-AMH of the patients who were under 35 years of age (0.570 ± 0.216 ng/ml) was higher than that in the patients over 40 years of age (0.377 ± 0.071 ng/ml; p = 0.0003). Principal component analyses determined that the quality of the embryo depended on the patients's age, S-AMH, and VI of the ovary. The receiver operating characteristic (ROC) curve showed that the cutoff for the S-AMH was 0.2855 ng/ml, and the optimal age of the patient was 32.5 years, when implanted with an embryo on day 16. Conclusions We demonstrated that investigating the relationships between the number of the embryo and ovarian function, using a combination of AMH with a volume histogram, might be useful to predict the response to IVF treatment.
Collapse
Affiliation(s)
- Masatoshi Murai
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Eriko Takatori
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Hideo Omi
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Chizuko Isurugi
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Tatsuya Honda
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Seisuke Kumagai
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Tadahiro Shoji
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Rie Oyama
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Akira Yoshisaki
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology Iwate Medical University 19-1 Uchimaru 020-8505 Morioka Iwate Japan
| |
Collapse
|
45
|
van Houten E, Themmen A, Visser J. Anti-Müllerian hormone (AMH): Regulator and marker of ovarian function. ANNALES D'ENDOCRINOLOGIE 2010; 71:191-7. [DOI: 10.1016/j.ando.2010.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 11/28/2022]
|
46
|
Broekmans FJ, Visser JA, Laven JSE, Broer SL, Themmen APN, Fauser BC. Anti-Müllerian hormone and ovarian dysfunction. Trends Endocrinol Metab 2008; 19:340-7. [PMID: 18805020 DOI: 10.1016/j.tem.2008.08.002] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 08/07/2008] [Accepted: 08/07/2008] [Indexed: 12/18/2022]
Abstract
Anti-Müllerian hormone (AMH) has important roles in postnatal ovarian function. Produced by ovarian granulosa cells, AMH is involved in initial follicle development. In fact, serum AMH level correlates with ovarian follicle number. In patients with polycystic ovary syndrome (PCOS), AMH levels are elevated, which indicates its potential relevance in PCOS diagnosis and management. AMH represents a useful clinical marker for the assessment of ovarian reserve in cases of subfertility caused by advanced age in women. A potential role for AMH in dominant follicle selection has also been suggested. Future challenges comprise the availability of a well-standardized assay and the development of AMH agonists and antagonists as possible tools to manipulate ovarian function for contraception or ovarian longevity.
Collapse
Affiliation(s)
- Frank J Broekmans
- Department for Reproductive Medicine and Gynecology, University Medical Center, PO Box 85500, 3508 6A, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
47
|
Arango NA, Kobayashi A, Wang Y, Jamin SP, Lee HH, Orvis GD, Behringer RR. A mesenchymal perspective of Müllerian duct differentiation and regression in Amhr2-lacZ mice. Mol Reprod Dev 2008; 75:1154-62. [PMID: 18213646 DOI: 10.1002/mrd.20858] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Müllerian ducts give rise to the female reproductive tract, including the Fallopian tubes, uterus, cervix, and anterior vagina. In male embryos, the Müllerian ducts regress, preventing the formation of female organs. We introduced the bacterial lacZ gene, encoding beta-galactosidase (beta-gal), into the AMHR-II locus (Amhr2) by gene targeting in mouse embryonic stem (ES) cells to mark Müllerian duct differentiation and regression. We show that Amhr2-lacZ heterozygotes express beta-gal activity in an Amhr2-specific pattern. In the gonads, beta-gal activity was detected in Sertoli cells of the testes from 2 weeks after birth, and fetal ovaries and granulosa cells of the adult ovary. beta-gal activity was first detected in the rostral mesenchyme of the Müllerian ducts at 12.5 days post coitus (dpc) in both sexes but soon thereafter expression was found along the entire length of the Müllerian ducts with higher levels initially found in males. In females, beta-gal activity was restricted to one side of the ductal mesoepithelium, whereas in males beta-gal expression encircled the duct. beta-gal activity was also detected in the coelomic epithelium at 13.5 and 14.5 dpc. In male embryos, mesenchymal beta-gal activity permitted the visualization of the temporal and spatial pattern of Müllerian duct regression. This pattern was similar to that observed using a Müllerian duct mesoepithelium lacZ reporter, indicating a coordinated loss of Müllerian duct mesoepithelium and Amhr2-expressing mesenchyme.
Collapse
Affiliation(s)
- Nelson A Arango
- Program in Genes and Development, The University of Texas, Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Bartlett J, Lee S, Mishina Y, Behringer R, Yang N, Wolf J, Temelcos C, Hutson J. Gubernacular development in Müllerian inhibiting substance receptor-deficient mice. BJU Int 2008. [DOI: 10.1046/j.1464-410x.2002.02530.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Davis RJ, Harding M, Moayedi Y, Mardon G. Mouse Dach1 and Dach2 are redundantly required for Müllerian duct development. Genesis 2008; 46:205-13. [PMID: 18395837 DOI: 10.1002/dvg.20385] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
dachshund/Dach gene family members encode transcriptional cofactors with highly conserved protein interaction domains and are expressed in the developing eyes, brains, and limbs in insects and vertebrates. These observations suggest that the developmental roles of dachshund/Dach in these tissues have been conserved since the divergence of arthropods and chordates. However, while Drosophila dachshund mutants have abnormalities in eye, brain, limbs, mouse Dach1 or Dach2 knockout mutants do not exhibit gross anatomical malformations in these tissues. In addition, Dach1/2 double homozygotes have intact eyes and limbs. Here we show that in Dach1/Dach2 double mutants, female reproductive tract (FRT) development is severely disrupted. This defect is associated with the Müllerian duct (MD) and not the Wolffian duct (WD), which normally differentiate into either the FRT or male reproductive tract (MRT), respectively. Dach1 and Dach2 are expressed in the MD, and in Dach1/2 double mutants, MD expression of Lim1 and Wnt7a is abnormal and MD development is disrupted. In contrast, WD and MRT development are not grossly affected. We propose that Dach1 and Dach2 proteins may redundantly control FRT formation by regulating the expression of target genes required for development of the MD. This vertebrate Dach1/2 function may have been conserved during arthropod evolution, as Drosophila dachshund mutants also exhibit an FRT phenotype.
Collapse
Affiliation(s)
- Richard J Davis
- Department of Ophthalmology, Columbia University Medical Center, Harkness Eye Institute, New York City, New York
| | | | | | | |
Collapse
|
50
|
|