1
|
Penkavova V, Spalova A, Tomas J, Tihon J. Polyacrylamide hydrogels prepared by varying water content during polymerization: Material characterization, reswelling ability, and aging resistance. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vera Penkavova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Prague Czech Republic
| | - Anna Spalova
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Prague Czech Republic
| | - Jan Tomas
- University of Chemistry and Technology Prague Czech Republic
| | - Jaroslav Tihon
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
2
|
Mgharbel A, Migdal C, Bouchonville N, Dupenloup P, Fuard D, Lopez-Soler E, Tomba C, Courçon M, Gulino-Debrac D, Delanoë-Ayari H, Nicolas A. Cells on Hydrogels with Micron-Scaled Stiffness Patterns Demonstrate Local Stiffness Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:648. [PMID: 35214978 PMCID: PMC8880377 DOI: 10.3390/nano12040648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
Cell rigidity sensing-a basic cellular process allowing cells to adapt to mechanical cues-involves cell capabilities exerting force on the extracellular environment. In vivo, cells are exposed to multi-scaled heterogeneities in the mechanical properties of the surroundings. Here, we investigate whether cells are able to sense micron-scaled stiffness textures by measuring the forces they transmit to the extracellular matrix. To this end, we propose an efficient photochemistry of polyacrylamide hydrogels to design micron-scale stiffness patterns with kPa/µm gradients. Additionally, we propose an original protocol for the surface coating of adhesion proteins, which allows tuning the surface density from fully coupled to fully independent of the stiffness pattern. This evidences that cells pull on their surroundings by adjusting the level of stress to the micron-scaled stiffness. This conclusion was achieved through improvements in the traction force microscopy technique, e.g., adapting to substrates with a non-uniform stiffness and achieving a submicron resolution thanks to the implementation of a pyramidal optical flow algorithm. These developments provide tools for enhancing the current understanding of the contribution of stiffness alterations in many pathologies, including cancer.
Collapse
Affiliation(s)
- Abbas Mgharbel
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Camille Migdal
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Nicolas Bouchonville
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
| | - Paul Dupenloup
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
| | - David Fuard
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
| | - Eline Lopez-Soler
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Caterina Tomba
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
- University Grenoble Alps, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Marie Courçon
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Danielle Gulino-Debrac
- University Grenoble Alps, CEA, CNRS, Inserm, BIG-BCI, 38000 Grenoble, France; (M.C.); (D.G.-D.)
| | - Héléne Delanoë-Ayari
- Université de Lyon, University Claude Bernard Lyon1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France;
| | - Alice Nicolas
- University Grenoble Alps, CNRS, LTM, 38000 Grenoble, France; (A.M.); (C.M.); (N.B.); (P.D.); (D.F.); (E.L.-S.); (C.T.)
| |
Collapse
|
3
|
Cyclic stretching-induced epithelial cell reorientation is driven by microtubule-modulated transverse extension during the relaxation phase. Sci Rep 2021; 11:14803. [PMID: 34285275 PMCID: PMC8292395 DOI: 10.1038/s41598-021-93987-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022] Open
Abstract
Many types of adherent cells are known to reorient upon uniaxial cyclic stretching perpendicularly to the direction of stretching to facilitate such important events as wound healing, angiogenesis, and morphogenesis. While this phenomenon has been documented for decades, the underlying mechanism remains poorly understood. Using an on-stage stretching device that allowed programmable stretching with synchronized imaging, we found that the reorientation of NRK epithelial cells took place primarily during the relaxation phase when cells underwent rapid global retraction followed by extension transverse to the direction of stretching. Inhibition of myosin II caused cells to orient along the direction of stretching, whereas disassembly of microtubules enhanced transverse reorientation. Our results indicate distinct roles of stretching and relaxation in cell reorientation and implicate a role of myosin II-dependent contraction via a microtubule-modulated mechanism. The importance of relaxation phase also explains the difference between the responses to cyclic and static stretching.
Collapse
|
4
|
Abstract
Much progress in understanding cell migration has been determined by using classic two-dimensional (2D) tissue culture platforms. However, increasingly, it is appreciated that certain properties of cell migration
in vivo are not represented by strictly 2D assays. There is much interest in creating relevant three-dimensional (3D) culture environments and engineered platforms to better represent features of the extracellular matrix and stromal microenvironment that are not captured in 2D platforms. Important to this goal is a solid understanding of the features of the extracellular matrix—composition, stiffness, topography, and alignment—in different tissues and disease states and the development of means to capture these features
Collapse
Affiliation(s)
- Patricia Keely
- Department of Cell and Regenerative Biology, UW Carbone Cancer Center, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Amrinder Nain
- 2Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
P. Dingal PCD, Bradshaw AM, Cho S, Raab M, Buxboim A, Swift J, Discher DE. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. NATURE MATERIALS 2015; 14:951-60. [PMID: 26168347 PMCID: PMC4545733 DOI: 10.1038/nmat4350] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/08/2015] [Indexed: 05/14/2023]
Abstract
Scarring is a long-lasting problem in higher animals, and reductionist approaches could aid in developing treatments. Here, we show that copolymerization of collagen I with polyacrylamide produces minimal matrix models of scars (MMMS), in which fractal-fibre bundles segregate heterogeneously to the hydrogel subsurface. Matrix stiffens locally-as in scars-while allowing separate control over adhesive-ligand density. The MMMS elicits scar-like phenotypes from mesenchymal stem cells (MSCs): cells spread and polarize quickly, increasing nucleoskeletal lamin-A yet expressing the 'scar marker' smooth muscle actin (SMA) more slowly. Surprisingly, expression responses to MMMS exhibit less cell-to-cell noise than homogeneously stiff gels. Such differences from bulk-average responses arise because a strong SMA repressor, NKX2.5, slowly exits the nucleus on rigid matrices. NKX2.5 overexpression overrides rigid phenotypes, inhibiting SMA and cell spreading, whereas cytoplasm-localized NKX2.5 mutants degrade in well-spread cells. MSCs thus form a 'mechanical memory' of rigidity by progressively suppressing NKX2.5, thereby elevating SMA in a scar-like state.
Collapse
Affiliation(s)
- P. C. Dave P. Dingal
- Biophysical Engineering Labs for Molecular & Cell Biophysics and NanoBio-Polymers, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrew M. Bradshaw
- Biophysical Engineering Labs for Molecular & Cell Biophysics and NanoBio-Polymers, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sangkyun Cho
- Biophysical Engineering Labs for Molecular & Cell Biophysics and NanoBio-Polymers, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Matthew Raab
- Biophysical Engineering Labs for Molecular & Cell Biophysics and NanoBio-Polymers, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amnon Buxboim
- Biophysical Engineering Labs for Molecular & Cell Biophysics and NanoBio-Polymers, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joe Swift
- Biophysical Engineering Labs for Molecular & Cell Biophysics and NanoBio-Polymers, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dennis E. Discher
- Biophysical Engineering Labs for Molecular & Cell Biophysics and NanoBio-Polymers, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. Proc Natl Acad Sci U S A 2014; 111:17176-81. [PMID: 25404288 DOI: 10.1073/pnas.1412285111] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Rigidity sensing and durotaxis are thought to be important elements in wound healing, tissue formation, and cancer treatment. It has been challenging, however, to study the underlying mechanism due to difficulties in capturing cells during the transient response to a rigidity interface. We have addressed this problem by developing a model experimental system that confines cells to a micropatterned area with a rigidity border. The system consists of a rigid domain of one large adhesive island, adjacent to a soft domain of small adhesive islands grafted on a nonadhesive soft gel. This configuration allowed us to test rigidity sensing away from the cell body during probing and spreading. NIH 3T3 cells responded to the micropatterned rigidity border similarly to cells at a conventional rigidity border, by showing a strong preference for staying on the rigid side. Furthermore, cells used filopodia extensions to probe substrate rigidity at a distance in front of the leading edge and regulated their responses based on the strain of the intervening substrate. Soft substrates inhibited focal adhesion maturation and promoted cell retraction, whereas rigid substrates allowed stable adhesions and cell spreading. Myosin II was required for not only the generation of probing forces but also the retraction in response to soft substrates. We suggest that a myosin II-driven, filopodia-based probing mechanism ahead of the leading edge allows cells to migrate efficiently, by sensing physical characteristics before moving over a substrate to avoid backtracking.
Collapse
|
7
|
Gu Z. 0.1 kilopascal difference for mechanophenotyping: soft matrix precisely regulates cellular architecture for invasion. BIOARCHITECTURE 2014; 4:116-8. [PMID: 25029598 DOI: 10.4161/bioa.29175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current knowledge understands the mesenchymal cell invasion in a 3D matrix as a combined process of cell-to-matrix adhesion based cell migration and matrix remodeling. Excluding cell invasion stimulated by cytokines and chemokines, the basal cell invasion itself is a complicated process that can be regulated by matrix ligand type, density, geometry, and stiffness, etc. Understanding such a complicated biological process requires delicate dissections into simplified model studies by altering only one or two elements at a time. Past cell motility studies focusing on matrix stiffness have revealed that a stiffer matrix promotes 2D X-Y axis lateral cell motility. Here, we comment on two recent studies that report, instead of stiffer matrix, a softer matrix promotes matrix proteolysis and the formation of invadosome-like protrusions (ILPs) along the 3D Z axis. These studies also reveal that soft matrix precisely regulates such ILPs formation in the stiffness scale range of 0.1 kilopascal in normal cells. In contrast, malignant cells such as cancer cells can form ILPs in response to a much wider range of matrix stiffness. Further, different cancer cells respond to their own favorable range of matrix stiffness to spontaneously form ILPs. Thus, we hereby propose the idea of utilizing the matrix stiffness to precisely regulate ILP formation as a mechanophenotyping tool for cancer metastasis prediction and pathological diagnosis.
Collapse
Affiliation(s)
- Zhizhan Gu
- Division of Rheumatology, Immunology, and Allergy; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| |
Collapse
|