1
|
Soule SE, Cabanellas-Reboredo M, González ÁF, Juijn H, Hernández-Urcera J. The Persistence of Memory: Behavioral Analysis and Arm Usage of a Nine-Armed Octopus vulgaris. Animals (Basel) 2025; 15:1034. [PMID: 40218427 PMCID: PMC11987900 DOI: 10.3390/ani15071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Anatomical abnormalities in octopuses, whose behavior is facilitated by flexible, neuron-rich arms, offer insights into life histories and the neurological implications of understudied conditions such as bifurcation. Although documentation is scarce, here we present in situ videos of nine-armed O. vulgaris with a functional bifurcated R1 arm. Analysis using RDAs and GLMs investigated the impact of the bifurcated arm on behavior and examined changes during growth. Analysis revealed a differential usage of between the bifurcated arms in addition to an initial specialization of the bifurcated arms for actions below the body, decreasing over time for only one of the arms as grew. Further, bifurcated and regrown arms were utilized more in safe behaviors than risky ones, with more severely injured arms showing a higher frequency of use in safe behaviors. These findings contribute to the growing knowledge of arm usage in octopuses, suggesting that arm bifurcation may lead to branchial neural differentiation and potentially indicate post-traumatic associated in O. vulgaris.
Collapse
Affiliation(s)
- Sam Ellington Soule
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Miguel Cabanellas-Reboredo
- Centro Oceanográfico de Illes Balears (COB-IEO), CSIC, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain; (M.C.-R.); (H.J.)
| | - Ángel F. González
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| | - Hidde Juijn
- Centro Oceanográfico de Illes Balears (COB-IEO), CSIC, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain; (M.C.-R.); (H.J.)
| | - Jorge Hernández-Urcera
- ECOBIOMAR Research Group, Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain;
| |
Collapse
|
2
|
Wen L, Zhang H, Fang Z, Chen X. The Effects of Climate Change on Sthenoteuthis oualaniensis Habitats in the Northern Indian Ocean. Animals (Basel) 2025; 15:573. [PMID: 40003054 PMCID: PMC11851627 DOI: 10.3390/ani15040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The northern Indian Ocean is located in a typical monsoon region that is also influenced by climate events such as the Indian Ocean Dipole (IOD), which makes Sthenoteuthis oualaniensis habitat highly susceptible to changes in climate and marine environmental conditions. This study established a suitability index (SI) model and used the arithmetic average method to construct a comprehensive habitat suitability index (HSI) model based on S. oualaniensis production statistics in the northern Indian Ocean from 2017 to 2019. Variations in the suitability of S. oualaniensis habitat during different IOD events were then analyzed. The results indicate that the model performed best when year, month, latitude, longitude, sea surface temperature (SST), wind speed (WS), and photosynthetically active radiation (PAR) variables were included in the generalized additive model (GAM). SST, WS, and PAR were identified as the most important key environmental factors. The HSI model showed that the most suitable habitat during a positive IOD event was smaller than during a negative IOD event and that the suitable habitat's center was located west of the positive IOD event and east of the negative IOD event. There was a significant inverse relationship between the area, suitable for habitation, and the north-south shift in the latitudinal gravity center and the Dipole modal index (DMI). The results indicate significant differences in the habitat of S. oualaniensis in the northern Indian Ocean during different IOD events, as well as differences in suitable habitat ranges and the spatial distribution of the species.
Collapse
Affiliation(s)
- Lihong Wen
- College of Marine living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; (L.W.); (X.C.)
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Heng Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Science, Shanghai 200090, China;
| | - Zhou Fang
- College of Marine living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; (L.W.); (X.C.)
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| | - Xinjun Chen
- College of Marine living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; (L.W.); (X.C.)
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
3
|
Xu M, Feng W, Liu Z, Li Z, Song X, Zhang H, Zhang C, Yang L. Seasonal-Spatial Distribution Variations and Predictions of Loliolus beka and Loliolus uyii in the East China Sea Region: Implications from Climate Change Scenarios. Animals (Basel) 2024; 14:2070. [PMID: 39061532 PMCID: PMC11273479 DOI: 10.3390/ani14142070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Global climate change profoundly impacts the East China Sea ecosystem and poses a major challenge to fishery management in this region. In addition, closely related species with low catches are often not distinguished in fishery production and relevant data are commonly merged in statistics and fishing logbooks, making it challenging to accurately predict their habitat distribution range. Here, merged fisheries-independent data of the closely related squid Loliolus beka (Sasaki, 1929) and Loliolus uyii (Wakiya and Ishikawa, 1921) were used to explore the construction and prediction performance of species distribution models. Data in 2018 to 2019 from the southern Yellow and East China Seas were used to identify the seasonal-spatial distribution characteristics of both species, revealing a boundary line at 29.00° N for L. uyii during the autumn, with the highest average individual weight occurring during the summer, with both larvae and juveniles occurring during the autumn. Thus, the life history of L. uyii can be divided into winter-spring nursery and summer-autumn spawning periods. L. beka showed a preference for inshore areas (15-60 m) during the summer and offshore areas (32.00-78.00 m) during the winter. High-value areas of both species included inshore areas of the southern Yellow and mid-East China Seas during the autumn, enlarging during the spring to include central areas of the survey region, before significantly decreasing during the summer. Therefore, this study provides both a novel perspective for modeling biological habitat distribution with limited data and a scientific basis for the adjustment of fishery resource management and conservation measures in the context of climate change.
Collapse
Affiliation(s)
- Min Xu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Wangjue Feng
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Zunlei Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhiguo Li
- Xiangshan County Fisheries Bureau, Ningbo 315700, China
| | - Xiaojing Song
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Hui Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Chongliang Zhang
- Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Linlin Yang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, Shanghai 200090, China; (M.X.)
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| |
Collapse
|
4
|
Seto KL, Miller NA, Kroodsma D, Hanich Q, Miyahara M, Saito R, Boerder K, Tsuda M, Oozeki Y, Urrutia S. O. Fishing through the cracks: The unregulated nature of global squid fisheries. SCIENCE ADVANCES 2023; 9:eadd8125. [PMID: 36897952 PMCID: PMC10005170 DOI: 10.1126/sciadv.add8125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
While most research has focused on the legality of global industrial fishing, unregulated fishing has largely escaped scrutiny. Here, we evaluate the unregulated nature of global squid fisheries using AIS data and nighttime imagery of the globalized fleet of light-luring squid vessels. We find that this fishery is extensive, fishing 149,000 to 251,000 vessel days annually, and that effort increased 68% over the study period 2017-2020. Most vessels are highly mobile and fish in multiple regions, largely (86%) in unregulated areas. While scientists and policymakers express concerns over the declining abundance of squid stocks globally and regionally, we find a net increase in vessels fishing squid globally and spatial expansion of effort to novel areas. Since fishing effort is static in areas with increasing management, and rising in unmanaged areas, we suggest actors may take advantage of fragmented regulations to maximize resource extraction. Our findings highlight a profitable, but largely unregulated fishery, with strong potential for improved management.
Collapse
Affiliation(s)
- Katherine L. Seto
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nathan A. Miller
- Global Fishing Watch, Washington, DC, USA
- SkyTruth, Shepherdstown, WV, USA
| | | | - Quentin Hanich
- Australian National Centre for Ocean Resources and Security, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Rui Saito
- Japan Fisheries Research and Education Agency, Yokohama, Japan
| | | | - Masaki Tsuda
- Global Fishing Watch, Washington, DC, USA
- Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Yoshioki Oozeki
- Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Osvaldo Urrutia S.
- Centro de Derecho del Mar, Faculty of Law, P. Universidad Católica de Valparaíso, Valparaiso, Chile
| |
Collapse
|
5
|
Willer DF, Aldridge DC, Gough C, Kincaid K. Small-scale octopus fishery operations enable environmentally and socioeconomically sustainable sourcing of nutrients under climate change. NATURE FOOD 2023; 4:179-189. [PMID: 37117849 DOI: 10.1038/s43016-022-00687-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/20/2022] [Indexed: 04/30/2023]
Abstract
Small-scale octopus fisheries represent an underexplored source of nutrients and socioeconomic benefits for populations in the tropics. Here we analyse data from global seafood databases and published literature, finding that tropical small-scale octopus fisheries produced 88,000 t of catch and processed octopus in 2017, with a landed value of US$ 2.3 billion, contributing towards copper, iron and selenium intakes, with over twice the vitamin B12 content of finfish. Catch methods, primarily consisting of small-scale lines and small-scale pots and traps, produced minimal bycatch, and the fast growth and adaptability of octopus may facilitate environmentally sustainable production under climatic change. Management approaches including periodic fishery closures, size restrictions, licences and knowledge transfer of fishing gears can enable greater blue food supply and economic value to be generated while improving environmental sustainability.
Collapse
Affiliation(s)
- David F Willer
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | | | - Kate Kincaid
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
White DM, Valsamidis MA, Kokkoris GD, Bakopoulos V. The effect of temperature and challenge route on in vitro hemocyte phagocytosis activation after experimental challenge of common octopus, Octopus vulgaris (Cuvier, 1797) with either Photobacterium damselae subsp. damselae or Vibrio anguillarum O1. Microb Pathog 2023; 174:105955. [PMID: 36538965 DOI: 10.1016/j.micpath.2022.105955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Infectious diseases in aquaculture could be associated with high mortalities and morbidity rates, resulting in negative impacts to fish farming industry, consumers, and the environment. Octopods are reared near marine fish farming areas, and this may represent a major risk since fish pathogens may cause pathologies to octopods. Up to date cephalopods immune defense and pathologies, are incompletely understood. Therefore, the aim of this study was to determine the effect of water temperature and challenge route on hemocyte phagocytosis in vitro after experimental challenge of common octopus with Photobacterium damselae subsp. damselae or Vibrio anguillarum O1. Hemolymph was withdrawn at various time-points post-challenge and the number of circulating hemocytes, and phagocytosis ability were determined. No mortalities were recorded irrespective of pathogen, route of challenge and temperature employed. Great variation was observed in the number of circulating hemocytes of both control and challenged specimens in both experiments (1.04 × 10⁵ to 22.33 × 10⁵ hemocytes/ml for the Photobacterium damselae subsp. damselae challenge and 1.35 × 105 to 24.63 × 105 hemocytes/ml for the Vibrio anguillarum O1 and at both studied temperatures). No correlation was found between circulating hemocytes and baseline control specimens body weight. Probably, the number of circulating hemocytes is affected by many extrinsic, and intrinsic factors such as size, age, maturity stage, natural fluctuations and temperature, as indicated in the literature. The hemocyte foreign particles binding ability observed in Photobacterium damselae subsp. damselae experiments, at 21 ± 0.5 °C and 24 ± 0.5 °C, was (mean ± SD) 2.26 ± 2.96 and 11.72 ± 12.36 yeast cells/hemocyte for baseline specimens and 7.84 ± 8.88 and 8.56 ± 9.89 yeast cells/hemocyte for control and challenged specimens, respectively. The corresponding values for Vibrio anguillarum O1 experiments were (mean ± SD) 6.68 ± 9.26 and 7.00 ± 8.11 yeast cells/hemocyte for baseline specimens and 8.82 ± 9.75 and 6.04 ± 7.64 yeast cells/hemocyte for control and challenged specimens, respectively. Hemocytes of the Photobacterium damselae subsp. damselae and Vibrio anguillarum O1 challenged specimens, were more activated at lower temperature. Apparently, temperature is an important factor in hemocyte activation. In addition, our results indicated that time post challenge, route of challenge and pathogen may influence phagocytosis ability.
Collapse
Affiliation(s)
- Daniella-Mari White
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Mytilene, 81100, Lesvos, Greece.
| | - Michail-Aggelos Valsamidis
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Mytilene, 81100, Lesvos, Greece
| | - Georgios D Kokkoris
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Mytilene, 81100, Lesvos, Greece
| | - Vasileios Bakopoulos
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, Mytilene, 81100, Lesvos, Greece
| |
Collapse
|
7
|
Xavier JC, Golikov AV, Queirós JP, Perales-Raya C, Rosas-Luis R, Abreu J, Bello G, Bustamante P, Capaz JC, Dimkovikj VH, González AF, Guímaro H, Guerra-Marrero A, Gomes-Pereira JN, Hernández-Urcera J, Kubodera T, Laptikhovsky V, Lefkaditou E, Lishchenko F, Luna A, Liu B, Pierce GJ, Pissarra V, Reveillac E, Romanov EV, Rosa R, Roscian M, Rose-Mann L, Rouget I, Sánchez P, Sánchez-Márquez A, Seixas S, Souquet L, Varela J, Vidal EAG, Cherel Y. The significance of cephalopod beaks as a research tool: An update. Front Physiol 2022; 13:1038064. [PMID: 36467695 PMCID: PMC9716703 DOI: 10.3389/fphys.2022.1038064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960's, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.
Collapse
Affiliation(s)
- José C. Xavier
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | - José P. Queirós
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | | | - José Abreu
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
- Institut Universitaire de France (IUF), Paris, France
| | - Juan C. Capaz
- Center of Marine Sciences, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Valerie H. Dimkovikj
- Department of Marine Science, Coastal Carolina University, Conway, SC, United States
| | | | - Hugo Guímaro
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Airam Guerra-Marrero
- IU-ECOAQUA, University of Las Palmas de Gran Canaria, Edf. Ciencias Básicas, Campus de Tafira, Las Palmas de Gran Canaria, Spain
| | | | | | | | - Vladimir Laptikhovsky
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, United Kingdom
| | | | - Fedor Lishchenko
- Laboratory for Ecology and Morphology of Marine Invertebrates, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| | - Amanda Luna
- Department of Ecology and Animal Biology, Faculty of Marine Sciences, University of Vigo, Vigo, Spain
| | - Bilin Liu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | | | - Vasco Pissarra
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Elodie Reveillac
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Evgeny V. Romanov
- Centre Technique de Recherche et de Valorisation des Milieux Aquatiques (CITEB), Le Port, Île de la Réunion, France
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Marjorie Roscian
- Centre de Recherche en Paléontologie-Paris (CR2P), CNRS, Sorbonne Université, Paris, France
| | - Lisa Rose-Mann
- University of South Florida, College of Marine Science, St. Petersburg, FL, United States
| | - Isabelle Rouget
- Centre de Recherche en Paléontologie-Paris (CR2P), CNRS, Sorbonne Université, Paris, France
| | - Pilar Sánchez
- Institut de Ciènces del Mar, CSIC, Psg. Marítim de la Barceloneta, Barcelona, Spain
| | | | - Sónia Seixas
- Department of Life Sciences, Marine and Environmental Sciences Centre/ ARNET–Aquatic Research Network, University of Coimbra, Coimbra, Portugal
- Universidade Aberta, Rua Escola Politécnica, Lisboa, Portugal
| | - Louise Souquet
- Department of Mechanical Engineering, Faculty of Engineering Science, University College London, London, United Kingdom
| | - Jaquelino Varela
- MARE—Marine and Environmental Sciences Centre/ARNET–Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Cascais, Portugal
| | - Erica A. G. Vidal
- Center for Marine Studies—Federal University of Parana (UFPR), Pontal do Paraná, PR, Brazil
| | - Yves Cherel
- Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, Villiers-en-Bois, France
| |
Collapse
|
8
|
In vitro hemocyte phagocytosis activation after experimental infection of common octopus, Octopus vulgaris (Cuvier, 1797) with Photobacterium damselae subsp. piscicida or Vibrio alginolyticus at different temperatures and infection routes. J Invertebr Pathol 2022; 191:107754. [DOI: 10.1016/j.jip.2022.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
|
9
|
Vidal EAG, Rosa R, Fiorito G. Editorial: Cephalopod Research Across Scales - Molecules to Ecosystems. Front Physiol 2021; 12:752075. [PMID: 34671277 PMCID: PMC8521027 DOI: 10.3389/fphys.2021.752075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Erica A G Vidal
- Center for Marine Studies - Federal University of Parana (UFPR), Pontal do Paraná, Brazil
| | - Rui Rosa
- MARE - Centro de Ciências do Mar e do Ambiente, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
10
|
Chung M, Chen C, Shiao J, Shirai K, Wang C. Metabolic proxy for cephalopods: Stable carbon isotope values recorded in different biogenic carbonates. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ming‐Tsung Chung
- Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa Japan
| | - Ching‐Yi Chen
- Department of Environmental Biology and Fisheries Science National Taiwan Ocean University Keelung Taiwan
| | - Jen‐Chieh Shiao
- Institute of Oceanography National Taiwan University Taipei Taiwan
| | - Kotaro Shirai
- Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa Japan
| | - Chia‐Hui Wang
- Department of Environmental Biology and Fisheries Science National Taiwan Ocean University Keelung Taiwan
- Center of Excellence for the Oceans National Taiwan Ocean University Keelung Taiwan
| |
Collapse
|
11
|
García Barcia L, Pinzone M, Lepoint G, Pau C, Das K, Kiszka JJ. Factors affecting mercury concentrations in two oceanic cephalopods of commercial interest from the southern Caribbean. MARINE POLLUTION BULLETIN 2021; 168:112408. [PMID: 33965692 DOI: 10.1016/j.marpolbul.2021.112408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) concentrations have significantly increased in oceans during the last century. This element accumulates in marine fauna and can reach toxic levels. Seafood consumption is the main pathway of methylmercury (MeHg) toxicity in humans. Here, we analyzed total Hg (T-Hg) concentrations in two oceanic squid species (Ommastrephes bartramii and Thysanoteuthis rhombus) of an increasing commercial interest off Martinique, French West Indies. Stable isotope ratios reveal a negative linear relationship between δ15N or δ13C in diamondback squid samples. No significant trend was observed between δ34S values and T-Hg concentrations, contrasting with the sulfate availability and sulfide abundance hypotheses. This adds to a growing body of evidence suggesting Hg methylation via sulfate-reducing bacteria is not the main mechanism driving Hg bioavailability in mesopelagic organisms. All squid samples present T-Hg levels below the maximum safe consumption limit (0.5 ppm), deeming the establishment of a commercial squid fishery in the region safe for human consumption.
Collapse
Affiliation(s)
- Laura García Barcia
- Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st, North Miami, FL 33181, USA.
| | - Marianna Pinzone
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Gilles Lepoint
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Cédric Pau
- Comité Régional des Pêches Maritimes et des Élevages Marins, Martinique, French West Indies, France
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Jeremy J Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st, North Miami, FL 33181, USA
| |
Collapse
|
12
|
Caccavo JA, Christiansen H, Constable AJ, Ghigliotti L, Trebilco R, Brooks CM, Cotte C, Desvignes T, Dornan T, Jones CD, Koubbi P, Saunders RA, Strobel A, Vacchi M, van de Putte AP, Walters A, Waluda CM, Woods BL, Xavier JC. Productivity and Change in Fish and Squid in the Southern Ocean. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.
Collapse
|
13
|
Schickele A, Francour P, Raybaud V. European cephalopods distribution under climate-change scenarios. Sci Rep 2021; 11:3930. [PMID: 33594145 PMCID: PMC7886854 DOI: 10.1038/s41598-021-83457-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
In a context of increasing anthropogenic pressure, projecting species potential distributional shifts is of major importance for the sustainable exploitation of marine species. Despite their major economical (i.e. important fisheries) and ecological (i.e. central position in food-webs) importance, cephalopods literature rarely addresses an explicit understanding of their current distribution and the potential effect that climate change may induce in the following decades. In this study, we focus on three largely harvested and common cephalopod species in Europe: Octopus vulgaris, Sepia officinalis and Loligo vulgaris. Using a recently improved species ensemble modelling framework coupled with five atmosphere-ocean general circulation models, we modelled their contemporary and potential future distributional range over the twenty-first century. Independently of global warming scenarios, we observed a decreasing in the suitability of environmental conditions in the Mediterranean Sea and the Bay of Biscay. Conversely, we projected a rapidly increasing environmental suitability in the North, Norwegian and Baltic Seas for all species. This study is a first broad scale assessment and identification of the geographical areas, fisheries and ecosystems impacted by climate-induced changes in cephalopods distributional range.
Collapse
Affiliation(s)
- Alexandre Schickele
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - Patrice Francour
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| | - Virginie Raybaud
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| |
Collapse
|
14
|
Valdez-Cibrián A, Díaz-Santana-Iturrios M, Landa-Jaime V, Michel-Morfín JE. First detection of an ocellate octopus in the Revillagigedos ecoregion, a biodiversity hotspot located in the Tropical East Pacific Province. Zookeys 2020; 986:81-100. [PMID: 33223881 PMCID: PMC7661478 DOI: 10.3897/zookeys.986.53250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 11/12/2022] Open
Abstract
The biodiversity of mollusks, particularly cephalopods, has not been exhaustively determined in the Revillagigedos ecoregion, which is a biodiversity hotspot for several marine groups located in the Tropical East Pacific Province. In our study, we detected and examined ocellate octopuses from Socorro and Clarion Islands, and determined their identity using morphological criteria and molecular data from two mitochondrial genes (COIII and COI). The taxon identified was Octopus oculifer, a species considered endemic to the Galapagos Archipelago. In addition, according to our analyses, O. mimus, O. hubbsorum and O. oculifer are very closely related and may represent a species complex comprised of three morphotypes. We found that the evolutionary relationships among octopuses are not determined by the presence of ocelli. This study is the first to report a clade represented by ocellate and non-ocellate species, in addition, the identity of cephalopods in the Revillagigedos was determined with analytical support.
Collapse
|
15
|
Long-term changes in habitat and trophic level of Southern Ocean squid in relation to environmental conditions. Sci Rep 2020; 10:15215. [PMID: 32939006 PMCID: PMC7494860 DOI: 10.1038/s41598-020-72103-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022] Open
Abstract
Long-term studies of pelagic nekton in the Southern Ocean and their responses to ongoing environmental change are rare. Using stable isotope ratios measured in squid beaks recovered from diet samples of wandering albatrosses Diomedea exulans, we assessed decadal variation (from 1976 to 2016) in the habitat (δ13C) and trophic level (δ15N) of five important Southern Ocean squid species in relation to indices of environmental conditions—Southern Oscillation Index (SOI) and Southern Annular Mode (SAM). Based on δ13C values, corrected for the Suess effect, habitat had changed over the last 50 years for Taonius sp. B (Voss), Gonatus antarcticus, Galiteuthis glacialis and Histioteuthis atlantica but not Moroteuthopsis longimana. By comparison, mean δ15N values were similar across decades for all five species, suggesting minimal changes in trophic levels. Both SAM and SOI have increased in strength and frequency over the study period but, of the five species, only in Taonius sp. B (Voss) did these indices correlate with, δ13C and δ15N values, indicating direct relationships between environmental conditions, habitat and trophic level. The five cephalopod species therefore changed their habitats with changing environmental conditions over the last 50 years but maintained similar trophic levels. Hence, cephalopods are likely to remain important prey for top predators in Southern Ocean food webs, despite ongoing climate change.
Collapse
|
16
|
Briceño FA, Fitzgibbon QP, Polymeropoulos ET, Hinojosa IA, Pecl GT. Temperature alters the physiological response of spiny lobsters under predation risk. CONSERVATION PHYSIOLOGY 2020; 8:coaa065. [PMID: 32843966 PMCID: PMC7439581 DOI: 10.1093/conphys/coaa065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 04/19/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Predation risk can strongly shape prey ecological traits, with specific anti-predator responses displayed to reduce encounters with predators. Key environmental drivers, such as temperature, can profoundly modulate prey energetic costs in ectotherms, although we currently lack knowledge of how both temperature and predation risk can challenge prey physiology and ecology. Such uncertainties in predator-prey interactions are particularly relevant for marine regions experiencing rapid environmental changes due to climate change. Using the octopus (Octopus maorum)-spiny lobster (Jasus edwardsii) interaction as a predator-prey model, we examined different metabolic traits of sub adult spiny lobsters under predation risk in combination with two thermal scenarios: 'current' (20°C) and 'warming' (23°C), based on projections of sea-surface temperature under climate change. We examined lobster standard metabolic rates to define the energetic requirements at specific temperatures. Routine metabolic rates (RMRs) within a respirometer were used as a proxy of lobster activity during night and day time, and active metabolic rates, aerobic scope and excess post-exercise oxygen consumption were used to assess the energetic costs associated with escape responses (i.e. tail-flipping) in both thermal scenarios. Lobster standard metabolic rate increased at 23°C, suggesting an elevated energetic requirement (39%) compared to 20°C. Unthreatened lobsters displayed a strong circadian pattern in RMR with higher rates during the night compared with the day, which were strongly magnified at 23°C. Once exposed to predation risk, lobsters at 20°C quickly reduced their RMR by ~29%, suggesting an immobility or 'freezing' response to avoid predators. Conversely, lobsters acclimated to 23°C did not display such an anti-predator response. These findings suggest that warmer temperatures may induce a change to the typical immobility predation risk response of lobsters. It is hypothesized that heightened energetic maintenance requirements at higher temperatures may act to override the normal predator-risk responses under climate-change scenarios.
Collapse
Affiliation(s)
- Felipe A Briceño
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
- Crustacean Ecophysiology Laboratory, Universidad Austral de Chile, Los Pinos s/n, Pelluco, Puerto Montt 5480000, Chile
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Iván A Hinojosa
- Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, 1781421, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Facultad de Ciencias, Departamento de Ecología, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - Gretta T Pecl
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
17
|
Lischka A, Lacoue-Labarthe T, Hoving HJT, JavidPour J, Pannell JL, Merten V, Churlaud C, Bustamante P. High cadmium and mercury concentrations in the tissues of the orange-back flying squid, Sthenoteuthis pteropus, from the tropical Eastern Atlantic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 163:323-330. [PMID: 30056346 DOI: 10.1016/j.ecoenv.2018.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
The orange-back flying squid, Sthenoteuthis pteropus, plays an important role in the eastern tropical Atlantic Ocean (ETA) pelagic food web, as both predator and prey. Specimens of S. pteropus were caught off the Cape Verde Islands and concentrations of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn were measured in the digestive gland. Among the analysed elements, Cd showed the highest average concentration with values among the highest ever recorded in cephalopods. In addition to the digestive gland, Hg concentrations were also analysed in the buccal mass and mantle tissue. Among the three tissues, buccal mass showed the highest Hg concentrations. In females, Hg concentrations in the buccal mass were positively correlated with stable isotope ratios (δ13C and δ15N) and mantle length, showing both bioaccumulation with age and bioamplification along the trophic levels. High Cd and Hg concentrations in the digestive gland and muscle respectively would lead to elevated exposure of squid-eating top predators such as yellowfin tuna, swordfish or dolphinfish, which are commercially harvested for human consumption. This study provides a deeper understanding of the trace element contamination in an abundant and ecologically important, but poorly studied pelagic squid in the ETA.
Collapse
Affiliation(s)
- A Lischka
- AUT Institute for Applied Ecology New Zealand, Auckland University of Technology, Private Bag 92006, 1142 Auckland, New Zealand.
| | - T Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - H J T Hoving
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - J JavidPour
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - J L Pannell
- AUT Institute for Applied Ecology New Zealand, Auckland University of Technology, Private Bag 92006, 1142 Auckland, New Zealand
| | - V Merten
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - C Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - P Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
18
|
Mohamed KS, Sajikumar K, Ragesh N, Ambrose T, Jayasankar J, Said Koya K, Sasikumar G. Relating abundance of purpleback flying squid Sthenoteuthis oualaniensis (Cephalopoda: Ommastrephidae) to environmental parameters using GIS and GAM in south-eastern Arabian Sea. J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1497721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Kolliyil S. Mohamed
- Molluscan Fisheries Division, Central Marine Fisheries Research Institute, Kochi, India
| | - K.K. Sajikumar
- Molluscan Fisheries Division, Central Marine Fisheries Research Institute, Kochi, India
| | - Nadakkal Ragesh
- Molluscan Fisheries Division, Central Marine Fisheries Research Institute, Kochi, India
| | - T.V. Ambrose
- Molluscan Fisheries Division, Central Marine Fisheries Research Institute, Kochi, India
| | - J. Jayasankar
- Fisheries Resource Assessment Division, Central Marine Fisheries Research Institute, Kochi, India
| | - K.P. Said Koya
- Pelagic Fisheries Division, Central Marine Fisheries Research Institute, Kochi, India
| | - Geetha Sasikumar
- Molluscan Fisheries Division, Central Marine Fisheries Research Institute, Mangalore, India
| |
Collapse
|
19
|
O’Brien CE, Roumbedakis K, Winkelmann IE. The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers. Front Physiol 2018; 9:700. [PMID: 29962956 PMCID: PMC6014164 DOI: 10.3389/fphys.2018.00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Here, three researchers who have recently embarked on careers in cephalopod biology discuss the current state of the field and offer their hopes for the future. Seven major topics are explored: genetics, aquaculture, climate change, welfare, behavior, cognition, and neurobiology. Recent developments in each of these fields are reviewed and the potential of emerging technologies to address specific gaps in knowledge about cephalopods are discussed. Throughout, the authors highlight specific challenges that merit particular focus in the near-term. This review and prospectus is also intended to suggest some concrete near-term goals to cephalopod researchers and inspire those working outside the field to consider the revelatory potential of these remarkable creatures.
Collapse
Affiliation(s)
- Caitlin E. O’Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
- Association for Cephalopod Research – CephRes, Naples, Italy
| | - Katina Roumbedakis
- Association for Cephalopod Research – CephRes, Naples, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Inger E. Winkelmann
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Sasikumar G, Mohamed KS, Mini KG, Sajikumar KK. Effect of tropical monsoon on fishery abundance of Indian squid ( Uroteuthis ( Photololigo) duvaucelii). J NAT HIST 2018. [DOI: 10.1080/00222933.2018.1447156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Geetha Sasikumar
- Molluscan Fisheries Division, ICAR-Central Marine Fisheries Research Institute, Research Centre, Mangalore, India
| | | | | | | |
Collapse
|
21
|
Gagne TO, Hyrenbach KD, Hagemann ME, Van Houtan KS. Trophic signatures of seabirds suggest shifts in oceanic ecosystems. SCIENCE ADVANCES 2018; 4:eaao3946. [PMID: 29457134 PMCID: PMC5812733 DOI: 10.1126/sciadv.aao3946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/12/2018] [Indexed: 06/08/2023]
Abstract
Pelagic ecosystems are dynamic ocean regions whose immense natural capital is affected by climate change, pollution, and commercial fisheries. Trophic level-based indicators derived from fishery catch data may reveal the food web status of these systems, but the utility of these metrics has been debated because of targeting bias in fisheries catch. We analyze a unique, fishery-independent data set of North Pacific seabird tissues to inform ecosystem trends over 13 decades (1890s to 2010s). Trophic position declined broadly in five of eight species sampled, indicating a long-term shift from higher-trophic level to lower-trophic level prey. No species increased their trophic position. Given species prey preferences, Bayesian diet reconstructions suggest a shift from fishes to squids, a result consistent with both catch reports and ecosystem models. Machine learning models further reveal that trophic position trends have a complex set of drivers including climate, commercial fisheries, and ecomorphology. Our results show that multiple species of fish-consuming seabirds may track the complex changes occurring in marine ecosystems.
Collapse
Affiliation(s)
- Tyler O. Gagne
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
| | - K. David Hyrenbach
- Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, HI 96744, USA
| | - Molly E. Hagemann
- Vertebrate Zoology Collections, Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA
| | - Kyle S. Van Houtan
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA 93940, USA
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA
| |
Collapse
|
22
|
Olmos-Pérez L, Roura Á, Pierce GJ, Boyer S, González ÁF. Diet Composition and Variability of Wild Octopus vulgaris and Alloteuthis media (Cephalopoda) Paralarvae: a Metagenomic Approach. Front Physiol 2017; 8:321. [PMID: 28596735 PMCID: PMC5442249 DOI: 10.3389/fphys.2017.00321] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 11/13/2022] Open
Abstract
The high mortality of cephalopod early stages is the main bottleneck to grow them from paralarvae to adults in culture conditions, probably because the inadequacy of the diet that results in malnutrition. Since visual analysis of digestive tract contents of paralarvae provides little evidence of diet composition, the use of molecular tools, particularly next generation sequencing (NGS) platforms, offers an alternative to understand prey preferences and nutrient requirements of wild paralarvae. In this work, we aimed to determine the diet of paralarvae of the loliginid squid Alloteuthis media and to enhance the knowledge of the diet of recently hatched Octopus vulgaris paralarvae collected in different areas and seasons in an upwelling area (NW Spain). DNA from the dissected digestive glands of 32 A. media and 64 O. vulgaris paralarvae was amplified with universal primers for the mitochondrial gene COI, and specific primers targeting the mitochondrial gene 16S gene of arthropods and the mitochondrial gene 16S of Chordata. Following high-throughput DNA sequencing with the MiSeq run (Illumina), up to 4,124,464 reads were obtained and 234,090 reads of prey were successfully identified in 96.87 and 81.25% of octopus and squid paralarvae, respectively. Overall, we identified 122 Molecular Taxonomic Units (MOTUs) belonging to several taxa of decapods, copepods, euphausiids, amphipods, echinoderms, molluscs, and hydroids. Redundancy analysis (RDA) showed seasonal and spatial variability in the diet of O. vulgaris and spatial variability in A. media diet. General Additive Models (GAM) of the most frequently detected prey families of O. vulgaris revealed seasonal variability of the presence of copepods (family Paracalanidae) and ophiuroids (family Euryalidae), spatial variability in presence of crabs (family Pilumnidae) and preference in small individual octopus paralarvae for cladocerans (family Sididae) and ophiuroids. No statistically significant variation in the occurrences of the most frequently identified families was revealed in A. media. Overall, these results provide new clues about dietary preferences of wild cephalopod paralarvae, thus opening up new scenarios for research on trophic ecology and digestive physiology under controlled conditions.
Collapse
Affiliation(s)
| | - Álvaro Roura
- Instituto de Investigaciones Marinas, Ecobiomar, CSICVigo, Spain.,La Trobe UniversityMelbourne, VIC, Australia
| | - Graham J Pierce
- Instituto de Investigaciones Marinas, Ecobiomar, CSICVigo, Spain.,CESAM and Departamento de Biologia, Universidade de AveiroAveiro, Portugal
| | - Stéphane Boyer
- Applied Molecular Solutions Research Group, Environmental and Animal Sciences, Unitec Institute of TechnologyAuckland, New Zealand
| | - Ángel F González
- Instituto de Investigaciones Marinas, Ecobiomar, CSICVigo, Spain
| |
Collapse
|
23
|
Ye J, Feng J, Dai Z, Meng L, Zhang Y, Jiang X. Application of Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection of Jumbo Flying Squid Dosidicus gigas (D’Orbigny, 1835). FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0700-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Lauria V, Garofalo G, Gristina M, Fiorentino F. Contrasting habitat selection amongst cephalopods in the Mediterranean Sea: When the environment makes the difference. MARINE ENVIRONMENTAL RESEARCH 2016; 119:252-266. [PMID: 27371813 DOI: 10.1016/j.marenvres.2016.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/16/2016] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
Conservation of fish habitat requires a deeper knowledge of how species distribution patterns are related to environmental factors. Habitat suitability modelling is an essential tool to quantify species' realised niches and understand species-environment relationships. Cephalopods are important players in the marine food web and a significant resource for fisheries; they are also very sensitive to environmental changes. Here a time series of fishery-independent data (1998-2011) was used to construct habitat suitability models and investigate the influence of environmental variables on four commercial cephalopods: Todaropsis eblanae, Illex coindetii, Eledone moschata and Eledone cirrhosa, in the central Mediterranean Sea. The main environmental predictors of cephalopod habitat suitability were depth, seafloor morphology, chlorophyll-a concentration, sea surface temperature and surface salinity. Predictive maps highlighted contrasting habitat selection amongst species. This study identifies areas where the important commercial species of cephalopods are concentrated and provides significant information for a future spatial based approach to fisheries management in the Mediterranean Sea.
Collapse
Affiliation(s)
- V Lauria
- Institute for Coastal Marine Environment (IAMC), National Research Council (CNR), Via L. Vaccara n 61, Mazara del Vallo, TP 91026, Italy.
| | - G Garofalo
- Institute for Coastal Marine Environment (IAMC), National Research Council (CNR), Via L. Vaccara n 61, Mazara del Vallo, TP 91026, Italy
| | - M Gristina
- Institute for Coastal Marine Environment (IAMC), National Research Council (CNR), Via L. Vaccara n 61, Mazara del Vallo, TP 91026, Italy
| | - F Fiorentino
- Institute for Coastal Marine Environment (IAMC), National Research Council (CNR), Via L. Vaccara n 61, Mazara del Vallo, TP 91026, Italy
| |
Collapse
|
25
|
Doubleday ZA, Prowse TA, Arkhipkin A, Pierce GJ, Semmens J, Steer M, Leporati SC, Lourenço S, Quetglas A, Sauer W, Gillanders BM. Global proliferation of cephalopods. Curr Biol 2016; 26:R406-7. [DOI: 10.1016/j.cub.2016.04.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Quetglas A, Rueda L, Alvarez-Berastegui D, Guijarro B, Massutí E. Contrasting Responses to Harvesting and Environmental Drivers of Fast and Slow Life History Species. PLoS One 2016; 11:e0148770. [PMID: 26859577 PMCID: PMC4747561 DOI: 10.1371/journal.pone.0148770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/22/2016] [Indexed: 11/19/2022] Open
Abstract
According to their main life history traits, organisms can be arranged in a continuum from fast (species with small body size, short lifespan and high fecundity) to slow (species with opposite characteristics). Life history determines the responses of organisms to natural and anthropogenic factors, as slow species are expected to be more sensitive than fast species to perturbations. Owing to their contrasting traits, cephalopods and elasmobranchs are typical examples of fast and slow strategies, respectively. We investigated the responses of these two contrasting strategies to fishing exploitation and environmental conditions (temperature, productivity and depth) using generalized additive models. Our results confirmed the foreseen contrasting responses of cephalopods and elasmobranchs to natural (environment) and anthropogenic (harvesting) influences. Even though a priori foreseen, we did expect neither the clear-cut differential responses between groups nor the homogeneous sensitivity to the same factors within the two taxonomic groups. Apart from depth, which affected both groups equally, cephalopods and elasmobranchs were exclusively affected by environmental conditions and fishing exploitation, respectively. Owing to its short, annual cycle, cephalopods do not have overlapping generations and consequently lack the buffering effects conferred by different age classes observed in multi-aged species such as elasmobranchs. We suggest that cephalopods are sensitive to short-term perturbations, such as seasonal environmental changes, because they lack this buffering effect but they are in turn not influenced by continuous, long-term moderate disturbances such as fishing because of its high population growth and turnover. The contrary would apply to elasmobranchs, whose multi-aged population structure would buffer the seasonal environmental effects, but they would display strong responses to uninterrupted harvesting due to its low population resilience. Besides providing empirical evidence to the theoretically predicted contrasting responses of cephalopods and elasmobranchs to disturbances, our results are useful for the sustainable exploitation of these resources.
Collapse
Affiliation(s)
- Antoni Quetglas
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Palma de Mallorca, Spain
- * E-mail:
| | - Lucía Rueda
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Palma de Mallorca, Spain
| | | | - Beatriz Guijarro
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Palma de Mallorca, Spain
| | - Enric Massutí
- Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Palma de Mallorca, Spain
| |
Collapse
|
27
|
Puerta P, Hunsicker ME, Quetglas A, Álvarez-Berastegui D, Esteban A, González M, Hidalgo M. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea. PLoS One 2015; 10:e0133439. [PMID: 26201075 PMCID: PMC4511516 DOI: 10.1371/journal.pone.0133439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/26/2015] [Indexed: 11/27/2022] Open
Abstract
Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable approach for understanding the spatially variant ecology of cephalopod populations, which is important for fisheries and ecosystem management.
Collapse
Affiliation(s)
- Patricia Puerta
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma de Mallorca, Islas Baleares, Spain
| | - Mary E. Hunsicker
- National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Antoni Quetglas
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma de Mallorca, Islas Baleares, Spain
| | - Diego Álvarez-Berastegui
- Balearic Islands Coastal Observing and Forecasting System, Palma de Mallorca, Islas Baleares, Spain
| | - Antonio Esteban
- Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, San Pedro del Pinatar, Murcia, Spain
| | - María González
- Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Fuengirola, Málaga, Spain
| | - Manuel Hidalgo
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Palma de Mallorca, Islas Baleares, Spain
| |
Collapse
|
28
|
Le Pabic C, Caplat C, Lehodey JP, Dallas L, Koueta N. Physiological perturbations in juvenile cuttlefish Sepia officinalis induced by subchronic exposure to dissolved zinc. MARINE POLLUTION BULLETIN 2015; 95:678-687. [PMID: 25749315 DOI: 10.1016/j.marpolbul.2015.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 01/13/2015] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
Although cephalopod early life stage development often occurs in coastal areas where contamination is real and continuous, the physiological perturbations induced by contaminants have been rarely investigated. This study focused on the Zn as it is one of the trace metals the most concentrated in coastal waters, worldwide. As Zn-tolerance limits were unknown in juvenile Sepia officinalis, the aim of this study was to estimate the threshold inducing mortality during the 2-first weeks post-hatching, and to determine its sensitivity using digestive and immune enzymatic assays, as well as growth and behavior follow-up during the first 5weeks post-hatching. Our study highlighted a Zn-mortality threshold lying between 185 and 230μgl(-1), and growth reductions occurring after 5-week at 108μgl(-1) and above, associated with enzymatic perturbations. These results underline a relatively important sensitivity of juvenile cuttlefish to Zn, pointed out by a wide diversity of biomarkers.
Collapse
Affiliation(s)
- Charles Le Pabic
- Normandie Université, F-14032 Caen, France; UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032 Caen cedex, France; Centre de Recherches en Environnement Côtier, Université de Caen Basse-Normandie, 54 rue du Docteur Charcot, 14530 Luc-sur-Mer, France.
| | - Christelle Caplat
- Normandie Université, F-14032 Caen, France; UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032 Caen cedex, France; Centre de Recherches en Environnement Côtier, Université de Caen Basse-Normandie, 54 rue du Docteur Charcot, 14530 Luc-sur-Mer, France
| | - Jean-Paul Lehodey
- Normandie Université, F-14032 Caen, France; UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032 Caen cedex, France; Centre de Recherches en Environnement Côtier, Université de Caen Basse-Normandie, 54 rue du Docteur Charcot, 14530 Luc-sur-Mer, France
| | - Lorna Dallas
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Noussithé Koueta
- Normandie Université, F-14032 Caen, France; UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, 14032 Caen cedex, France; Centre de Recherches en Environnement Côtier, Université de Caen Basse-Normandie, 54 rue du Docteur Charcot, 14530 Luc-sur-Mer, France
| |
Collapse
|
29
|
Vidal EAG, Villanueva R, Andrade JP, Gleadall IG, Iglesias J, Koueta N, Rosas C, Segawa S, Grasse B, Franco-Santos RM, Albertin CB, Caamal-Monsreal C, Chimal ME, Edsinger-Gonzales E, Gallardo P, Le Pabic C, Pascual C, Roumbedakis K, Wood J. Cephalopod culture: current status of main biological models and research priorities. ADVANCES IN MARINE BIOLOGY 2014; 67:1-98. [PMID: 24880794 DOI: 10.1016/b978-0-12-800287-2.00001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A recent revival in using cephalopods as experimental animals has rekindled interest in their biology and life cycles, information with direct applications also in the rapidly growing ornamental aquarium species trade and in commercial aquaculture production for human consumption. Cephalopods have high rates of growth and food conversion, which for aquaculture translates into short culture cycles, high ratios of production to biomass and high cost-effectiveness. However, at present, only small-scale culture is possible and only for a few species: the cuttlefish Sepia officinalis, the loliginid squid Sepioteuthis lessoniana and the octopuses Octopus maya and O. vulgaris. These four species are the focus of this chapter, the aims of which are as follows: (1) to provide an overview of the culture requirements of cephalopods, (2) to highlight the physical and nutritional requirements at each phase of the life cycle regarded as essential for successful full-scale culture and (3) to identify current limitations and the topics on which further research is required. Knowledge of cephalopod culture methods is advanced, but commercialization is still constrained by the highly selective feeding habits of cephalopods and their requirement for large quantities of high-quality (preferably live) feed, particularly in the early stages of development. Future research should focus on problems related to the consistent production of viable numbers of juveniles, the resolution of which requires a better understanding of nutrition at all phases of the life cycle and better broodstock management, particularly regarding developments in genetic selection, control of reproduction and quality of eggs and offspring.
Collapse
Affiliation(s)
- Erica A G Vidal
- Center for Marine Studies, University of Parana (UFPR), Parana, Brazil.
| | | | - José P Andrade
- CCMAR-CIMAR L.A., Centro de Ciencias do Mar do Algarve, Campus de Gambelas, Universidade doAlgarve, Faro, Portugal
| | - Ian G Gleadall
- International Fisheries Science Unit, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - José Iglesias
- Oceanographic Center of Vigo. Spanish Institute of Oceanography, Subida a Radio Faro, Pontevedra, Spain
| | - Noussithé Koueta
- UMR BOREA, MNHN, UPMC, UCBN, CNRS-7028, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, Caen cedex, France
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Susumu Segawa
- Tokyo University of Fisheries, Minato-ku, Tokyo, Japan
| | - Bret Grasse
- Monterey Bay Aquarium, Monterey, California, USA
| | | | - Caroline B Albertin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Maria E Chimal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | | | - Pedro Gallardo
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Charles Le Pabic
- UMR BOREA, MNHN, UPMC, UCBN, CNRS-7028, IRD-207, IBFA Université de Caen Basse-Normandie, Esplanade de la Paix, Caen cedex, France
| | - Cristina Pascual
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Yucatán, Mexico
| | - Katina Roumbedakis
- Laboratório Sanidade de Organismos Aquáticos. Universidade Federal de Santa Catarina, Florianopolis, Brazil
| | - James Wood
- Mounts Botanical Garden, West Palm Beach, Florida, USA
| |
Collapse
|