1
|
Lino C, Bongiorno D, Pitonzo R, Indelicato S, Barbera M, Di Gregorio G, Pane D, Avellone G. Chemical Characterization, Stability and Sensory Evaluation of Sicilian Extra Virgin Olive Oils: Healthiness Evidence at Nose Reach. Foods 2024; 13:2149. [PMID: 38998654 PMCID: PMC11240965 DOI: 10.3390/foods13132149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to assess the nutraceutical qualities of extra virgin olive oil (EVOO) samples obtained from three Sicilian olive cultivars: Nocellara, Biancolilla, and Cerasuola. We also evidenced the relationship among biophenols, base parameters and panel test scores, and evaluated the stability of the biophenols in EVOO. The assessment also took into consideration variations in olive harvesting periods and the influence of four different milling methods. A statistical analysis of the collected data revealed that the cultivar and harvesting period were the primary factors influencing the bio-phenol content, while the milling methods employed did not significantly affect the levels of biophenols in the oils. The panel test results were also illuminating as they were strongly related to the cultivar and polyphenol content. Following the criteria outlined in EC Regulation 432/2012, we selected three samples, each representing one of the cultivars, which exhibited the highest bio-phenol content to evaluate the biophenol stability during a time span of 16 months.
Collapse
Affiliation(s)
- Claudia Lino
- ATeN Center, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (C.L.); (R.P.)
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Rosa Pitonzo
- ATeN Center, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (C.L.); (R.P.)
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Manfredi Barbera
- Manfredi Barbera & figli S.p.a., Via E. Amari, 55/A, 90139 Palermo, Italy
| | | | - Domenico Pane
- Manfredi Barbera & figli S.p.a., Via E. Amari, 55/A, 90139 Palermo, Italy
| | - Giuseppe Avellone
- ATeN Center, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy; (C.L.); (R.P.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università di Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
2
|
El-Nashar HAS, Sayed AM, El-Sherief HAM, Rateb ME, Akil L, Khadra I, Majrashi TA, Al-Rashood ST, Binjubair FA, El Hassab MA, Eldehna WM, Abdelmohsen UR, Mostafa NM. Metabolomic profile, anti-trypanosomal potential and molecular docking studies of Thunbergia grandifolia. J Enzyme Inhib Med Chem 2023; 38:2199950. [PMID: 37080775 PMCID: PMC10120545 DOI: 10.1080/14756366.2023.2199950] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 μg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.
Collapse
Affiliation(s)
- Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hany A. M. El-Sherief
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mostafa E. Rateb
- School, of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
| | - Lina Akil
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faizah A. Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City, Egypt
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Adedokun KA, Imodoye SO, Yahaya ZS, Oyeyemi IT, Bello IO, Adeyemo‐Imodoye MT, Sanusi MA, Kamorudeen RT. Nanodelivery of Polyphenols as Nutraceuticals in Anticancer Interventions. POLYPHENOLS 2023:188-224. [DOI: 10.1002/9781394188864.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Bongiorno D, Di Stefano V, Indelicato S, Avellone G, Ceraulo L. Bio-phenols determination in olive oils: Recent mass spectrometry approaches. MASS SPECTROMETRY REVIEWS 2023; 42:1462-1502. [PMID: 34747510 DOI: 10.1002/mas.21744] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 06/07/2023]
Abstract
Extra virgin olive oil (EVOO) is largely used in Mediterranean diet, and it is also worldwide apprised not only for its organoleptic properties but also for its healthy effects mainly attributed to the presence of several naturally occurring phenolic and polyphenolic compounds (bio-phenols). These compounds are characterized by the presence of multiple phenolic groups in more or less complex structures. Their content is fundamental in defining the healthy qualities of EVOO and consequently the analytical methods for their characterization and quantification are of current interest. Traditionally their determination has been conducted using a colorimetric assay based on the reaction of Folin-Ciocalteu (FC) reagent with the functional hydroxy groups of phenolic compounds. Identification and quantification of the bio-phenols in olive oils requires certainly more performing analytical methods. Chromatographic separation is now commonly achieved by HPLC, coupled with spectrometric devices as UV, FID, and MS. This last approach constitutes an actual cutting-edge application for bio-phenol determination in complex matrices as olive oils, mostly on the light of the development of mass analyzers and the achievement of high resolution and accurate mass measurement in more affordable instrument configurations. After a short survey of some rugged techniques used for bio-phenols determination, in this review have been described the most recent mass spectrometry-based methods, adopted for the analysis of the bio-phenols in EVOOs. In particular, the sample handling and the results of HPLC coupled with low- and high-resolution MS and MS/MS analyzers, of ion mobility mass spectrometry and ambient mass spectrometry have been reported and discussed.
Collapse
Affiliation(s)
- David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Vita Di Stefano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Serena Indelicato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Giuseppe Avellone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
5
|
Brahmi-Chendouh N, Piccolella S, Gravina C, Fiorentino M, Formato M, Kheyar N, Pacifico S. Ready-to-Use Nutraceutical Formulations from Edible and Waste Organs of Algerian Artichokes. Foods 2022; 11:3955. [PMID: 36553698 PMCID: PMC9777799 DOI: 10.3390/foods11243955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Edible, plant-derived foodstuffs are recognized as precious sources of polyphenol compounds, whose consumption has proven to have multiple beneficial effects on human health. However, the awareness that cooking processes are able to induce quali-quantitatively changes in their native occurrence and that their bioavailability after food ingestion is poor led the research to move toward the preparation of nutraceutical supplements aimed at maximizing their content by effective extractive techniques and protecting them from degradation. The present work fits into this context, proposing a green, ready-to-use formulation of capitula, stems, and leaves of Algerian artichokes, in which natural deep eutectic solvents were exploited as extracting solvents but not removed at the end of the process. MTT test on the Caco-2 cell line highlighted that mitochondrial redox activity inhibition was absent below the 50 µg/mL tested dose. Simulated in vitro digestion was used as a predictive model for formulation bioaccessibility, where the joint approach with UHPLC-HRMS techniques allowed to define the release of each polyphenol from the investigated matrices. The capitula-based sample was the richest one in flavonoids, especially luteolin and apigenin glycosides, which survived in the intestinal digesta. On the contrary, simple phenols characterized the stem sample, whose release was mainly in the gastric chyme.
Collapse
Affiliation(s)
- Nabila Brahmi-Chendouh
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometry, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Gravina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marika Fiorentino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Marialuisa Formato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| | - Naoual Kheyar
- Laboratory of Plant Biotechnology and Ethnobotany, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
6
|
Abd Al Moaty M, El Ashry ESH, Awad LF, Mostafa A, Abu-Serie MM, Teleb M. Harnessing ROS-Induced Oxidative Stress for Halting Colorectal Cancer via Thiazolidinedione-Based SOD Inhibitors. ACS OMEGA 2022; 7:21267-21279. [PMID: 35755340 PMCID: PMC9219103 DOI: 10.1021/acsomega.2c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Based on the "canonical" view of reactive oxygen species' (ROS) contribution to carcinogenesis, ROS induce oxidative stress and promote various tumor progression events. However, tumor cells also need to defend themselves against oxidative damage. This "heresy" was supported by several recent studies underlining the role of cellular antioxidant capacity in promoting metastasis and resistance to chemotherapy. Accordingly, harnessing the ROS-induced oxidative stress via selective suppression of the cancer antioxidant defense machinery has been launched as an innovative anticancer strategy. Within this approach, pharmacological inhibition of superoxide dismutases (SODs), the first-line defense antioxidant enzymes for cancer cells, selectively kills tumor cells and circumvents their acquired resistance. Various SOD inhibitors have been introduced, of which some were tolerated in clinical trials. However, the hit SOD inhibitors belong to diverse chemical classes and lack comprehensive structure-activity relationships (SAR). Herein, we probe the potential of newly synthesized benzylidene thiazolidinedione derivatives to inhibit SOD in colorectal cancer with special emphasis on their effects on correlated antioxidant enzymes aldehyde dehydrogenase 1 (ALDH1) and glutathione peroxidase (GPx). This may possibly bring a new dawn for utilizing thiazolidinediones (TZDs) in cancer therapy through SOD inhibition mechanisms. The preliminary 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all of the evaluated TZDs exhibited excellent safety profiles on normal human cells, recording an EC100 of up to 47.5-folds higher than that of doxorubicin. Compounds 3c, 6a, and 6e (IC50 = 4.4-4.7 μM) were superior to doxorubicin and other derivatives against Caco-2 colorectal cancer cells within their safe doses. The hit anticancer agents inhibited SOD (IC50 = 97.2-228.8 μM). Then, they were selected for further in-depth evaluation on the cellular level. The anticancer IC50 doses of 3c, 6a, and 6e diminished the antioxidant activities of SOD (by 29.7, 70.1, and 33.3%, respectively), ALDH1A (by 85.92, 95.84, and 86.48%, respectively), and GPX (by 50.17, 87.03, and 53.28%, respectively) in the treated Caco-2 cells, elevating the Caco-2 cellular content of ROS by 21.42, 7.863, and 8.986-folds, respectively. Docking simulations were conducted to display their possible binding modes and essential structural features. Also, their physicochemical parameters and pharmacokinetic profiles formulating drug-likeness were computed.
Collapse
Affiliation(s)
| | - El Sayed H. El Ashry
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Laila Fathy Awad
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Asmaa Mostafa
- Chemistry
Department, Faculty of Science, Alexandria
University, Alexandria 21321, Egypt
| | - Marwa M. Abu-Serie
- Medical
Biotechnology Department, Genetic Engineering and Biotechnology Research
Institute, City of Scientific Research and
Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Mohamed Teleb
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
7
|
Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Int J Mol Sci 2021; 22:11069. [PMID: 34681727 PMCID: PMC8539743 DOI: 10.3390/ijms222011069] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a globally leading public health concern over the past two years. Despite the development and administration of multiple vaccines, the mutation of newer strains and challenges to universal immunity has shifted the focus to the lack of efficacious drugs for therapeutic intervention for the disease. As with SARS-CoV, MERS-CoV, and other non-respiratory viruses, flavonoids present themselves as a promising therapeutic intervention given their success in silico, in vitro, in vivo, and more recently, in clinical studies. This review focuses on data from in vitro studies analyzing the effects of flavonoids on various key SARS-CoV-2 targets and presents an analysis of the structure-activity relationships for the same. From 27 primary papers, over 69 flavonoids were investigated for their activities against various SARS-CoV-2 targets, ranging from the promising 3C-like protease (3CLpro) to the less explored nucleocapsid (N) protein; the most promising were quercetin and myricetin derivatives, baicalein, baicalin, EGCG, and tannic acid. We further review promising in silico studies featuring activities of flavonoids against SARS-CoV-2 and list ongoing clinical studies involving the therapeutic potential of flavonoid-rich extracts in combination with synthetic drugs or other polyphenols and suggest prospects for the future of flavonoids against SARS-CoV-2.
Collapse
Affiliation(s)
- Ridhima Kaul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| | - Sanjay Kumar
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India; (S.K.); (V.D.D.)
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India; (S.K.); (V.D.D.)
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| |
Collapse
|
8
|
Faramarzi S, Piccolella S, Manti L, Pacifico S. Could Polyphenols Really Be a Good Radioprotective Strategy? Molecules 2021; 26:4969. [PMID: 34443561 PMCID: PMC8398122 DOI: 10.3390/molecules26164969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, radiotherapy is one of the most effective strategies to treat cancer. However, deleterious toxicity against normal cells indicate for the need to selectively protect them. Reactive oxygen and nitrogen species reinforce ionizing radiation cytotoxicity, and compounds able to scavenge these species or enhance antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) should be properly investigated. Antioxidant plant-derived compounds, such as phenols and polyphenols, could represent a valuable alternative to synthetic compounds to be used as radio-protective agents. In fact, their dose-dependent antioxidant/pro-oxidant efficacy could provide a high degree of protection to normal tissues, with little or no protection to tumor cells. The present review provides an update of the current scientific knowledge of polyphenols in pure forms or in plant extracts with good evidence concerning their possible radiomodulating action. Indeed, with few exceptions, to date, the fragmentary data available mostly derive from in vitro studies, which do not find comfort in preclinical and/or clinical studies. On the contrary, when preclinical studies are reported, especially regarding the bioactivity of a plant extract, its chemical composition is not taken into account, avoiding any standardization and compromising data reproducibility.
Collapse
Affiliation(s)
- Shadab Faramarzi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
- Department of Plant Production and Genetics, Razi University, Kermanshah 67149-67346, Iran
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| | - Lorenzo Manti
- Department of Physics E. Pancini, University of Naples “Federico II”, and Istituto Nazionale di Fisica Nucleare, (INFN), Naples Section, Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| |
Collapse
|
9
|
Pacifico S, Piccolella S. Editorial to the Special Issue "Food Bioactives: Chemical Challenges and Bio-Opportunities". Molecules 2021; 26:molecules26092517. [PMID: 33925875 PMCID: PMC8123448 DOI: 10.3390/molecules26092517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
|
10
|
Ayoup MS, Abu-Serie MM, Abdel-Hamid H, Teleb M. Beyond direct Nrf2 activation; reinvestigating 1,2,4-oxadiazole scaffold as a master key unlocking the antioxidant cellular machinery for cancer therapy. Eur J Med Chem 2021; 220:113475. [PMID: 33901898 DOI: 10.1016/j.ejmech.2021.113475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 01/22/2023]
Abstract
Harnessing the antioxidant cellular machinery has sparked considerable interest as an efficient anticancer strategy. Activating Nrf2, the master switch of the cellular redox system, suppresses ROS, alleviates oxidative stress, and halts cancer progression. 1,2,4-oxadiazoles are iconic direct Nrf2 activators that disrupt Nrf2 interaction with its endogenous repressor Keap1. This study introduces rationally designed 1,2,4-oxadiazole derivatives that inhibit other Nrf2 suppressors (TrxR1, IKKα, and NF-kB) thus enhancing Nrf2 activation for preventing oxidative stress and carcinogenesis. Preliminary screening showed that the phenolic oxadiazoles 11, 15, and 19 were comparable to ascorbic acid (ROS scavenging) and EDTA (iron chelation), and superior to doxorubicin against HepG-2, MDA-MB231, and Caco-2 cells. They suppressed ROS by 3 folds and activated Nrf2 by 2 folds in HepG-2 cells. Mechanistically, they inhibited TrxR1 (IC50; 13.19, 17.89, and 9.21 nM) and IKKα (IC50; 11.0, 15.94, and 19.58 nM), and downregulated NF-κB (7.6, 1.4 and 1.9 folds in HepG-2), respectively. They inhibited NADPH oxidase (IC50; 16.4, 21.94, and 10.71 nM, respectively) that potentiates their antioxidant activities. Docking studies predicted their important structural features. Finally, they recorded drug-like in silico physicochemical properties, ADMET, and ligand efficiency metrics.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, SRTA-City, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
11
|
Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Crit Rev Food Sci Nutr 2020; 62:3208-3231. [PMID: 33356489 DOI: 10.1080/10408398.2020.1863907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioactive compounds may lose their antioxidant activity (e.g., phenolic compounds) at elevated temperatures, enhanced oxidative conditions and severe light exposures so they should be protected by various strategies such as nano/microencapsulation methods. Encapsulation technology has been employed as a proper method for using antioxidant ingredients and to provide easy dispersibility of antioxidants in all matrices including food and pharmaceutical products. It can improve the food fortification processes, release of antioxidant ingredients, and extending the shelf-life and bioavailability of them when ingested in the intestine. In this study, our main goal is to have an overview of the influence of nanoencapsulation on the bioactivity and bioavailability, and cellular activities of antioxidant ingredients in different delivery systems. Also, the effect of encapsulation process conditions, storage conditions, carrier wall materials, and release profile on the antioxidant activity of different natural bioactives are explained. Finally, analytical techniques for measuring antioxidant activity of nanoencapsulated ingredients will be covered.
Collapse
Affiliation(s)
- Atefe Maqsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Mohebodini
- Department of Animal Science and Food Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
12
|
Bianconi M, Ceriotti L, Cuzzocrea S, Esposito E, Pressi G, Sgaravatti E, Bertaiola O, Guarnerio C, Barbieri E, Semenzato A, Negri S, Commisso M, Avesani L, Guzzo F. Red Carrot Cells Cultured in vitro Are Effective, Stable, and Safe Ingredients for Skin Care, Nutraceutical, and Food Applications. Front Bioeng Biotechnol 2020; 8:575079. [PMID: 33195137 PMCID: PMC7609948 DOI: 10.3389/fbioe.2020.575079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Plant biomasses growing in bioreactor could be developed as production systems for cosmetic ingredients, nutraceuticals and food additives. We previously reported that the red carrot cell line R4G accumulates high levels of anthocyanins, which are potent antioxidants with multiple health-promoting properties. To investigate the industrial potential of this cell line in detail, we tested extract for antioxidant and anti-inflammatory activity in the mouse monocyte/macrophage cell-line J774A.1 and in reconstructed skin tissue models. We also compared the R4G extract to commercial carrot extracts in terms of stability and metabolomic profiles. We found that the R4G extract have potent antioxidant and anti-inflammatory activities, protecting mammalian cells from the oxidative stress triggered by exposure to bacterial lipopolysaccharides and H2O2. The extract also inhibited the nuclear translocation of NF-κB in an epidermal skin model, and induced the expression of VEGF-A to promote the microcirculation in a dermal microtissue model. The anthocyanins extracted from R4G cells were significantly more stable than those found in natural red carrot extracts. Finally, we showed that R4G extract has similar metabolomic profile of natural extracts by using a combination of targeted and untargeted metabolomics analysis, demonstrating the safety of R4G carrot cells for applications in the nutraceutical and food/feed industries.
Collapse
Affiliation(s)
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | | | | | | | - Alessandra Semenzato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Negri
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Piccolella S, Crescente G, Faramarzi S, Formato M, Pecoraro MT, Pacifico S. Polyphenols vs. Coronaviruses: How Far Has Research Moved Forward? Molecules 2020; 25:molecules25184103. [PMID: 32911757 PMCID: PMC7570460 DOI: 10.3390/molecules25184103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022] Open
Abstract
The epidemic, caused by SARS-CoV-2 at the beginning of 2020, led us to a serious change in our lifestyle that for about three months has confined us to our homes, far from our laboratory routine. In this period, the belief that the work of a researcher should never stop has been the driving force in writing the present paper. It aims at reviewing the recent scientific knowledge about in vitro experimental data that focused on the antiviral role of phenols and polyphenols against different species of coronaviruses (CoVs), pointing up the viral targets potentially involved. In the current literature scenario, the papain-like and the 3-chymotrypsin-like proteases seem to be the most deeply investigated and a number of isolated natural (poly)phenols has been screened for their efficacy.
Collapse
|
14
|
Bankole VO, Osungunna MO, Souza CRF, Salvador SL, Oliveira WP. Spray-Dried Proliposomes: an Innovative Method for Encapsulation of Rosmarinus officinalis L. Polyphenols. AAPS PharmSciTech 2020; 21:143. [PMID: 32424702 PMCID: PMC7235052 DOI: 10.1208/s12249-020-01668-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
This work aims to improve the functionality of Rosmarinus officinalis L. (rosemary) polyphenols by encapsulation in an optimized proliposome formulation. A 23 Box-Wilson central composite design (CCD) was employed to determine lone and interaction effects of composition variables on moisture content (Xp); water activity (Aw); concentration and retention of rosemary polyphenols-rosmarinic acid (ROA), carnosol (CAR), and carnosic acid (CNA); and recovery of spray-dried proliposomes (SDP). Processing conditions which generate proliposomes with optimum physicochemical properties were determined by multi-response analysis (desirability approach). Antioxidant and antifungal activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH•) sequestering and minimum inhibitory concentration (MIC)/minimum fungicidal concentration (MFC) assays, respectively. SDP exhibited high polyphenol retention, ranging from 62.0 to 100.0% w/w, showing dependence on composition variables and polyphenol lipophilicity. SDP recovery ranged from 20.1 to 45.8%, with Xp and Aw of 1.7 ± 0.14-2.5 ± 0.23% w/w and 0.30 ± 0.004-0.47 ± 0.003, respectively, evidencing product with good chemical and microbiological stability. Optimum liposomal composition was determined, namely, lipid concentration (4.26% w/w), lyophilized extract (LE) concentration (4.48% w/w), and drying aid:(lipid+extract) ratio (7.55% w/w) on wet basis. Relative errors between experimental and predicted values for SDP properties showed concurrence for all responses except CAR retention, being 22% lower. SDP showed high antioxidant activity with IC50 of 9.2 ± 0.2 μg/mL, superior to results obtained for LE (10.8 μg/mL) and butylated hydroxytoluene (BHT), a synthetic antioxidant (12.5 μg/mL). MIC and MFC against Candida albicans (ATCC1023) were 312.5 μg/mL and 1250 μg/mL, respectively, a moderate antimicrobial activity for phytochemical-based products. SDP is shown as a veritable tool to encapsulate hydrophilic and lipophilic rosemary polyphenols generating a product with optimal physicochemical and biological properties.
Collapse
|
15
|
Nigro E, Crescente G, Formato M, Pecoraro MT, Mallardo M, Piccolella S, Daniele A, Pacifico S. Hempseed Lignanamides Rich-Fraction: Chemical Investigation and Cytotoxicity towards U-87 Glioblastoma Cells. Molecules 2020; 25:E1049. [PMID: 32110947 PMCID: PMC7179246 DOI: 10.3390/molecules25051049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
The weak but noteworthy presence of (poly)phenols in hemp seeds has been long overshadowed by the essential polyunsaturated fatty acids and digestible proteins, considered responsible for their high nutritional benefits. Instead, lignanamides and their biosynthetic precursors, phenylamides, seem to display interesting and diverse biological activities only partially clarified in the last decades. Herein, negative mode HR-MS/MS techniques were applied to the chemical investigation of a (poly)phenol-rich fraction, obtained from hemp seeds after extraction/fractionation steps. This extract contained phenylpropanoid amides and their random oxidative coupling derivatives, lignanamides, which were the most abundant compounds and showed a high chemical diversity, deeply unraveled through high resolution tandem mass spectrometry (HR-MS/MS) tools. The effect of different doses of the lignanamides-rich extract (LnHS) on U-87 glioblastoma cell line and non-tumorigenic human fibroblasts was evaluated. Thus, cell proliferation, genomic DNA damage, colony forming and wound repair capabilities were assessed, as well as LnHS outcome on the expression levels of pro-inflammatory cytokines. LnHS significantly inhibited U-87 cancer cell proliferation, but not that of fibroblasts, and was able to reduce U-87 cell migration, inducing further DNA damage. No modification in cytokines' expression level was found. Data acquired suggested that LnHS acted in U-87 cells by inducing the apoptosis machinery and suppressing the autophagic cell death.
Collapse
Affiliation(s)
- Ersilia Nigro
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
- CEINGE-Advanced Biotechnologies, Scarl, 80131 Napoli, Italy
| | - Giuseppina Crescente
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| | - Marialuisa Formato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| | - Maria Tommasina Pecoraro
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| | - Marta Mallardo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
- CEINGE-Advanced Biotechnologies, Scarl, 80131 Napoli, Italy
| | - Simona Piccolella
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| | - Aurora Daniele
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
- CEINGE-Advanced Biotechnologies, Scarl, 80131 Napoli, Italy
| | - Severina Pacifico
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| |
Collapse
|
16
|
Piccolella S, Bianco A, Crescente G, Santillo A, Chieffi Baccari G, Pacifico S. Recovering Cucurbita pepo cv. 'Lungo Fiorentino' Wastes: UHPLC-HRMS/MS Metabolic Profile, the Basis for Establishing Their Nutra- and Cosmeceutical Valorisation. Molecules 2019; 24:E1479. [PMID: 30991700 PMCID: PMC6514934 DOI: 10.3390/molecules24081479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022] Open
Abstract
Food-waste is produced throughout all the food supply chain, with a large part already achieved at farm level. In fact, fruits and vegetables, which do not satisfy aesthetic demands, cannot be marketed, but their recovery could favour their valorisation for the obtainment of highly qualified goods. In this context, faulty zucchini fruits (cultivar 'Lungo Fiorentino'), intended for disposal, were rescued as effective, inexpensive and bio-sustainable source for cosmeceutical purposes. Zucchini fruits underwent extraction and fractionation to obtain ZLF-O and ZLF-A extracts, which were chemically characterized by UHPLC-HRMS. ZLF-A extract, rich in flavonols and flavones, scavenged massively DPPH• and ABTS•+, and was not cytotoxic at doses up to 200 μ g/mL. Thus, ZLF-A was incorporated into a base cream formula. Zucchini-based emulsion was deeply screened for its antiradical properties and cytotoxicity towards human keratinocytes and fibroblasts. ZLF-A-enriched cream, whose chemical stability was assessed over time and mimicking different storage conditions, was further tested on reconstructed epidermis disks (EpiskinTM). The recovery of valuable chemical substances from zucchini agro-food waste, complying with the principles of valorisation and sustainable development, can represent a new market force for local farmers. Data acquired were eager to convey a suitable reuse of nutraceuticals rich zucchini waste.
Collapse
Affiliation(s)
- Simona Piccolella
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Alessandro Bianco
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Giuseppina Crescente
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Alessandra Santillo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Gabriella Chieffi Baccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Severina Pacifico
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
17
|
Catauro M, Pacifico S. Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol-Gel Route and Evaluation of Their Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E840. [PMID: 28773198 PMCID: PMC5551883 DOI: 10.3390/ma10070840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023]
Abstract
Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol-gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines.
Collapse
Affiliation(s)
- Michelina Catauro
- Department of Industrial and Information Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| | - Severina Pacifico
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
18
|
An apolar Pistacia lentiscus L. leaf extract: GC-MS metabolic profiling and evaluation of cytotoxicity and apoptosis inducing effects on SH-SY5Y and SK-N-BE(2)C cell lines. Food Chem Toxicol 2016; 95:64-74. [DOI: 10.1016/j.fct.2016.06.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/25/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022]
|