1
|
Khan MJ, Jovicic V, Zbogar-Rasic A, Zettel V, Delgado A, Hitzmann B. Influence of Non-Thermal Plasma Treatment on Structural Network Attributes of Wheat Flour and Respective Dough. Foods 2023; 12:foods12102056. [PMID: 37238874 DOI: 10.3390/foods12102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Due to its "generally recognized as safe status" (GRAS) and moderate treatment temperatures, non-thermal plasma (NTP) has lately been considered a suitable replacement for chemicals in the modification of food properties and for preserving food quality. One of the promising areas for the application of NTP is the treatment of wheat flour, leading to improved flour properties and product quality and consequently to higher customer satisfaction. In the present research, the German wheat flour type 550, equivalent to all-purpose flour, was treated using NTP in a rotational reactor to determine the influence of short treatment times (≤5 min) on the properties of flour (moisture and fat content, protein, starch, color, microbial activity, and enzymes), dough (visco-elastic properties, starch, wet and dry gluten, and water absorption), and baking products (color, freshness, baked volume, crumb structure, softness, and elasticity). Based on the properties of NTP, it was expected that even very short treatment times would have a significant effect on the flour particles, which could positively affect the quality of the final baking product. Overall, the experimental analysis showed a positive effect of NTP treatment of wheat flour, e.g., decreased water activity value (<0.7), which is known to positively affect flour stability and product shelf life; dough stability increased (>8% after 5 min. treatment); dough extensibility increased (ca. 30% after 3 min treatment); etc. Regarding the baking product, further positive effects were detected, e.g., enhanced product volume (>9%), improved crumb whiteness/decreased crumb yellowness, softening of breadcrumb without a change in elasticity, and limited microorganism and enzymatic activity. Furthermore, no negative effects on the product quality were observed, even though further food quality tests are required. The presented experimental research confirms the overall positive influence of NTP treatment, even for very low treatment times, on wheat flour and its products. The presented findings are significant for the potential implementation of this technique on an industrial level.
Collapse
Affiliation(s)
- Muhammad Jehanzaib Khan
- Institute of Fluid Mechanics (LSTM), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany
| | - Vojislav Jovicic
- Institute of Fluid Mechanics (LSTM), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany
| | - Ana Zbogar-Rasic
- Institute of Fluid Mechanics (LSTM), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany
| | - Viktoria Zettel
- Department of Process Analytics and Cereal Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Antonio Delgado
- Institute of Fluid Mechanics (LSTM), Friedrich-Alexander-University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany
- German Engineering Research and Development Center, LSTME Busan, Busan 46742, Republic of Korea
| | - Bernd Hitzmann
- Department of Process Analytics and Cereal Science, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
2
|
Teh SS, Lau HLN, Wafti NSBA. Storage Stability and Degradation Kinetics of Phytonutrients of Red Palm-pressed Mesocarp Olein. J Oleo Sci 2023; 72:511-520. [PMID: 37121676 DOI: 10.5650/jos.ess22356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Red palm-pressed mesocarp olein (PPMO) contains plenty of naturally occurring phytonutrients. However, the application of PPMO in food is limited due to the lack of scientific data. In the study, stability and degradation kinetics of carotenoid and vitamin E in PPMO under two storage temperature, 23°C (with and without light) and 35℃ (without light), for a period of twelve months were performed. Amber bottles were used for optimum protection against damaging UV light. Both temperature and light conditions significantly influenced the total carotenoid and vitamin E contents of PPMO, as well as oil quality in terms of peroxide value and anisidine value to a different extent. Correlation analysis showed that oil quality was significantly but negatively correlated with phytonutrients. In addition, both zero- and first-order kinetic models were able to describe the degradation kinetics of the phytonutrients in PPMO. Zero-order was the best fit with higher correlation coefficients (R2) for both carotenoid and vitamin E contents, except for carotenoid that was kept at 23°C whereby first-order displayed the best fit. The half-life of carotenoid and vitamin E in PPMO were 40.8 months and 21.6 months, respectively under the optimised storage condition (23°C in amber bottles). In conclusion, storage of PPMO at lower temperature and in light-limited environment could effectively lower its oxidation rate and degradation rate of carotenoid and vitamin E, postulating its shelf life to be prolonged.
Collapse
Affiliation(s)
- Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi
| | - Harrison Lik Nang Lau
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board, 6, Persiaran Institusi
| | | |
Collapse
|
3
|
Akgöl S, Ulucan-Karnak F, Kuru Cİ, Kuşat K. The usage of composite nanomaterials in biomedical engineering applications. Biotechnol Bioeng 2021; 118:2906-2922. [PMID: 34050923 DOI: 10.1002/bit.27843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/04/2021] [Accepted: 05/23/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology is still developing over the decades and it is commonly used in biomedical applications with the design of nanomaterials due to the several purposes. With the investigation of materials on the molecular level has increased the develop composite nanomaterials with exceptional properties using in different applications and industries. The application of these composite nanomaterials is widely used in the fields of textile, chemical, energy, defense industry, electronics, and biomedical engineering which is growing and developing on human health. Development of biosensors for the diagnosis of diseases, drug targeting and controlled release applications, medical implants and imaging techniques are the research topics of nanobiotechnology. In this review, overview of the development of nanotechnology and applications which is use of composite nanomaterials in biomedical engineering is provided.
Collapse
Affiliation(s)
- Sinan Akgöl
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | | | - Cansu İlke Kuru
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
| | - Kevser Kuşat
- Department of Chemistry, Faculty of Science, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
4
|
Kaur K, Bindra P, Mondal S, Li WP, Sharma S, Sahu BK, Naidu BS, Yeh CS, Gautam UK, Shanmugam V. Upconversion Nanodevice-Assisted Healthy Molecular Photocorrection. ACS Biomater Sci Eng 2021; 7:291-298. [PMID: 33356144 DOI: 10.1021/acsbiomaterials.0c01244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mushrooms are rich in ergosterol, a precursor of ergocalciferol, which is a type of vitamin D2. The conversion of ergosterol to ergocalciferol takes place in the presence of UV radiation by the cleavage of the "B-ring" in the ergosterol. As the UV radiation cannot penetrate deep into the tissue, only minimal increase occurs in sunlight. In this study, upconversion nanoparticles with the property to convert deep-penetrating near-infrared radiation to UV radiation have been cast into a disk to use sunlight and emit UV radiation for vitamin D conversion. An engineered upconversion nanoparticle (UCNP) disk with maximum particles and limited clusters demonstrates ∼2.5 times enhanced vitamin D2 conversion.
Collapse
Affiliation(s)
- Kamaljit Kaur
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Pulkit Bindra
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Wei-Peng Li
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Sandeep Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Bandana Kumari Sahu
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Boddu S Naidu
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| |
Collapse
|
5
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|