1
|
Xu S, Liu Y, Lee H, Li W. Neural interfaces: Bridging the brain to the world beyond healthcare. EXPLORATION (BEIJING, CHINA) 2024; 4:20230146. [PMID: 39439491 PMCID: PMC11491314 DOI: 10.1002/exp.20230146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Neural interfaces, emerging at the intersection of neurotechnology and urban planning, promise to transform how we interact with our surroundings and communicate. By recording and decoding neural signals, these interfaces facilitate direct connections between the brain and external devices, enabling seamless information exchange and shared experiences. Nevertheless, their development is challenged by complexities in materials science, electrochemistry, and algorithmic design. Electrophysiological crosstalk and the mismatch between electrode rigidity and tissue flexibility further complicate signal fidelity and biocompatibility. Recent closed-loop brain-computer interfaces, while promising for mood regulation and cognitive enhancement, are limited by decoding accuracy and the adaptability of user interfaces. This perspective outlines these challenges and discusses the progress in neural interfaces, contrasting non-invasive and invasive approaches, and explores the dynamics between stimulation and direct interfacing. Emphasis is placed on applications beyond healthcare, highlighting the need for implantable interfaces with high-resolution recording and stimulation capabilities.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Yang Liu
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hyunjin Lee
- Department of Biomedical EngineeringThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Weidong Li
- Brain Health and Brain Technology Center at Global Institute of Future TechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
2
|
Caffi L, Romito LM, Palmisano C, Aloia V, Arlotti M, Rossi L, Marceglia S, Priori A, Eleopra R, Levi V, Mazzoni A, Isaias IU. Adaptive vs. Conventional Deep Brain Stimulation: One-Year Subthalamic Recordings and Clinical Monitoring in a Patient with Parkinson's Disease. Bioengineering (Basel) 2024; 11:990. [PMID: 39451366 PMCID: PMC11504236 DOI: 10.3390/bioengineering11100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024] Open
Abstract
Conventional DBS (cDBS) for Parkinson's disease uses constant, predefined stimulation parameters, while the currently available adaptive DBS (aDBS) provides the possibility of adjusting current amplitude with respect to subthalamic activity in the beta band (13-30 Hz). This preliminary study on one patient aims to describe how these two stimulation modes affect basal ganglia dynamics and, thus, behavior in the long term. We collected clinical data (UPDRS-III and -IV) and subthalamic recordings of one patient with Parkinson's disease treated for one year with aDBS, alternated with short intervals of cDBS. Moreover, after nine months, the patient discontinued all dopaminergic drugs while keeping aDBS. Clinical benefits of aDBS were superior to those of cDBS, both with and without medications. This improvement was paralleled by larger daily fluctuations of subthalamic beta activity. Moreover, with aDBS, subthalamic beta activity decreased during asleep with respect to awake hours, while it remained stable in cDBS. These preliminary data suggest that aDBS might be more effective than cDBS in preserving the functional role of daily beta fluctuations, thus leading to superior clinical benefit. Our results open new perspectives for a restorative brain network effect of aDBS as a more physiological, bidirectional, brain-computer interface.
Collapse
Affiliation(s)
- Laura Caffi
- Parkinson Institute of Milan, ASST G.Pini-CTO, 20126 Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, 97070 Würzburg, Germany
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, 56025 Pisa, Italy
| | - Luigi M. Romito
- Parkinson and Movement Disorders Unit, Foundation IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Chiara Palmisano
- Parkinson Institute of Milan, ASST G.Pini-CTO, 20126 Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, 97070 Würzburg, Germany
| | | | | | | | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
- Department of Health Sciences, Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, University of Milan, 20122 Milano, Italy
| | - Alberto Priori
- Department of Health Sciences, Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, University of Milan, 20122 Milano, Italy
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Foundation IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Vincenzo Levi
- Functional Neurosurgery Unit, Foundation IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Alberto Mazzoni
- The BioRobotics Institute, Sant’Anna School of Advanced Studies, 56025 Pisa, Italy
- Department of Excellence in Robotics and AI, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | - Ioannis U. Isaias
- Parkinson Institute of Milan, ASST G.Pini-CTO, 20126 Milano, Italy
- University Hospital of Würzburg and Julius Maximilian University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
3
|
Farokhniaee A, Palmisano C, Del Vecchio Del Vecchio J, Pezzoli G, Volkmann J, Isaias IU. Gait-related beta-gamma phase amplitude coupling in the subthalamic nucleus of parkinsonian patients. Sci Rep 2024; 14:6674. [PMID: 38509158 PMCID: PMC10954750 DOI: 10.1038/s41598-024-57252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Analysis of coupling between the phases and amplitudes of neural oscillations has gained increasing attention as an important mechanism for large-scale brain network dynamics. In Parkinson's disease (PD), preliminary evidence indicates abnormal beta-phase coupling to gamma-amplitude in different brain areas, including the subthalamic nucleus (STN). We analyzed bilateral STN local field potentials (LFPs) in eight subjects with PD chronically implanted with deep brain stimulation electrodes during upright quiet standing and unperturbed walking. Phase-amplitude coupling (PAC) was computed using the Kullback-Liebler method, based on the modulation index. Neurophysiological recordings were correlated with clinical and kinematic measurements and individual molecular brain imaging studies ([123I]FP-CIT and single-photon emission computed tomography). We showed a dopamine-related increase in subthalamic beta-gamma PAC from standing to walking. Patients with poor PAC modulation and low PAC during walking spent significantly more time in the stance and double support phase of the gait cycle. Our results provide new insights into the subthalamic contribution to human gait and suggest cross-frequency coupling as a gateway mechanism to convey patient-specific information of motor control for human locomotion.
Collapse
Affiliation(s)
- AmirAli Farokhniaee
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy.
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy.
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Jasmin Del Vecchio Del Vecchio
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Gianni Pezzoli
- Fondazione Grigioni Per Il Morbo Di Parkinson, Via Gianfranco Zuretti 35, 20125, Milano, Italy
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Ioannis U Isaias
- Parkinson Institute Milan, ASST G. Pini CTO, Via Bignami 1, 20126, Milano, Italy
- Department of Neurology, University Hospital of Würzburg, and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| |
Collapse
|
4
|
Zhao D, Luo Z, Yao M, Wei L, Qin L, Wang Z. State identification of Parkinson's disease based on transfer learning. Technol Health Care 2024; 32:4097-4107. [PMID: 39520168 PMCID: PMC11612988 DOI: 10.3233/thc-231929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The local field potential (LFP) signals are a vital signal for studying the mechanisms of deep brain stimulation (DBS) and constructing adaptive DBS containing information related to the motor symptoms of Parkinson's disease (PD). OBJECTIVE A Parkinson's disease state identification algorithm based on the feature extraction strategy of transfer learning was proposed. METHODS The algorithm uses continuous wavelet transform (CWT) to convert one-dimensional LFP signals into two-dimensional gray-scalogram images and color images respectively, and designs a Bayesian optimized random forest (RF) classifier to replace the three fully connected layers for the classification task in the VGG16 model, to realize automatic identification of the pathological state of PD patients. RESULTS It was found that consistently superior performance of gray-scalogram images over color images. The proposed algorithm achieved an accuracy of 97.76%, precision of 99.01%, recall of 96.47%, and F1-score of 97.73%, outperforming feature extractors such as VGG19, InceptionV3, ResNet50, and the lightweight network MobileNet. CONCLUSIONS This algorithm has high accuracy and can distinguish the disease states of PD patients without manual feature extraction, effectively assisting the working of doctors.
Collapse
Affiliation(s)
- Dechun Zhao
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zixin Luo
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Mingcai Yao
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Li Wei
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Lu Qin
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Ziqiong Wang
- College of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
5
|
Avantaggiato F, Farokhniaee A, Bandini A, Palmisano C, Hanafi I, Pezzoli G, Mazzoni A, Isaias IU. Intelligibility of speech in Parkinson's disease relies on anatomically segregated subthalamic beta oscillations. Neurobiol Dis 2023; 185:106239. [PMID: 37499882 DOI: 10.1016/j.nbd.2023.106239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Speech impairment is commonly reported in Parkinson's disease and is not consistently improved by available therapies - including deep brain stimulation of the subthalamic nucleus (STN-DBS), which can worsen communication performance in some patients. Improving the outcome of STN-DBS on speech is difficult due to our incomplete understanding of the contribution of the STN to fluent speaking. OBJECTIVE To assess the relationship between subthalamic neural activity and speech production and intelligibility. METHODS We investigated bilateral STN local field potentials (LFPs) in nine parkinsonian patients chronically implanted with DBS during overt reading. LFP spectral features were correlated with clinical scores and measures of speech intelligibility. RESULTS Overt reading was associated with increased beta-low ([1220) Hz) power in the left STN, whereas speech intelligibility correlated positively with beta-high ([2030) Hz) power in the right STN. CONCLUSION We identified separate contributions from frequency and brain lateralization of the STN in the execution of an overt reading motor task and its intelligibility. This subcortical organization could be exploited for new adaptive stimulation strategies capable of identifying the occurrence of speaking behavior and facilitating its functional execution.
Collapse
Affiliation(s)
- Federica Avantaggiato
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - AmirAli Farokhniaee
- Fondazione Grigioni per il Morbo di Parkinson, Via Gianfranco Zuretti 35, 20125 Milano, Italy.
| | - Andrea Bandini
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada; Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy.
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Via Gianfranco Zuretti 35, 20125 Milano, Italy; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| | - Alberto Mazzoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggo 34, Pontedera, Pisa, Italy.
| | - Ioannis U Isaias
- Department of Neurology, University Hospital of Würzburg and Julius Maximilian University of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany; Parkinson Institute Milan, ASST G. Pini-CTO, via Bignami 1, 20126 Milano, Italy.
| |
Collapse
|
6
|
Wang S, Zhu G, Shi L, Zhang C, Wu B, Yang A, Meng F, Jiang Y, Zhang J. Closed-Loop Adaptive Deep Brain Stimulation in Parkinson's Disease: Procedures to Achieve It and Future Perspectives. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225053. [PMID: 37182899 DOI: 10.3233/jpd-225053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a heavy burden on patients, families, and society. Deep brain stimulation (DBS) can improve the symptoms of PD patients for whom medication is insufficient. However, current open-loop uninterrupted conventional DBS (cDBS) has inherent limitations, such as adverse effects, rapid battery consumption, and a need for frequent parameter adjustment. To overcome these shortcomings, adaptive DBS (aDBS) was proposed to provide responsive optimized stimulation for PD. This topic has attracted scientific interest, and a growing body of preclinical and clinical evidence has shown its benefits. However, both achievements and challenges have emerged in this novel field. To date, only limited reviews comprehensively analyzed the full framework and procedures for aDBS implementation. Herein, we review current preclinical and clinical data on aDBS for PD to discuss the full procedures for its achievement and to provide future perspectives on this treatment.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunkui Zhang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Bing Wu
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
7
|
Del Vecchio Del Vecchio J, Hanafi I, Pozzi NG, Capetian P, Isaias IU, Haufe S, Palmisano C. Pallidal Recordings in Chronically Implanted Dystonic Patients: Mitigation of Tremor-Related Artifacts. Bioengineering (Basel) 2023; 10:476. [PMID: 37106663 PMCID: PMC10135680 DOI: 10.3390/bioengineering10040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Low-frequency oscillatory patterns of pallidal local field potentials (LFPs) have been proposed as a physiomarker for dystonia and hold the promise for personalized adaptive deep brain stimulation. Head tremor, a low-frequency involuntary rhythmic movement typical of cervical dystonia, may cause movement artifacts in LFP signals, compromising the reliability of low-frequency oscillations as biomarkers for adaptive neurostimulation. We investigated chronic pallidal LFPs with the PerceptTM PC (Medtronic PLC) device in eight subjects with dystonia (five with head tremors). We applied a multiple regression approach to pallidal LFPs in patients with head tremors using kinematic information measured with an inertial measurement unit (IMU) and an electromyographic signal (EMG). With IMU regression, we found tremor contamination in all subjects, whereas EMG regression identified it in only three out of five. IMU regression was also superior to EMG regression in removing tremor-related artifacts and resulted in a significant power reduction, especially in the theta-alpha band. Pallido-muscular coherence was affected by a head tremor and disappeared after IMU regression. Our results show that the Percept PC can record low-frequency oscillations but also reveal spectral contamination due to movement artifacts. IMU regression can identify such artifact contamination and be a suitable tool for its removal.
Collapse
Affiliation(s)
- Jasmin Del Vecchio Del Vecchio
- Department of Neurology, University Hospital of Würzburg and Julius-Maximilian-University Würzburg, 97080 Würzburg, Germany; (I.H.); (N.G.P.); (P.C.); (I.U.I.); (C.P.)
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital of Würzburg and Julius-Maximilian-University Würzburg, 97080 Würzburg, Germany; (I.H.); (N.G.P.); (P.C.); (I.U.I.); (C.P.)
| | - Nicoló Gabriele Pozzi
- Department of Neurology, University Hospital of Würzburg and Julius-Maximilian-University Würzburg, 97080 Würzburg, Germany; (I.H.); (N.G.P.); (P.C.); (I.U.I.); (C.P.)
| | - Philipp Capetian
- Department of Neurology, University Hospital of Würzburg and Julius-Maximilian-University Würzburg, 97080 Würzburg, Germany; (I.H.); (N.G.P.); (P.C.); (I.U.I.); (C.P.)
| | - Ioannis U. Isaias
- Department of Neurology, University Hospital of Würzburg and Julius-Maximilian-University Würzburg, 97080 Würzburg, Germany; (I.H.); (N.G.P.); (P.C.); (I.U.I.); (C.P.)
- Centro Parkinson e Parkinsonismi, ASST G. Pini-CTO, 20122 Milano, Italy
| | - Stefan Haufe
- Uncertainty, Inverse Modeling and Machine Learning Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, 10587 Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital of Würzburg and Julius-Maximilian-University Würzburg, 97080 Würzburg, Germany; (I.H.); (N.G.P.); (P.C.); (I.U.I.); (C.P.)
| |
Collapse
|
8
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
9
|
Wenger N, Vogt A, Skrobot M, Garulli EL, Kabaoglu B, Salchow-Hömmen C, Schauer T, Kroneberg D, Schuhmann M, Ip CW, Harms C, Endres M, Isaias I, Tovote P, Blum R. Rodent models for gait network disorders in Parkinson's disease - a translational perspective. Exp Neurol 2022; 352:114011. [PMID: 35176273 DOI: 10.1016/j.expneurol.2022.114011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Gait impairments in Parkinson's disease remain a scientific and therapeutic challenge. The advent of new deep brain stimulation (DBS) devices capable of recording brain activity from chronically implanted electrodes has fostered new studies of gait in freely moving patients. The hope is to identify gait-related neural biomarkers and improve therapy using closed-loop DBS. In this context, animal models offer the opportunity to investigate gait network activity at multiple biological scales and address unresolved questions from clinical research. Yet, the contribution of rodent models to the development of future neuromodulation therapies will rely on translational validity. In this review, we summarize the most effective strategies to model parkinsonian gait in rodents. We discuss how clinical observations have inspired targeted brain lesions in animal models, and whether resulting motor deficits and network oscillations match recent findings in humans. Gait impairments with hypo-, bradykinesia and altered limb rhythmicity were successfully modelled in rodents. However, clear evidence for the presence of freezing of gait was missing. The identification of reliable neural biomarkers for gait impairments has remained challenging in both animals and humans. Moving forward, we expect that the ongoing investigation of circuit specific neuromodulation strategies in animal models will lead to future optimizations of gait therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Nikolaus Wenger
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany.
| | - Arend Vogt
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matej Skrobot
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisa L Garulli
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burce Kabaoglu
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christina Salchow-Hömmen
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Schauer
- Technische Universität Berlin, Control Systems Group, 10587 Berlin, Germany
| | - Daniel Kroneberg
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, Germany
| | - Michael Schuhmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Christoph Harms
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany
| | - Matthias Endres
- Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Germany; DZHK (German Center for Cardiovascular Research), Berlin Site, Germany; DZNE (German Center for Neurodegenerative Disease), Berlin Site, Germany
| | - Ioannis Isaias
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| | - Philip Tovote
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Versbacher Str. 5, 97078 Wuerzburg, Germany; Center for Mental Health, University of Wuerzburg, Margarete-Höppel-Platz 1, 97080 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Wuerzburg, Germany
| |
Collapse
|