1
|
Wang Y, Fang F, Liu X. Targeting histamine in metabolic syndrome: Insights and therapeutic potential. Life Sci 2024; 358:123172. [PMID: 39461668 DOI: 10.1016/j.lfs.2024.123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Metabolic syndrome is a complex disorder defined by a cluster of interconnected factors including obesity, insulin resistance, hypertension, hyperlipidemia and hyperglycemia which increase the risk of cardiovascular disease, non-alcoholic fatty liver disease, type 2 diabetes mellitus and other related diseases. Histamine, as a biogenic amine, participates in various physiological processes. Increasing evidence suggests histamine plays critical roles in Metabolic syndrome as well as its associated diseases by interacting with four histamine receptors. In this review, we summarize the functions and mechanisms of histamine in Metabolic syndrome, indicating histamine as a possible target in treating Metabolic syndrome and its associated diseases.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Szukiewicz D. Histaminergic System Activity in the Central Nervous System: The Role in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2024; 25:9859. [PMID: 39337347 PMCID: PMC11432521 DOI: 10.3390/ijms25189859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Histamine (HA), a biogenic monoamine, exerts its pleiotropic effects through four H1R-H4R histamine receptors, which are also expressed in brain tissue. Together with the projections of HA-producing neurons located within the tuberomammillary nucleus (TMN), which innervate most areas of the brain, they constitute the histaminergic system. Thus, while remaining a mediator of the inflammatory reaction and immune system function, HA also acts as a neurotransmitter and a modulator of other neurotransmitter systems in the central nervous system (CNS). Although the detailed causes are still not fully understood, neuroinflammation seems to play a crucial role in the etiopathogenesis of both neurodevelopmental and neurodegenerative (neuropsychiatric) diseases, such as autism spectrum disorders (ASDs), attention-deficit/hyperactivity disorder (ADHD), Alzheimer's disease (AD) and Parkinson's disease (PD). Given the increasing prevalence/diagnosis of these disorders and their socioeconomic impact, the need to develop effective forms of therapy has focused researchers' attention on the brain's histaminergic activity and other related signaling pathways. This review presents the current state of knowledge concerning the involvement of HA and the histaminergic system within the CNS in the development of neurodevelopmental and neurodegenerative disorders. To this end, the roles of HA in neurotransmission, neuroinflammation, and neurodevelopment are also discussed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Conway AE, Verdi M, Kartha N, Maddukuri C, Anagnostou A, Abrams EM, Bansal P, Bukstein D, Nowak-Wegrzyn A, Oppenheimer J, Madan JC, Garnaat SL, Bernstein JA, Shaker MS. Allergic Diseases and Mental Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:2298-2309. [PMID: 38851487 DOI: 10.1016/j.jaip.2024.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Neuropsychiatric symptoms have long been acknowledged as a common comorbidity for individuals with allergic diseases. The proposed mechanisms for this relationship vary by disease and patient population and may include neuroinflammation and/or the consequent social implications of disease symptoms and management. We review connections between mental health and allergic rhinitis, atopic dermatitis, asthma, vocal cord dysfunction, urticaria, and food allergy. Many uncertainties remain and warrant further research, particularly with regard to how medications interact with pathophysiologic mechanisms of allergic disease in the neuroimmune axis. Proactive screening for mental health challenges, using tools such as the Patient Health Questionnaire and Generalized Anxiety Disorder screening instruments among others, can aid clinicians in identifying patients who may need further psychiatric evaluation and support. Although convenient, symptom screening tools are limited by variable sensitivity and specificity and therefore require healthcare professionals to remain vigilant for other mental health "red flags." Ultimately, understanding the connection between allergic disease and mental health empowers clinicians to both anticipate and serve the diverse physical and mental health needs of their patient populations.
Collapse
Affiliation(s)
| | | | - Navya Kartha
- Department of Pediatrics, Akron Children's Hospital, Akron, Ohio
| | | | - Aikaterini Anagnostou
- Department of Pediatrics, Division of Allergy and Immunology, Baylor College of Medicine, Houston, Texas
| | | | - Priya Bansal
- Asthma and Allergy Wellness Center, St. Charles, Ill; Division of Allergy and Immunology, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Don Bukstein
- Allergy, Asthma, and Sinus Center, Milwaukee, Wis
| | - Anna Nowak-Wegrzyn
- Department of Population Health, NYU Grossman School of Medicine, New York, NY; Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Juliette C Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH; Departments of Pediatrics and Psychiatry, Division of Child Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Sarah L Garnaat
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH; Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marcus S Shaker
- Departments of Medicine and Pediatrics, Geisel School of Medicine at Dartmouth, Hanover, NH; Dartmouth-Hitchcock Medical Center, Section of Allergy and Immunology, Lebanon, NH.
| |
Collapse
|
4
|
Stasiak A, Honkisz-Orzechowska E, Gajda Z, Wagner W, Popiołek-Barczyk K, Kuder KJ, Latacz G, Juszczak M, Woźniak K, Karcz T, Szczepańska K, Jóźwiak-Bębenista M, Kieć-Kononowicz K, Łażewska D. AR71, Histamine H 3 Receptor Ligand-In Vitro and In Vivo Evaluation (Anti-Inflammatory Activity, Metabolic Stability, Toxicity, and Analgesic Action). Int J Mol Sci 2024; 25:8035. [PMID: 39125607 PMCID: PMC11311998 DOI: 10.3390/ijms25158035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The future of therapy for neurodegenerative diseases (NDs) relies on new strategies targeting multiple pharmacological pathways. Our research led to obtaining the compound AR71 [(E)-3-(3,4,5-trimethoxyphenyl)-1-(4-(3-(piperidin-1-yl)propoxy)phenyl)prop-2-en-1-one], which has high affinity for human H3R (Ki = 24 nM) and selectivity towards histamine H1 and H4 receptors (Ki > 2500 nM), and showed anti-inflammatory activity in a model of lipopolysaccharide-induced inflammation in BV-2 cells. The presented tests confirmed its antagonist/inverse agonist activity profile and good metabolic stability while docking studies showed the binding mode to histamine H1, H3, and H4 receptors. In in vitro tests, cytotoxicity was evaluated at three cell lines (neuroblastoma, astrocytes, and human peripheral blood mononuclear cells), and a neuroprotective effect was observed in rotenone-induced toxicity. In vivo experiments in a mouse neuropathic pain model demonstrated the highest analgesic effects of AR71 at the dose of 20 mg/kg body weight. Additionally, AR71 showed antiproliferative activity in higher concentrations. These findings suggest the need for further evaluation of AR71's therapeutic potential in treating ND and CNS cancer using animal experimental models.
Collapse
Affiliation(s)
- Anna Stasiak
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Zbigniew Gajda
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Waldemar Wagner
- Department of Hormone Biochemistry, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology of Polish Academy of Sciences, 106 Lodowa Str., 93-232 Łódź, Poland
| | - Katarzyna Popiołek-Barczyk
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Michał Juszczak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 Str., 90-236 Łódź, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Katarzyna Szczepańska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 Str., 31-343 Kraków, Poland
| | - Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, Medical University of Lodz, Żeligowskiego 7/9 Str., 90-752 Łódź, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9 Str., 30-688 Kraków, Poland
| |
Collapse
|
5
|
Zhang BB, Ling XY, Shen QY, Zhang YX, Li QX, Xie ST, Li HZ, Zhang QP, Yung WH, Wang JJ, Ke Y, Zhang XY, Zhu JN. Suppression of excitatory synaptic transmission in the centrolateral amygdala via presynaptic histamine H3 heteroreceptors. J Physiol 2024. [PMID: 38953534 DOI: 10.1113/jp286392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Yu Ling
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing-Yi Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Zhou Z, An Q, Zhang W, Li Y, Zhang Q, Yan H. Histamine and receptors in neuroinflammation: Their roles on neurodegenerative diseases. Behav Brain Res 2024; 465:114964. [PMID: 38522596 DOI: 10.1016/j.bbr.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Histamine, an auto-reactive substance and mediator of inflammation, is synthesized from histidine through the action of histidine decarboxylase (HDC). It primarily acts on histamine receptors in the central nervous system (CNS). Increasing evidence suggests that histamine and its receptors play a crucial role in neuroinflammation, thereby modulating the pathology of neurodegenerative diseases. Recent studies have demonstrated that histamine regulates the phenotypic switching of microglia and astrocytes, inhibits the production of pro-inflammatory cytokines, and alleviates inflammatory responses. In the CNS, our research group has also found that histamine and its receptors are involved in regulating inflammatory responses and play a central role in ameliorating chronic neuroinflammation in neurodegenerative diseases. In this review, we will discuss the role of histamine and its receptors in neuroinflammation associated with neurodegenerative diseases, potentially providing a novel therapeutic target for the treatment of chronic neuroinflammation-related neurodegenerative diseases in clinical settings.
Collapse
Affiliation(s)
- Zhenyu Zhou
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qi An
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Wanying Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Yixin Li
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Qihang Zhang
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Haijing Yan
- Department of Pharmacology, College of Basic Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
7
|
de Souza Sampaio R, Brito Pereira Bezerra Martins AO, Santos da Silva LY, Torres Pessoa DR, Ribeiro-Filho J, de Araújo Delmondes G, Bezerra Felipe CF, Alencar de Menezes IR, Kerntopf MR. Topical Antiedematogenic Activity of the Essential Oil of Psidium brownianum Mart. (OEPB) in Murine Ear Edema Models. Chem Biodivers 2024; 21:e202400187. [PMID: 38429232 DOI: 10.1002/cbdv.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Psidium brownianum Mart is reported in the literature by antinociceptive and antioxidant activities, indicating that this species' secondary metabolites might be used to control inflammatory processes. The present study aimed to characterize the topical antiedematogenic activity of the essential oil of Psidium brownianum Mart. (OEPB) in ear edema models by different inflammatory agents. Female Swiss mice (25-35 g) and Wistar albino rats (200-300 g) were used throughout tests (n=6/group) on acute or chronic edema models induced by single and multiple topical applications. The OEPB is administered topically pure or at a concentration of 100 or 200 mg/mL. The antiedematogenic mechanism of OEPB was analyzed by administering capsaicin, arachidonic acid, histamine, and phenol at the best effective dose (200 mg/mL). The results showed a significant reduction of edema-induced single (28.87 %) and multiple (50.13 %) applications of croton oil compared to the negative control group. Regarding potential mechanisms of action, OEPB (200 mg/mL) inhibited the development of edema triggered by capsaicin (29.95 %), arachidonic acid (22.66 %), phenol (23.35 %), and histamine (75.46 %), suggesting an interference with the histaminergic pathway. These results indicate that OEPB presents a topical antiedematogenic effect in acute and chronic murine models, possibly interfering with inflammatory pathways triggered by mediators such as histamine.
Collapse
Affiliation(s)
- Renata de Souza Sampaio
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil
| | | | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil
| | - Dra Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, 60180-900, Eusébio, CE, Brazil
| | - Gyllyandeson de Araújo Delmondes
- Natural Products Pharmacology Laboratory, Department of Biological Chemistry, Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil
| | - Cícero Francisco Bezerra Felipe
- Molecular Biology Departament, Federal University of Paraiba (UFPB), Campus I - Jardim Cidade Universitária, 58059-900, João Pessoa, PB, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil
| | - Marta Regina Kerntopf
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), 63105-000, Crato, CE, Brazil
| |
Collapse
|
8
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Histamine H 1 Receptor-Mediated JNK Phosphorylation Is Regulated by G q Protein-Dependent but Arrestin-Independent Pathways. Int J Mol Sci 2024; 25:3395. [PMID: 38542369 PMCID: PMC10970263 DOI: 10.3390/ijms25063395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.
Collapse
Affiliation(s)
| | | | | | | | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
9
|
Bufka J, Sýkora J, Vaňková L, Gutová V, Kačerová Š, Daum O, Schwarz J. Impact of autoimmune gastritis on chronic urticaria in paediatric patients - pathophysiological point of views. Eur J Pediatr 2024; 183:515-522. [PMID: 37947925 PMCID: PMC10912447 DOI: 10.1007/s00431-023-05324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
We would like to provide an updated comprehensive perspective and identify the components linked to chronic spontaneous urticaria (CSU) without specific triggers in autoimmune atrophic gastritis (AAG). AAG is an organ-specific autoimmune disease that affects the corpus-fundus gastric mucosa. Although we lack a unified explanation of the underlying pathways, when considering all paediatric patients reported in the literature, alterations result in gastric neuroendocrine enterochromaffin-like (ECL) cell proliferation and paracrine release of histamine. Several mechanisms have been proposed for the pathogenesis of CSU, with much evidence pointing towards AAG and ECL cell responses, which may be implicated as potential factors contributing to CSU. The excessive production/release of histamine into the bloodstream could cause or trigger exacerbations of CSU in AAG, independent of Helicobacter pylori; thus, the release of histamine from ECL cells may be the primary modulator. CONCLUSION Considering the understanding of these interactions, recognising the respective roles of AAG in the pathogenesis of CSU may strongly impact the diagnostic workup and management of unexplained/refractory CSU and may inform future research and interventions in the paediatric population. WHAT IS KNOWN • Autoimmune atrophic gastritis is a chronic immune-mediated inflammatory disease characterised by the destruction of the oxyntic mucosa in the gastric body and fundus, mucosal atrophy, and metaplastic changes. • Autoimmune atrophic gastritis in paediatric patients is important because of the poor outcome and risk of malignancy and possibly underestimated entities primarily reported in single-case reports. WHAT IS NEW • Upper gastrointestinal inflammatory disorders, independent of H. pylori, have been implicated as potential inducing factors in the development of chronic spontaneous urticaria. • If a paediatric patient presents with symptoms such as anaemia, reduced vitamin B12 levels, recurrent urticaria with no other detectable aetiology, positive anti-parietal cell antibodies, and elevated gastrin levels, autoimmune atrophic gastritis should be considered a possible cause of chronic urticaria.
Collapse
Affiliation(s)
- J Bufka
- Department of Pediatrics, Faculty of Medicine in Pilsen, Faculty Hospital, Charles University in Prague, Alej Svobody 80, Pilsen, 323 00, Czech Republic.
| | - J Sýkora
- Department of Pediatrics, Faculty of Medicine in Pilsen, Faculty Hospital, Charles University in Prague, Alej Svobody 80, Pilsen, 323 00, Czech Republic
| | - L Vaňková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - V Gutová
- Department of Allergology and Immunology, Teaching Hospital in Pilsen, Pilsen, Czech Republic
| | - Š Kačerová
- Department of Allergology and Immunology, Teaching Hospital in Pilsen, Pilsen, Czech Republic
| | - O Daum
- Sikl's Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - J Schwarz
- Department of Pediatrics, Faculty of Medicine in Pilsen, Faculty Hospital, Charles University in Prague, Alej Svobody 80, Pilsen, 323 00, Czech Republic
| |
Collapse
|
10
|
Zingone F, Bertin L, Maniero D, Palo M, Lorenzon G, Barberio B, Ciacci C, Savarino EV. Myths and Facts about Food Intolerance: A Narrative Review. Nutrients 2023; 15:4969. [PMID: 38068827 PMCID: PMC10708184 DOI: 10.3390/nu15234969] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Most adverse reactions to food are patient self-reported and not based on validated tests but nevertheless lead to dietary restrictions, with patients believing that these restrictions will improve their symptoms and quality of life. We aimed to clarify the myths and reality of common food intolerances, giving clinicians a guide on diagnosing and treating these cases. We performed a narrative review of the latest evidence on the widespread food intolerances reported by our patients, giving indications on the clinical presentations, possible tests, and dietary suggestions, and underlining the myths and reality. While lactose intolerance and hereditary fructose intolerance are based on well-defined mechanisms and have validated diagnostic tests, non-coeliac gluten sensitivity and fermentable oligosaccharide, disaccharide, monosaccharide, and polyol (FODMAP) intolerance are mainly based on patients' reports. Others, like non-hereditary fructose, sorbitol, and histamine intolerance, still need more evidence and often cause unnecessary dietary restrictions. Finally, the main outcome of the present review is that the medical community should work to reduce the spread of unvalidated tests, the leading cause of the problematic management of our patients.
Collapse
Affiliation(s)
- Fabiana Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Luisa Bertin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Daria Maniero
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Michela Palo
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Greta Lorenzon
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
| | - Brigida Barberio
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| | - Carolina Ciacci
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Salerno, Italy;
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35124 Padua, Italy; (L.B.); (D.M.); (M.P.); (G.L.); (E.V.S.)
- Gastroenterology Unit, Azienda Ospedale—Università Padova, 35128 Padua, Italy;
| |
Collapse
|
11
|
Zheng Y, Zhao F, Hu Y, Yan F, Tian Y, Wang R, Huang Y, Zhong L, Luo Y, Ma Q. LC-MS/MS metabolomic profiling of the protective butylphthalide effect in cerebral ischemia/reperfusion mice. J Stroke Cerebrovasc Dis 2023; 32:107347. [PMID: 37716103 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVES This study was designed to investigate metabolic biomarker changes and related metabolic pathways of Butylphthalide (NBP) on cerebral ischemia/reperfusion. METHODS In this study, a mouse cerebral ischemia/reperfusion (I/R) model was prepared using the middle cerebral artery occlusion method, and neurobehavioral score and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining experiments were used to confirm the obvious NBP anti-cerebral ischemia effect. The protective effect of NBP in the mouse cerebral I/R model and its metabolic pathway and mechanism were investigated using mouse blood samples. RESULTS The metabolic profiles of mice in the I/R+NBP, I/R, and sham groups were significantly different. Under the condition that I/R vs. sham was downregulated and I/R + NBP vs. I/R was upregulated, 88 differential metabolites, including estradiol, ubiquinone-2, 2-oxoarginine, and L-histidine trimethylbetaine, were screened and identified. The related metabolic pathways involved arginine and proline metabolism, oxidative phosphorylation, ubiquitin and other terpenoid-quinone biosynthesis, and estrogen signaling. CONCLUSIONS Metabolomics was used to elucidate the NBP mechanism in cerebral ischemia treatment in mice, revealing synergistic NBP pharmacological characteristics with multiple targets.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Hu
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yue Tian
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China; Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
12
|
Weinstock LB, Nelson RM, Blitshteyn S. Neuropsychiatric Manifestations of Mast Cell Activation Syndrome and Response to Mast-Cell-Directed Treatment: A Case Series. J Pers Med 2023; 13:1562. [PMID: 38003876 PMCID: PMC10672129 DOI: 10.3390/jpm13111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Mast cell activation syndrome (MCAS) is an immune disease with an estimated prevalence of 17%. Mast cell chemical mediators lead to heterogeneous multisystemic inflammatory and allergic manifestations. This syndrome is associated with various neurologic and psychiatric disorders, including headache, dysautonomia, depression, generalized anxiety disorder, and many others. Although MCAS is common, it is rarely recognized, and thus, patients can suffer for decades. The syndrome is caused by aberrant mast cell reactivity due to the mutation of the controller gene. A case series is presented herein including eight patients with significant neuropsychiatric disorders that were often refractory to standard medical therapeutics. Five patients had depression, five had generalized anxiety disorder, and four had panic disorder. Other psychiatric disorders included attention-deficit hyperactivity disorder, obsessive compulsive disorder, phobias, and bipolar disorder. All eight patients were subsequently diagnosed with mast cell activation syndrome; six had comorbid autonomic disorders, the most common being postural orthostatic tachycardia syndrome; and four had hypermobile Ehlers-Danlos syndrome. All patients experienced significant improvements regarding neuropsychiatric and multisystemic symptoms after mast-cell-directed therapy. In neuropsychiatric patients who have systemic symptoms and syndromes, it is important to consider the presence of an underlying or comorbid MCAS.
Collapse
Affiliation(s)
- Leonard B. Weinstock
- Independent Researcher, Specialists in Gastroenterology, St. Louis, MO 63141, USA
| | - Renee M. Nelson
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (R.M.N.); (S.B.)
| | - Svetlana Blitshteyn
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (R.M.N.); (S.B.)
- Dysautonomia Clinic, Williamsville, NY 14221, USA
| |
Collapse
|
13
|
Blasco-Fontecilla H. Is Histamine and Not Acetylcholine the Missing Link between ADHD and Allergies? Speer Allergic Tension Fatigue Syndrome Re-Visited. J Clin Med 2023; 12:5350. [PMID: 37629392 PMCID: PMC10455974 DOI: 10.3390/jcm12165350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Speer allergic tension-fatigue syndrome (SATFS) is a classic allergy syndrome characterized by allergy-like symptoms, muscle tension, headaches, chronic fatigue, and other particular behaviors that were initially described in the fifties. The particular behaviors displayed include symptoms such as hyperkinesis, hyperesthesia (i.e., insomnia), restlessness, and distractibility, among others. Interestingly, these symptoms are very similar to descriptions of attention deficit hyperactivity disorder (ADHD), the most prevalent neurodevelopmental disorder worldwide, which is characterized by inattention, hyperactivity, and impulsivity. The clinical description of SATFS precedes the nomination of ADHD in 1960 by Stella Chess. In this conceptual paper, we stress that there is a gap in the research on the relationship between ADHD and allergic pathologies. The hypotheses of this conceptual paper are (1) SATFS is probably one of the first and best historical descriptions of ADHD alongside a common comorbidity (allergy) displayed by these patients; (2) SATFS (ADHD) is a systemic disease that includes both somatic and behavioral manifestations that may influence each other in a bidirectional manner; (3) The role of neuroinflammation and histamine is key for understanding the pathophysiology of ADHD and its frequent somatic comorbidities; (4) The deficiency of the diamine oxidase (DAO) enzyme, which metabolizes histamine extracellularly, may play a role in the pathophysiology of ADHD. Decreased DAO activity may lead to an accumulation of histamine, which could contribute to core ADHD symptoms and comorbid disorders. Further empirical studies are needed to confirm our hypotheses.
Collapse
Affiliation(s)
- Hilario Blasco-Fontecilla
- Department of Psychiatry, School of Medicine, Autonoma University of Madrid, 28049 Madrid, Spain; ; Tel.: +34-911916012
- Department of Psychiatry, Puerta de Hierro University Hospital, Health Research Institute Puerta de Hierro-Segovia de Arana (IDIPHISA), Majadahonda, 28222 Madrid, Spain
- ITA Mental Health, Korian, 28043 Madrid, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), 28029 Madrid, Spain
| |
Collapse
|
14
|
Pałgan K. Mast Cells and Basophils in IgE-Independent Anaphylaxis. Int J Mol Sci 2023; 24:12802. [PMID: 37628983 PMCID: PMC10454702 DOI: 10.3390/ijms241612802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Anaphylaxis is a life-threatening or even fatal systemic hypersensitivity reaction. The incidence of anaphylaxis has risen at an alarming rate in the past decades in the majority of countries. Generally, the most common causes of severe or fatal anaphylaxis are medication, foods and Hymenoptera venoms. Anaphylactic reactions are characterized by the activation of mast cells and basophils and the release of mediators. These cells express a variety of receptors that enable them to respond to a wide range of stimulants. Most studies of anaphylaxis focus on IgE-dependent reactions. The mast cell has long been regarded as the main effector cell involved in IgE-mediated anaphylaxis. This paper reviews IgE-independent anaphylaxis, with special emphasis on mast cells, basophils, anaphylactic mediators, risk factors, triggers, and management.
Collapse
Affiliation(s)
- Krzysztof Pałgan
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
15
|
Kong L, Domarecka E, Szczepek AJ. Histamine and Its Receptors in the Mammalian Inner Ear: A Scoping Review. Brain Sci 2023; 13:1101. [PMID: 37509031 PMCID: PMC10376984 DOI: 10.3390/brainsci13071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Histamine is a widely distributed biogenic amine with multiple biological functions mediated by specific receptors that determine the local effects of histamine. This review aims to summarize the published findings on the expression and functional roles of histamine receptors in the inner ear and to identify potential research hotspots and gaps. METHODS A search of the electronic databases PubMed, Web of Science, and OVID EMBASE was performed using the keywords histamine, cochlea*, and inner ear. Of the 181 studies identified, 18 eligible publications were included in the full-text analysis. RESULTS All four types of histamine receptors were identified in the mammalian inner ear. The functional studies of histamine in the inner ear were mainly in vitro. Clinical evidence suggests that histamine and its receptors may play a role in Ménière's disease, but the exact mechanism is not fully understood. The effects of histamine on hearing development remain unclear. CONCLUSIONS Existing studies have successfully determined the expression of all four histamine receptors in the mammalian inner ear. However, further functional studies are needed to explore the potential of histamine receptors as targets for the treatment of hearing and balance disorders.
Collapse
Affiliation(s)
- Lingyi Kong
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Agnieszka J Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
| |
Collapse
|
16
|
Gordon JM, Santangelo RG, González-Morales MA, Menechella M, Schal C, DeVries ZC. Spatial distribution of histamine in bed bug-infested homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163180. [PMID: 37001661 PMCID: PMC10219852 DOI: 10.1016/j.scitotenv.2023.163180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023]
Abstract
Histamine is a component of the bed bug aggregation pheromone. It was recently identified as an environmental contaminant in homes with active bed bug infestations, posing a potential health risk to humans via skin contact or inhalation. It remains unclear how histamine is distributed in homes and if histamine can become airborne. In the present study, histamine levels in household dust were quantified from multiple locations within bed bug infested and uninfested apartments. Bed bug population levels were quantified using both traps and visual counts. The amount of histamine detected varied significantly with respect to sampling location, with the highest concentration of histamine quantified from bedding material. Infestation severity did not have a significant effect on histamine quantified at any location. Our results indicate that the bedroom should be the primary focus of histamine mitigation efforts, although histamine can be found throughout the home. Histamine quantified from homes without active bed bug infestations suggests that histamine from previous infestations can persist following pest eradication. These findings highlight the importance of histamine as a potential insect allergen and will be important for the development of targeted mitigation strategies of bed bug histamine.
Collapse
Affiliation(s)
- Johnalyn M Gordon
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Maria A González-Morales
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA; Defense Centers for Public Health-Aberdeen, Entomology Science Division, Pesticide Use and Resistance Monitoring Branch, Aberdeen Proving Ground, MD 21010, USA
| | - Mark Menechella
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Zachary C DeVries
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Michinaga S, Nagata A, Ogami R, Ogawa Y, Hishinuma S. Differential regulation of histamine H 1 receptor-mediated ERK phosphorylation by G q proteins and arrestins. Biochem Pharmacol 2023; 213:115595. [PMID: 37201878 DOI: 10.1016/j.bcp.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Gq protein-coupled histamine H1 receptors play crucial roles in allergic and inflammatory reactions, in which the phosphorylation of extracellular signal-regulated kinase (ERK) appears to mediate the production of inflammatory cytokines. ERK phosphorylation is regulated by G protein- and arrestin-mediated signal transduction pathways. Here, we aimed to explore how H1 receptor-mediated processes of ERK phosphorylation might be differentially regulated by Gq proteins and arrestins. For this purpose, we evaluated the regulatory mechanism(s) of H1 receptor-mediated ERK phosphorylation in Chinese hamster ovary cells expressing Gq protein- and arrestin-biased mutants of human H1 receptors, S487TR and S487A, in which the Ser487 residue in the C-terminal was truncated and mutated to alanine, respectively. Immunoblotting analysis indicated that histamine-induced ERK phosphorylation was prompt and transient in cells expressing Gq protein-biased S487TR, whereas it was slow and sustained in cells expressing arrestin-biased S487A. Inhibitors of Gq proteins (YM-254890) and protein kinase C (PKC) (GF109203X), and an intracellular Ca2+ chelator (BAPTA-AM) suppressed histamine-induced ERK phosphorylation in cells expressing S487TR, but not those expressing S487A. Conversely, inhibitors of G protein-coupled receptor kinases (GRK2/3) (cmpd101), β-arrestin2 (β-arrestin2 siRNA), clathrin (hypertonic sucrose), Raf (LY3009120), and MEK (U0126) suppressed histamine-induced ERK phosphorylation in cells expressing S487A, but not those expressing S487TR. These results suggest that H1 receptor-mediated ERK phosphorylation might be differentially regulated by the Gq protein/Ca2+/PKC and GRK/arrestin/clathrin/Raf/MEK pathways to potentially determine the early and late phases of histamine-induced allergic and inflammatory responses, respectively.
Collapse
Affiliation(s)
- Shotaro Michinaga
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ayaka Nagata
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Ryosuke Ogami
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
18
|
Dvornikova KA, Platonova ON, Bystrova EY. Inflammatory Bowel Disease: Crosstalk between Histamine, Immunity, and Disease. Int J Mol Sci 2023; 24:9937. [PMID: 37373085 DOI: 10.3390/ijms24129937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is increasingly recognized as a serious, worldwide public health concern. It is generally acknowledged that a variety of factors play a role in the pathogenesis of this group of chronic inflammatory diseases. The diversity of molecular actors involved in IBD does not allow us to fully assess the causal relationships existing in such interactions. Given the high immunomodulatory activity of histamine and the complex immune-mediated nature of inflammatory bowel disease, the role of histamine and its receptors in the gut may be significant. This paper has been prepared to provide a schematic of the most important and possible molecular signaling pathways related to histamine and its receptors and to assess their relevance for the development of therapeutic approaches.
Collapse
Affiliation(s)
| | - Olga N Platonova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| | - Elena Y Bystrova
- I.P. Pavlov Institute of Physiology RAS, St. Petersburg 199034, Russia
| |
Collapse
|
19
|
Perez MG, Tanasie G, Neree AT, Suarez NG, Lafortune C, Paquin J, Marcocci L, Pietrangeli P, Annabi B, Mateescu MA. P19-derived neuronal cells express H 1, H 2, and H 3 histamine receptors: a biopharmaceutical approach to evaluate antihistamine agents. Amino Acids 2023:10.1007/s00726-023-03273-6. [PMID: 37171719 DOI: 10.1007/s00726-023-03273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Histamine is a biogenic amine implicated in various biological and pathological processes. Convenient cellular models are needed to screen and develop new antihistamine agents. This report aimed to characterize the response of neurons differentiated from mouse P19 embryonal carcinoma cells to histamine treatment, and to investigate the modulation of this response by antihistamine drugs, vegetal diamine oxidase, and catalase. The exposure of P19 neurons to histamine reduced cell viability to 65% maximally. This effect involves specific histamine receptors, since it was prevented by treatment with desloratadine and cimetidine, respectively, H1 and H2 antagonists, but not by the H3 antagonist ciproxifan. RT-PCR analysis showed that P19 neurons express H1 and H2 receptors, and the H3 receptor, although it seemed not involved in the histamine effect on these cells. The H4 receptor was not expressed. H1 and H2 antagonists as well as vegetal diamine oxidase diminished the intracellular Ca2+ mobilization triggered by histamine. The treatment with vegetal diamine oxidase or catalase protected against mortality and a significant reduction of H2O2 level, generated from the cells under the histamine action, was found upon treatments with desloratadine, cimetidine, vegetal diamine oxidase, or catalase. Overall, the results indicate the expression of functional histamine receptors and open the possibility of using P19 neurons as model system to study the roles of histamine and related drugs in neuronal pathogenesis. This model is less expensive to operate and can be easily implemented by current laboratories of analysis and by Contract Research Organizations.
Collapse
Affiliation(s)
- Mariela Gomez Perez
- Department of Chemistry and CERMO FC Center, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
| | - Georgiana Tanasie
- Department of Chemistry and CERMO FC Center, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
| | - Armelle Tchoumi Neree
- Department of Chemistry and CERMO FC Center, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
| | - Narjara Gonzalez Suarez
- Department of Chemistry and CERMO FC Center, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
- Chaire en Prévention et Traitement du Cancer, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
| | - Clara Lafortune
- Department of Chemistry and CERMO FC Center, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
| | - Joanne Paquin
- Department of Chemistry and CERMO FC Center, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
| | - Lucia Marcocci
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Paola Pietrangeli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Borhane Annabi
- Department of Chemistry and CERMO FC Center, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
- Chaire en Prévention et Traitement du Cancer, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry and CERMO FC Center, Université du Québec à Montréal, C. P. 8888, Montréal, QC, H3C 3P8, Canada.
| |
Collapse
|
20
|
Peng JY, Qi ZX, Yan Q, Fan XJ, Shen KL, Huang HW, Lu JH, Wang XQ, Fang XX, Mao L, Ni J, Chen L, Zhuang QX. Ameliorating parkinsonian motor dysfunction by targeting histamine receptors in entopeduncular nucleus-thalamus circuitry. Proc Natl Acad Sci U S A 2023; 120:e2216247120. [PMID: 37068253 PMCID: PMC10151461 DOI: 10.1073/pnas.2216247120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/07/2023] [Indexed: 04/19/2023] Open
Abstract
In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.
Collapse
Affiliation(s)
- Jian-Ya Peng
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai200030, China
- National Center for Neurological Disorders, Shanghai200030, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200030, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai200030, China
| | - Qi Yan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| | - Xiu-Juan Fan
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| | - Kang-Li Shen
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| | - Hui-Wei Huang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| | - Jian-Hua Lu
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| | - Xiao-Qin Wang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| | - Xiao-Xia Fang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong226019, China
| | - Jianguang Ni
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai200030, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai200030, China
- National Center for Neurological Disorders, Shanghai200030, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai200030, China
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai200030, China
| | - Qian-Xing Zhuang
- Department of Physiology, School of Medicine, Nantong University, Nantong, Jiangsu226001, China
| |
Collapse
|
21
|
Hua Y, Song M, Guo Q, Luo Y, Deng X, Huang Y. Antiseizure Properties of Histamine H 3 Receptor Antagonists Belonging 3,4-Dihydroquinolin-2(1 H)-Ones. Molecules 2023; 28:molecules28083408. [PMID: 37110645 PMCID: PMC10144301 DOI: 10.3390/molecules28083408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
H3R is becoming an attractive and promising target for epilepsy treatment as well as the discovery of antiepileptics. In this work, a series of 6-aminoalkoxy-3,4-dihydroquinolin-2(1H)-ones was prepared to screen their H3R antagonistic activities and antiseizure effects. The majority of the target compounds displayed a potent H3R antagonistic activity. Among them, compounds 2a, 2c, 2h, and 4a showed submicromolar H3R antagonistic activity with an IC50 of 0.52, 0.47, 0.12, and 0.37 μM, respectively. The maximal electroshock seizure (MES) model screened out three compounds (2h, 4a, and 4b) with antiseizure activity. Meanwhile, the pentylenetetrazole (PTZ)-induced seizure test gave a result that no compound can resist the seizures induced by PTZ. Additionally, the anti-MES action of compound 4a fully vanished when it was administrated combined with an H3R agonist (RAMH). These results showed that the antiseizure role of compound 4a might be achieved by antagonizing the H3R receptor. The molecular docking of 2h, 4a, and PIT with the H3R protein predicted their possible binding patterns and gave a presentation that 2h, 4a, and PIT had a similar binding model with H3R.
Collapse
Affiliation(s)
- Yi Hua
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Mingxia Song
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Qiaoyue Guo
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Yiqin Luo
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Xianqing Deng
- Health Science Center, Jinggangshan University, Ji'an 343009, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
22
|
Buzoianu AD, Sharma A, Muresanu DF, Feng L, Huang H, Chen L, Tian ZR, Nozari A, Lafuente JV, Wiklund L, Sharma HS. Nanodelivery of Histamine H3/H4 Receptor Modulators BF-2649 and Clobenpropit with Antibodies to Amyloid Beta Peptide in Combination with Alpha Synuclein Reduces Brain Pathology in Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2023; 32:55-96. [PMID: 37480459 DOI: 10.1007/978-3-031-32997-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AβP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AβP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AβP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AβP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.
Collapse
Affiliation(s)
- Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lin Chen
- Department of Neurosurgery, Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Hakl R, Litzman J. Histamine intolerance. VNITRNI LEKARSTVI 2023; 69:37-40. [PMID: 36931880 DOI: 10.36290/vnl.2023.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Histamine intolerance (HIT) is a non-immunological disorder associated with an impaired ability to metabolize ingested histamine. Manifestation of HIT includes gastrointestinal and non-gastrointestinal symptoms. Clinical symptoms of HIT are non-specific and can imitate different diseases such as allergies, food intolerance, mastocytosis and other. The diagnosis of HIT is difficult. There are several candidate tests to detect DAO insufficiency, but their informative value is questionable. Currently, a positive clinical effect of a low-histamine diet is the most important for establishing the diagnosis. Equally in the treatment, a low-histamine diet is the most crucial approach. Other therapeutic options such as DAO supplementation treatment with antihistamines or probiotics are considered as complementary treatments. Our article provides a review on histamine intolerance, focusing on etiology and the diagnostic and treatment possibilities.
Collapse
|
24
|
The large part German medicine has played in the development of experimental pharmacology in Japan. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:35-42. [PMID: 36282300 DOI: 10.1007/s00210-022-02308-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 01/29/2023]
Abstract
The history of hitherto existing pharmacology in Japan presented here is authored in commemoration of the 150th anniversary of Naunyn-Schmiedeberg's Archives of Pharmacology. After the publication of the new book of anatomy "Anatomische Tabellen" translated into Japanese in 1774, the foundation of understanding the medical science was gradually formed in Japan under seclusion policy, and, since the Meiji Restoration of 1868, the modernization of Japanese medicine was rapidly fostered on the basis of German medicine. Thus, the Japanese government officially adopted German medicine, and the philosophy and practice of German medical schools were incorporated. Most of the medical texts used in Japan were of German origins, often in Dutch translations, and many Japanese physicians and medical researchers studied abroad in Germany. The start of experimental pharmacology in Japan was also made up by Japanese disciples of Oswald Schmiedeberg, who was the one of founders of the Archives in 1873. Additionally, it was customary for professor candidates in charge of pharmacology in medical faculties in Japan to go to Germany and study pharmacology. Through such historical circumstances, the Japanese Pharmacology Society has been established to fulfill the responsibility for contributing internationally to world-class research achievements in the field of medical sciences by supplying numerous talented pharmacologists. During the course of the development of experimental pharmacology in Japan, the Archives has provided an excellent stage for many Japanese pharmacologists to publish their research outcomes to proliferate them internationally. Without German medicine influence, Japanese pharmacology would not have been what it is today.
Collapse
|
25
|
Berger SN, Baumberger B, Samaranayake S, Hersey M, Mena S, Bain I, Duncan W, Reed MC, Nijhout HF, Best J, Hashemi P. An In Vivo Definition of Brain Histamine Dynamics Reveals Critical Neuromodulatory Roles for This Elusive Messenger. Int J Mol Sci 2022; 23:14862. [PMID: 36499189 PMCID: PMC9738190 DOI: 10.3390/ijms232314862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.
Collapse
Affiliation(s)
- Shane N. Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | | | - Srimal Samaranayake
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Physiology, Pharmacology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Ian Bain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - William Duncan
- Department of Mathematics, Montana State University, Bozeman, MT 59717, USA
| | - Michael C. Reed
- Department of Mathematics, Duke University, Durham, NC 27710, USA
| | | | - Janet Best
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
26
|
Peng X, Yang L, Liu Z, Lou S, Mei S, Li M, Chen Z, Zhang H. Structural basis for recognition of antihistamine drug by human histamine receptor. Nat Commun 2022; 13:6105. [PMID: 36243875 PMCID: PMC9569329 DOI: 10.1038/s41467-022-33880-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
The histamine receptors belong to the G protein-coupled receptor (GPCR) superfamily, and play important roles in the regulation of histamine and other neurotransmitters in the central nervous system, as potential targets for the treatment of neurologic and psychiatric disorders. Here we report the crystal structure of human histamine receptor H3R bound to an antagonist PF-03654746 at 2.6 Å resolution. Combined with the computational and functional assays, our structure reveals binding modes of the antagonist and allosteric cholesterol. Molecular dynamic simulations and molecular docking of different antihistamines further elucidate the conserved ligand-binding modes. These findings are therefore expected to facilitate the structure-based design of novel antihistamines.
Collapse
Affiliation(s)
- Xueqian Peng
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Linlin Yang
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Zixuan Liu
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Siyi Lou
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Shiliu Mei
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China
| | - Meiling Li
- grid.207374.50000 0001 2189 3846Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, 450052 Zhengzhou, Henan China
| | - Zhong Chen
- grid.268505.c0000 0000 8744 8924Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang China
| | - Haitao Zhang
- grid.13402.340000 0004 1759 700XHangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang China ,grid.13402.340000 0004 1759 700XThe Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| |
Collapse
|
27
|
Berra-Romani R, Vargaz-Guadarrama A, Sánchez-Gómez J, Coyotl-Santiago N, Hernández-Arambide E, Avelino-Cruz JE, García-Carrasco M, Savio M, Pellavio G, Laforenza U, Lagunas-Martínez A, Moccia F. Histamine activates an intracellular Ca 2+ signal in normal human lung fibroblast WI-38 cells. Front Cell Dev Biol 2022; 10:991659. [PMID: 36120576 PMCID: PMC9478493 DOI: 10.3389/fcell.2022.991659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Histamine is an inflammatory mediator that can be released from mast cells to induce airway remodeling and cause persistent airflow limitation in asthma. In addition to stimulating airway smooth muscle cell constriction and hyperplasia, histamine promotes pulmonary remodeling by inducing fibroblast proliferation, contraction, and migration. It has long been known that histamine receptor 1 (H1R) mediates the effects of histamine on human pulmonary fibroblasts through an increase in intracellular Ca2+ concentration ([Ca2+]i), but the underlying signaling mechanisms are still unknown. Herein, we exploited single-cell Ca2+ imaging to assess the signal transduction pathways whereby histamine generates intracellular Ca2+ signals in the human fetal lung fibroblast cell line, WI-38. WI-38 fibroblasts were loaded with the Ca2+-sensitive fluorophore, FURA-2/AM, and challenged with histamine in the absence and presence of specific pharmacological inhibitors to dissect the Ca2+ release/entry pathways responsible for the onset of the Ca2+ response. Histamine elicited complex intracellular Ca2+ signatures in WI-38 fibroblasts throughout a concentration range spanning between 1 µM and 1 mM. In accord, the Ca2+ response to histamine adopted four main temporal patterns, which were, respectively, termed peak, peak-oscillations, peak-plateau-oscillations, and peak-plateau. Histamine-evoked intracellular Ca2+ signals were abolished by pyrilamine, which selectively blocks H1R, and significantly reduced by ranitidine, which selectively inhibits H2R. Conversely, the pharmacological blockade of H3R and H4R did not affect the complex increase in [Ca2+]i evoked by histamine in WI-38 fibroblasts. In agreement with these findings, histamine-induced intracellular Ca2+ signals were initiated by intracellular Ca2+ release from the endoplasmic reticulum through inositol-1,4,5-trisphosphate (InsP3) receptors (InsP3R) and sustained by store-operated Ca2+ channels (SOCs). Conversely, L-type voltage-operated Ca2+ channels did not support histamine-induced extracellular Ca2+ entry. A preliminary transcriptomic analysis confirmed that WI-38 human lung fibroblasts express all the three InsP3R isoforms as well as STIM2 and Orai3, which represent the molecular components of SOCs. The pharmacological blockade of InsP3 and SOC, therefore, could represent an alternative strategy to prevent the pernicious effects of histamine on lung fibroblasts in asthmatic patients.
Collapse
Affiliation(s)
- Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Ajelet Vargaz-Guadarrama
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Josué Sánchez-Gómez
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Nayeli Coyotl-Santiago
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Efraín Hernández-Arambide
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - José Everardo Avelino-Cruz
- Laboratory of Molecular Cardiology, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Mario García-Carrasco
- Department of Immunology, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Monica Savio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Alfredo Lagunas-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Morelos, México
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| |
Collapse
|
28
|
Zheng Y, Wágner G, Hauwert N, Ma X, Vischer HF, Leurs R. New Chemical Biology Tools for the Histamine Receptor Family. Curr Top Behav Neurosci 2022; 59:3-28. [PMID: 35851442 DOI: 10.1007/7854_2022_360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The histamine research community has in the last decade been very active and generated a number of exciting new chemical biology tools for the study of histamine receptors, their ligands, and their pharmacology. In this paper we describe the development of histamine receptor structural biology, the use of receptor conformational biosensors, and the development of new ligands for covalent or fluorescent labeling or for photopharmacological approaches (photocaging and photoswitching). These new tools allow new approaches to study histamine receptors and hopefully will lead to better insights in the molecular aspects of histamine receptors and their ligands.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Gábor Wágner
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Niels Hauwert
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Xiaoyuan Ma
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Henry F Vischer
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Exploration of Ziziphi Spinosae Semen in Treating Insomnia Based on Network Pharmacology Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9888607. [PMID: 34745308 PMCID: PMC8568550 DOI: 10.1155/2021/9888607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Ziziphi Spinosae Semen (ZSS) is a common natural medicine used to treat insomnia, and to show clearly its method of action, we managed and did an in-depth discussion. Network pharmacology research is very suitable for the analysis of multiple components, multiple targets, and multiple pathways of Traditional Chinese Medicine (TCM). According to the relevant theory, we first carefully collected and screened the active ingredients in ZSS and received 11 active ingredients that may work. The targets going along with these active components were also strongly related to insomnia targets, 108 common genes were identified, and drug-compound-gene symbol-disease visualization network and protein-protein interaction network were constructed. Forty-eight core genes were identified by PPI analysis and subjected to GO functional analysis with KEGG pathway analysis. The results of GO analysis pointed that there were 998 gene ontology items for the treatment of insomnia, including terms of 892 biological processes, 47 cellular components, and 59 molecular functions. It mainly shows the coupling effect and transport mode of some proteins in the biological pathways of ZSS in the treatment of insomnia and explains the mechanism of action through the connection between the target and the cell biomembrane. KEGG enrichment analyzed 19 signaling pathways, which were collectively classified into seven categories. We have identified the potential pathways of ZSS against insomnia and obtained the regulatory relationship between core genes and pathways and know that the same target can be regulated by multiple components at the same time. The results of molecular docking also prove this conclusion. We sought to provide a new analytical approach to explore TCM treatments for diseases using network pharmacology analysis tools.
Collapse
|
30
|
Flores-Clemente C, Nicolás-Vázquez MI, Mera Jiménez E, Hernández-Rodríguez M. Inhibition of Astrocytic Histamine N-Methyltransferase as a Possible Target for the Treatment of Alzheimer's Disease. Biomolecules 2021; 11:1408. [PMID: 34680041 PMCID: PMC8533269 DOI: 10.3390/biom11101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) represents the principal cause of dementia among the elderly. Great efforts have been established to understand the physiopathology of AD. Changes in neurotransmitter systems in patients with AD, including cholinergic, GABAergic, serotoninergic, noradrenergic, and histaminergic changes have been reported. Interestingly, changes in the histaminergic system have been related to cognitive impairment in AD patients. The principal pathological changes in the brains of AD patients, related to the histaminergic system, are neurofibrillary degeneration of the tuberomammillary nucleus, the main source of histamine in the brain, low histamine levels, and altered signaling of its receptors. The increase of histamine levels can be achieved by inhibiting its degrading enzyme, histamine N-methyltransferase (HNMT), a cytoplasmatic enzyme located in astrocytes. Thus, increasing histamine levels could be employed in AD patients as co-therapy due to their effects on cognitive functions, neuroplasticity, neuronal survival, neurogenesis, and the degradation of amyloid beta (Aβ) peptides. In this sense, the evaluation of the impact of HNMT inhibitors on animal models of AD would be interesting, consequently highlighting its relevance.
Collapse
Affiliation(s)
- Cecilia Flores-Clemente
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.F.-C.); (E.M.J.)
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán Campo 1, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.F.-C.); (E.M.J.)
| | - Maricarmen Hernández-Rodríguez
- Laboratorio de Cultivo Celular, Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; (C.F.-C.); (E.M.J.)
| |
Collapse
|