1
|
Petersson M, Höybye C. Is Oxytocin a Contributor to Behavioral and Metabolic Features in Prader-Willi Syndrome? Curr Issues Mol Biol 2024; 46:8767-8779. [PMID: 39194735 DOI: 10.3390/cimb46080518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
Prader-Willi Syndrome (PWS) is a rare genetic disorder typically characterized by decreased social interaction, hyperphagia, poor behavioral control and temper tantrums, together with a high risk of morbid obesity unless food intake is controlled. The genetic defects that cause PWS include paternal 15q deletion (estimated in 60% of cases), chromosome 15 maternal uniparental disomy (UPD) (estimated in 35% of cases) and imprinting defects and translocations. Several studies indicate an oxytocin deficiency in PWS. Oxytocin is a hypothalamic nonapeptide with receptors located in the brain and in various other tissues in the body. It acts as a neuropeptide in several brain areas of great importance for behavioral and metabolic effects, as well as a neurohypophyseal hormone released into the circulation. Oxytocin in both rats and humans has strong and long-lasting behavioral and metabolic effects. Thus, an oxytocin deficiency might be involved in several of the behavioral and metabolic symptoms characterizing PWS. Treatment with oxytocin has, in some studies, shown improvement in psycho-social behavior and hyperphagia in individuals with PWS. This review focus on the behavioral and metabolic effects of oxytocin, the symptoms of a potential oxytocin deficiency in PWS and the effects of oxytocin treatment.
Collapse
Affiliation(s)
- Maria Petersson
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Charlotte Höybye
- Department of Endocrinology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
| |
Collapse
|
2
|
Camerino C. The Pivotal Role of Oxytocin's Mechanism of Thermoregulation in Prader-Willi Syndrome, Schaaf-Yang Syndrome, and Autism Spectrum Disorder. Int J Mol Sci 2024; 25:2066. [PMID: 38396741 PMCID: PMC10888953 DOI: 10.3390/ijms25042066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Oxytocin (Oxt) regulates thermogenesis, and altered thermoregulation results in Prader-Willi syndrome (PWS), Schaaf-Yang syndrome (SYS), and Autism spectrum disorder (ASD). PWS is a genetic disorder caused by the deletion of the paternal allele of 15q11-q13, the maternal uniparental disomy of chromosome 15, or defects in the imprinting center of chromosome 15. PWS is characterized by hyperphagia, obesity, low skeletal muscle tone, and autism spectrum disorder (ASD). Oxt also increases muscle tonicity and decreases proteolysis while PWS infants are hypotonic and require assisted feeding in early infancy. This evidence inspired us to merge the results of almost 20 years of studies and formulate a new hypothesis according to which the disruption of Oxt's mechanism of thermoregulation manifests in PWS, SYS, and ASD through thermosensory abnormalities and skeletal muscle tone. This review will integrate the current literature with new updates on PWS, SYS, and ASD and the recent discoveries on Oxt's regulation of thermogenesis to advance the knowledge on these diseases.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Precision and Regenerative Medicine, School of Medicine, University of Bari Aldo Moro, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
4
|
Eggermann T, Monk D, de Nanclares GP, Kagami M, Giabicani E, Riccio A, Tümer Z, Kalish JM, Tauber M, Duis J, Weksberg R, Maher ER, Begemann M, Elbracht M. Imprinting disorders. Nat Rev Dis Primers 2023; 9:33. [PMID: 37386011 DOI: 10.1038/s41572-023-00443-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Imprinting disorders (ImpDis) are congenital conditions that are characterized by disturbances of genomic imprinting. The most common individual ImpDis are Prader-Willi syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome. Individual ImpDis have similar clinical features, such as growth disturbances and developmental delay, but the disorders are heterogeneous and the key clinical manifestations are often non-specific, rendering diagnosis difficult. Four types of genomic and imprinting defect (ImpDef) affecting differentially methylated regions (DMRs) can cause ImpDis. These defects affect the monoallelic and parent-of-origin-specific expression of imprinted genes. The regulation within DMRs as well as their functional consequences are mainly unknown, but functional cross-talk between imprinted genes and functional pathways has been identified, giving insight into the pathophysiology of ImpDefs. Treatment of ImpDis is symptomatic. Targeted therapies are lacking owing to the rarity of these disorders; however, personalized treatments are in development. Understanding the underlying mechanisms of ImpDis, and improving diagnosis and treatment of these disorders, requires a multidisciplinary approach with input from patient representatives.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - David Monk
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d'Empreinte, Paris, France
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, Caserta, Italy
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Departments of Pediatrics and Genetics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maithé Tauber
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Jessica Duis
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Paediatrics and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Nicoară DM, Scutca AC, Mang N, Juganaru I, Munteanu AI, Vitan L, Mărginean O. Central precocious puberty in Prader-Willi syndrome: a narrative review. Front Endocrinol (Lausanne) 2023; 14:1150323. [PMID: 37251677 PMCID: PMC10214499 DOI: 10.3389/fendo.2023.1150323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Prader-Willi syndrome (PWS, OMIM176270) is a rare genetic disorder with recognizable dysmorphic features and multisystemic consequences such as endocrine, neurocognitive and metabolic ones. Although most patients with Prader-Willi syndrome exhibit hypogonadotropic hypogonadism, there is variability regarding sexual maturation, with precocious puberty occurring in rare cases. Our aim is to elaborate a thorough review of Prader-Willi patients with central precocious puberty, in order to raise awareness of such cases and to enhance our knowledge regarding the diagnosis and prompt treatment of this particular PWS patients.
Collapse
Affiliation(s)
- Delia-Maria Nicoară
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| | - Alexandra-Cristina Scutca
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, Timisoara, Romania
| | - Niculina Mang
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| | - Iulius Juganaru
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, Timisoara, Romania
- Research Center in Pediatrics - Disturbances of Growth and Development in Children – BELIVE, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| | - Andrei-Ioan Munteanu
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, Timisoara, Romania
| | - Luiza Vitan
- Department of Endocrinology, Railway Hospital 2 Bucharest, Timisoara, Romania
| | - Otilia Mărginean
- Department of Pediatrics, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
- Department of Pediatrics I, Children’s Emergency Hospital “Louis Turcanu”, Timisoara, Romania
- Research Center in Pediatrics - Disturbances of Growth and Development in Children – BELIVE, University of Medicine and Pharmacy “Victor Babes”, Timisoara, Romania
| |
Collapse
|
6
|
Dubern B, Faccioli N, Poitou C, Clément K. Novel therapeutics in rare genetic obesities: A narrative review. Pharmacol Res 2023; 191:106763. [PMID: 37037398 DOI: 10.1016/j.phrs.2023.106763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
The better understanding of the molecular causes of rare genetic obesities and its associated phenotype involving the hypothalamus allows today to consider innovative therapeutics focused on hunger control. Several new pharmacological molecules benefit patients with monogenic or syndromic obesity. They are likely to be among the treatment options for these patients in the coming years, helping clinicians and patients prevent rapid weight progression and eventually limit bariatric surgery procedures, which is less effective in these patients. Their positioning in the management of such patients will be needed to be well defined to develop precision medicine in genetic forms of obesity.
Collapse
Affiliation(s)
- Beatrice Dubern
- Assistance Publique Hôpitaux de Paris, Trousseau Hospital, Pediatric Nutrition and Gastroenterology Department, French Reference Center for Prader-Willi Syndrome and other rare obesities (PRADORT), Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France.
| | - Nathan Faccioli
- Assistance Publique Hôpitaux de Paris, Trousseau Hospital, Pediatric Nutrition and Gastroenterology Department, French Reference Center for Prader-Willi Syndrome and other rare obesities (PRADORT), Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| | - Christine Poitou
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| | - Karine Clément
- Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France; Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches, NutriOmics research group, 75013, Paris, France
| |
Collapse
|
7
|
Louveau C, Turtuluci MC, Consoli A, Poitou C, Coupaye M, Krebs MO, Chaumette B, Iftimovici A. Prader-Willi syndrome: Symptoms and topiramate response in light of genetics. Front Neurosci 2023; 17:1126970. [PMID: 36814790 PMCID: PMC9939745 DOI: 10.3389/fnins.2023.1126970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Prader-Willi Syndrome (PWS) is a rare genetic condition, which affects one in 25,000 births and results in various phenotypes. It leads to a wide range of metabolic and endocrine disorders including growth delay, hypogonadism, narcolepsy, lack of satiety and compulsive eating, associated with mild to moderate cognitive impairment. Prognosis is especially determined by the complications of obesity (diabetes, cardiorespiratory diseases) and by severe behavioral disorders marked by impulsivity and compulsion. This heterogeneous clinical picture may lead to mis- or delayed diagnosis of comorbidities. Moreover, when diagnosis is made, treatment remains limited, with high interindividual differences in drug response. This may be due to the underlying genetic variability of the syndrome, which can involve several different genetic mutations, notably deletion or uniparental disomy (UPD) in a region of chromosome 15. Here, we propose to determine whether subjects with PWS differ for clinical phenotype and treatment response depending on the underlying genetic anomaly. Methods We retrospectively included all 24 PWS patients who were referred to the Reference Center for Rare Psychiatric Disorders (GHU Paris Psychiatrie and Neurosciences) between November 2018 and July 2022, with either deletion (N = 8) or disomy (N = 16). The following socio-demographic and clinical characteristics were recorded: age, sex, psychiatric and non-psychiatric symptoms, the type of genetic defect, medication and treatment response to topiramate, which was evaluated in terms of eating compulsions and impulsive behaviors. We compared topiramate treatment doses and responses between PWS with deletion and those with disomy. Non-parametric tests were used with random permutations for p-value and bootstrap 95% confidence interval computations. Results First, we found that disomy was associated with a more severe clinical phenotype than deletion. Second, we observed that topiramate was less effective and less tolerated in disomy, compared to deletion. Discussion These results suggest that a pharmacogenomic-based approach may be relevant for the treatment of compulsions in PWS, thus highlighting the importance of personalized medicine for such complex heterogeneous disorders.
Collapse
Affiliation(s)
- Cécile Louveau
- Centre de Référence pour les Maladies Rares à expression Psychiatrique, GHU Paris Psychiatrie et Neurosciences, Paris, France,*Correspondence: Cécile Louveau,
| | - Mimi-Caterina Turtuluci
- Centre de Référence pour les Maladies Rares à expression Psychiatrique, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Angèle Consoli
- Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France,GRC-15, Dimensional Approach of Child and Adolescent Psychotic Episodes, Faculté de Médecine, Sorbonne Université, Paris, France
| | - Christine Poitou
- Nutrition Department, Rare Diseases Center of Reference “Prader–Willi Syndrome and Obesity With Eating Disorders” (PRADORT), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, INSERM, Nutriomics, Sorbonne Université, Paris, France
| | - Muriel Coupaye
- Nutrition Department, Rare Diseases Center of Reference “Prader–Willi Syndrome and Obesity With Eating Disorders” (PRADORT), Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, INSERM, Nutriomics, Sorbonne Université, Paris, France
| | - Marie-Odile Krebs
- Centre de Référence pour les Maladies Rares à expression Psychiatrique, GHU Paris Psychiatrie et Neurosciences, Paris, France,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, Paris, France
| | - Boris Chaumette
- Centre de Référence pour les Maladies Rares à expression Psychiatrique, GHU Paris Psychiatrie et Neurosciences, Paris, France,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, Paris, France,Department of Psychiatry, McGill University, Montréal, QC, Canada
| | - Anton Iftimovici
- Centre de Référence pour les Maladies Rares à expression Psychiatrique, GHU Paris Psychiatrie et Neurosciences, Paris, France,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université Paris Cité, Paris, France,Anton Iftimovici,
| |
Collapse
|
8
|
Barrea L, Vetrani C, Fintini D, de Alteriis G, Panfili FM, Bocchini S, Verde L, Colao A, Savastano S, Muscogiuri G. Prader-Willi Syndrome in Adults: An Update On Nutritional Treatment and Pharmacological Approach. Curr Obes Rep 2022; 11:263-276. [PMID: 36063285 PMCID: PMC9729321 DOI: 10.1007/s13679-022-00478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Prader-Willi syndrome (PWS) is a rare and complex genetic disorder with multiple effects on the metabolic, endocrine, and neurological systems, as well as behavioral and intellectual difficulties. Despite advances in understanding the genetic basis of obesity in PWS, there are conflicting data on its management. Therefore, the present manuscript aims to provide an update on the nutritional treatment and pharmacological approach in adult patients with PWS. RECENT FINDINGS The management of obesity in patients with PWS is challenging and requires the cooperation of an experienced multidisciplinary team, including the nutritionist. An adequate clinical evaluation including nutritional and biochemical parameters should be performed to tailor the best therapeutic strategy. Both lifestyle and pharmacological interventions may represent useful strategies to prevent the high rate of morbidity and mortality related to PWS. The use of bariatric surgery is still controversial. Although it is imperative to adopt an obesity prevention strategy in childhood, there is promising evidence for the treatment of obesity in adulthood with current obesity medications in conjunction with lifestyle interventions.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento Di Scienze Umanistiche, Centro Direzionale, Università Telematica Pegaso, Via Porzioisola F2, 80143 Naples, Italy
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XDipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Danilo Fintini
- grid.414125.70000 0001 0727 6809Endocrinology Unit, Bambino Gesù Children Hospital, Reference Center for Prader–Willi Syndrome, Rome, Italy
| | - Giulia de Alteriis
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XDipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Filippo Maria Panfili
- grid.6530.00000 0001 2300 0941School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sarah Bocchini
- grid.414125.70000 0001 0727 6809Endocrinology Unit, Bambino Gesù Children Hospital, Reference Center for Prader–Willi Syndrome, Rome, Italy
| | - Ludovica Verde
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XDipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XDipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XCattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XDipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, Centro Italiano Per La Cura E Il Benessere del Paziente Con Obesità (C.I.B.O), University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XDipartimento Di Medicina Clinica E Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
- grid.4691.a0000 0001 0790 385XCattedra Unesco “Educazione Alla Salute E Allo Sviluppo Sostenibile”, University Federico II, Naples, Italy
| |
Collapse
|
9
|
Oztan O, Zyga O, Stafford DEJ, Parker KJ. Linking oxytocin and arginine vasopressin signaling abnormalities to social behavior impairments in Prader-Willi syndrome. Neurosci Biobehav Rev 2022; 142:104870. [PMID: 36113782 PMCID: PMC11024898 DOI: 10.1016/j.neubiorev.2022.104870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022]
Abstract
Prader-Willi syndrome (PWS) is a genetic neurodevelopmental disorder. Global hypothalamic dysfunction is a core feature of PWS and has been implicated as a driver of many of PWS's phenotypic characteristics (e.g., hyperphagia-induced obesity, hypogonadism, short stature). Although the two neuropeptides (i.e., oxytocin [OXT] and arginine vasopressin [AVP]) most implicated in mammalian prosocial functioning are of hypothalamic origin, and social functioning is markedly impaired in PWS, there has been little consideration of how dysregulation of these neuropeptide signaling pathways may contribute to PWS's social behavior impairments. The present article addresses this gap in knowledge by providing a comprehensive review of the preclinical and clinical PWS literature-spanning endogenous neuropeptide measurement to exogenous neuropeptide administration studies-to better understand the roles of OXT and AVP signaling in this population. The preponderance of evidence indicates that OXT and AVP signaling are indeed dysregulated in PWS, and that these neuropeptide pathways may provide promising targets for therapeutic intervention in a patient population that currently lacks a pharmacological strategy for its debilitating social behavior symptoms.
Collapse
Affiliation(s)
- Ozge Oztan
- 1201 Welch Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Olena Zyga
- 1201 Welch Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Diane E J Stafford
- Center for Academic Medicine, 453 Quarry Road, Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University, Palo Alto, CA 94304, USA
| | - Karen J Parker
- 1201 Welch Road, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; 300 Pasteur Drive, Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Razo RAD, Velasco Vazquez MDL, Turcanu P, Legrand M, Floch M, Weinstein TAR, Goetze LR, Freeman SM, Baxter A, Witczak LR, Sahagún E, Berger T, Jacob S, Lawrence RH, Rothwell ES, Savidge LE, Solomon M, Mendoza SP, Bales KL. Long term effects of chronic intranasal oxytocin on adult pair bonding behavior and brain glucose uptake in titi monkeys (Plecturocebus cupreus). Horm Behav 2022; 140:105126. [PMID: 35123106 PMCID: PMC9250651 DOI: 10.1016/j.yhbeh.2022.105126] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/31/2021] [Accepted: 01/23/2022] [Indexed: 01/01/2023]
Abstract
Intranasal oxytocin (IN OXT) administration has been proposed as a pharmacological treatment for a range of biomedical conditions including neurodevelopmental disorders. However, studies evaluating the potential long-lasting effects of chronic IN OXT during development are still scarce. Here we conducted a follow-up study of a cohort of adult titi monkeys that received intranasal oxytocin 0.8 IU/kg (n = 15) or saline (n = 14) daily for six months during their juvenile period (12 to 18 months of age), with the goal of evaluating the potential long-lasting behavioral and neural effects one year post-treatment. Subjects were paired with an opposite-sex mate at 30 months of age (one year post-treatment). We examined pair affiliative behavior in the home cage during the first four months and tested for behavioral components of pair bonding at one week and four months post-pairing. We assessed long-term changes in brain glucose uptake using 18FDG positron emission tomography (PET) scans. Our results showed that OXT-treated animals were more affiliative across a number of measures, including tail twining, compared to SAL treated subjects (tail twining is considered the "highest" type of affiliation in titi monkeys). Neuroimaging showed no treatment differences in glucose uptake between SAL and OXT-treated animals; however, females showed higher glucose uptake in whole brain at 23 months, and in both the whole brain and the social salience network at 33 months of age compared to males. Our results suggest that chronic IN OXT administration during development can have long-term effects on adult social behavior.
Collapse
Affiliation(s)
- Rocío Arias-Del Razo
- Department of Psychology, University of California, Davis, CA, United States of America; California National Primate Research Center, Davis, CA, United States of America
| | | | - Petru Turcanu
- Department of Psychology, University of California, Davis, CA, United States of America
| | | | | | - Tamara A R Weinstein
- California National Primate Research Center, Davis, CA, United States of America
| | - Leana R Goetze
- California National Primate Research Center, Davis, CA, United States of America
| | - Sara M Freeman
- California National Primate Research Center, Davis, CA, United States of America; Department of Biology, Utah State University, Logan, UT, United States of America
| | - Alexander Baxter
- Department of Psychology, University of California, Davis, CA, United States of America; California National Primate Research Center, Davis, CA, United States of America
| | - Lynea R Witczak
- Department of Psychology, University of California, Davis, CA, United States of America; California National Primate Research Center, Davis, CA, United States of America
| | - Elizabeth Sahagún
- California National Primate Research Center, Davis, CA, United States of America; Department of Neuroscience, Purdue University, West Lafayette, IN, United States of America
| | - Trish Berger
- Department of Animal Science, University of California, Davis, CA, United States of America
| | - Suma Jacob
- University of Minnesota, Department of Psychiatry Center for Neurobehavioral Development, Minneapolis, MN, United States of America
| | - Rebecca H Lawrence
- Department of Psychology, University of California, Davis, CA, United States of America; California National Primate Research Center, Davis, CA, United States of America
| | - Emily S Rothwell
- California National Primate Research Center, Davis, CA, United States of America; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Amherst, MA, United States of America
| | - Logan E Savidge
- Department of Psychology, University of California, Davis, CA, United States of America; California National Primate Research Center, Davis, CA, United States of America
| | - Marjorie Solomon
- MIND Institute, University of California, Davis, CA, United States of America
| | - Sally P Mendoza
- Department of Psychology, University of California, Davis, CA, United States of America; California National Primate Research Center, Davis, CA, United States of America
| | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, United States of America; California National Primate Research Center, Davis, CA, United States of America; Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, United States of America.
| |
Collapse
|
11
|
Irisin and Secondary Osteoporosis in Humans. Int J Mol Sci 2022; 23:ijms23020690. [PMID: 35054874 PMCID: PMC8775753 DOI: 10.3390/ijms23020690] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Irisin is a peptide secreted by skeletal muscle following exercise that plays an important role in bone metabolism. Numerous experiments in vitro and in mouse models have shown that the administration of recombinant irisin promotes osteogenesis, protects osteocytes from dexamethasone-induced apoptosis, prevents disuse-induced loss of bone and muscle mass, and accelerates fracture healing. Although some aspects still need to be elucidated, such as the dose- and frequency-dependent effects of irisin in cell cultures and mouse models, ample clinical evidence is emerging to support its physiological relevance on bone in humans. A reduction in serum irisin levels, associated with an increased risk of osteoporosis and bone fractures, was observed in postmenopausal women and in both men and women during aging, Recently, cohort studies of subjects with secondary osteoporosis showed that these patients have lower circulating levels of irisin, suggesting that this myokine could be a novel marker to monitor bone quality in this disease. Although there are still few studies, this review discusses the emerging data that are highlighting the involvement of irisin in some diseases that cause secondary osteoporosis.
Collapse
|
12
|
Hunger and Satiety Peptides: Is There a Pattern to Classify Patients with Prader-Willi Syndrome? J Clin Med 2021; 10:jcm10215170. [PMID: 34768690 PMCID: PMC8585040 DOI: 10.3390/jcm10215170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Hyperphagia is one of the main problems of patients with Prader-Willi syndrome (PWS) to cope with everyday life. The underlying mechanisms are not yet well understood. Gut-brain hormones are an interrelated network that may be at least partially involved. We aimed to study the hormonal profile of PWS patients in comparison with obese and healthy controls. Thirty adult PWS patients (15 men; age 27.5 ± 8.02 years; BMI 32.4 ± 8.14 kg/m2), 30 obese and 30 healthy controls were studied before and after eating a hypercaloric liquid diet. Plasma brain-derived neurotrophic factor (BDNF), leptin, total and active ghrelin, peptide YY (PYY), pancreatic polypeptide (PP), Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and amylin were determined at times 0′, 30′, 60′ and 120′. Cluster analysis was used. When considering all peptides together, two clusters were established according to fasting hormonal standardized concentrations. Cluster 1 encompassed most of obese (25/30) and healthy controls (28/30). By contrast, the majority of patients with PWS were located in Cluster 2 (23/27) and presented a similar fasting profile with hyperghrelinemia, high levels of leptin, PYY, GIP and GLP-1, compared to Cluster 1; that may reflect a dysfunction of these hunger/satiety hormones. When peptide behavior over the time was considered, PP concentrations were not sustained postprandially from 60 min onwards in Cluster 2. BDNF and amylin did not help to differentiate the two clusters. Thus, cluster analysis could be a good tool to distinguish and characterize the differences in hormone responses between PWS and obese or healthy controls.
Collapse
|