1
|
Enagbonma BJ, Fadiji AE, Babalola OO. Anthropogenic fertilization influences a shift in barley rhizosphere microbial communities. PeerJ 2024; 12:e17303. [PMID: 39006020 PMCID: PMC11246026 DOI: 10.7717/peerj.17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 07/16/2024] Open
Abstract
Background Anthropogenic mediations contribute a significant role in stimulating positive reactions in soil-plant interactions; however, methodical reports on how anthropogenic activities impact soil microorganism-induced properties and soil health are still inadequate. In this study, we evaluated the influence of anthropogenic fertilization of farmland soil on barley rhizosphere microbial community structure and diversity, and the significant impacts on agro-ecosystem productivity. This will help validate the premise that soil amendment with prolonged synthetic fertilizers can lead to a significant reduction in bacterial abundance and diversity, while soils amended with organic fertilizers elicit the succession of the native soil microbial community and favor the growth of copiotrophic bacteria. Methods The total metagenomic DNA was extracted from soils obtained from the barley rhizosphere under chemical fertilization (CB), organic fertilization (OB), and bulk soil (NB). Subsequently, these samples were sequenced using an amplicon-based sequencing approach, and the raw sequence dataset was examined using a metagenomic rast server (MG-RAST). Results Our findings showed that all environments (CB, OB, and NB) shared numerous soil bacterial phyla but with different compositions. However, Bacteroidetes, Proteobacteria, and Actinobacteria predominated in the barley rhizosphere under chemical fertilization, organic fertilization, and bulk soils, respectively. Alpha and beta diversity analysis showed that the diversity of bacteria under organic barley rhizosphere was significantly higher and more evenly distributed than bacteria under chemical fertilization and bulk soil. Conclusion Understanding the impact of conventional and organic fertilizers on the structure, composition, and diversity of the rhizosphere microbiome will assist in soil engineering to enhance microbial diversity in the agroecosystem.
Collapse
Affiliation(s)
- Ben Jesuorsemwen Enagbonma
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, North-West Province, South Africa
| |
Collapse
|
2
|
Chianese T, Trinchese G, Leandri R, De Falco M, Mollica MP, Scudiero R, Rosati L. Glyphosate Exposure Induces Cytotoxicity, Mitochondrial Dysfunction and Activation of ERα and ERβ Estrogen Receptors in Human Prostate PNT1A Cells. Int J Mol Sci 2024; 25:7039. [PMID: 39000147 PMCID: PMC11241661 DOI: 10.3390/ijms25137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Glyphosate, the active ingredient of several broad-spectrum herbicides, is widely used throughout the world, although many adverse effects are known. Among these, it has been recognized as an endocrine disruptor. This work aimed to test the effects and potential endocrine disrupting action of glyphosate on PNT1A human prostate cells, an immortalized non-tumor epithelial cell line, possessing both ERα and ERβ estrogen receptors. The results showed that glyphosate induces cytotoxicity, mitochondrial dysfunction, and rapid activation of ERα and ERβ via nuclear translocation. Molecular analysis indicated a possible involvement of apoptosis in glyphosate-induced cytotoxicology. The apoptotic process could be attributed to alterations in mitochondrial metabolism; therefore, the main parameters of mitochondrial functionality were investigated using the Seahorse analyzer. Impaired mitochondrial function was observed in glyphosate-treated cells, with reductions in ATP production, spare respiratory capacity, and proton leakage, along with increased efficiency of mitochondrial coupling. Finally, the results of immunofluorescence analysis demonstrated that glyphosate acts as an estrogen disruptor determining the nuclear translocation of both ERs. Nuclear translocation occurred independent of dose, faster than the specific hormone, and persisted throughout treatment. In conclusion, the results collected show that in non-tumor prostate cells glyphosate can cause cell death and acts as a xenoestrogen, activating estrogen receptors. The consequent alteration of hormonal functions can have negative effects on the reproductive health of exposed animals, compromising their fertility.
Collapse
Affiliation(s)
- Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Giovanna Trinchese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Rebecca Leandri
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Maria De Falco
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
| | - Maria Pina Mollica
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
| | - Luigi Rosati
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy; (T.C.); (G.T.); (R.L.); (M.D.F.); (M.P.M.); (R.S.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Portici, Italy
- CIRAM—Centro Interdipartimentale di Ricerca “Ambiente”, University Federico II, Via Mezzocannone 16, 80134 Napoli, Italy
| |
Collapse
|
3
|
Sharma D, Agrawal S, Nagpal R, Kaur A, Bhardwaj N, Mahajan R. Valorization of wheat straw into paper by ultrafiltered enzymatic bleaching approach. Bioprocess Biosyst Eng 2024; 47:289-297. [PMID: 38086976 DOI: 10.1007/s00449-023-02951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024]
Abstract
In this study, the potential of ultrafiltered xylano-pectinolytic enzymatic bleaching approach was investigated, for manufacturing wheat straw-based paper. The enzymatic step was found to be most effective, with xylanase-pectinase dose of 4-1.7 IU/g pulp and time period of 180 min. The absorption spectra of the pulp free filtrate samples obtained after treatment of the pulp with ultrafiltered enzymes showed the removal of more impurities, in comparison to the treatment with crude enzymes. Microscopic analysis also showed the removal of lignin impurities in enzymatically bleached pulp samples. This bleaching approach using enzymes resulted in 27% reduction in ClO2 dose. Ultrafiltered enzymes treated pulp samples also showed improved quality-related parameters, and Gurley porosity, burst index, breaking length, double fold, tear index, and viscosity increased by 19.05, 13.70, 8.18, 29.27, 4.41, and 13.27%, respectively. The lignin content, TDS, TSS, BOD and COD values also decreased in the effluent samples obtained after enzymatic bleaching plus 73% chemical bleaching dose. The BOD and COD values of the effluent samples improved by 23.01 and 23.66%, respectively. Thus, indicating the potential of ultrafiltered xylano-pectinolytic enzymes in reducing pollution during bleaching of wheat straw. This is the first study, mentioning the efficacy of ultrafiltered enzymes in the bleaching of wheat straw-based paper with better optical-strength-related properties and effluent characteristics.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
- Department of Life Sciences, IAMR College, Ghaziabad, India
| | - Sharad Agrawal
- Department of Life Sciences, SBSR, Sharda University, Noida, India
| | - Raksha Nagpal
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - Amanjot Kaur
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - Nishikant Bhardwaj
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar, India
| | - Ritu Mahajan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
4
|
Ul Haq I, Khan M, Khan I. Phytopathological management through bacteriophages: enhancing food security amidst climate change. J Ind Microbiol Biotechnol 2024; 51:kuae031. [PMID: 39210514 PMCID: PMC11388930 DOI: 10.1093/jimb/kuae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The increasing global population and climate change pose significant challenges to agriculture, particularly in managing plant diseases caused by phytopathogens. Traditional methods, including chemical pesticides and antibiotics, have become less effective due to pathogen resistance and environmental concerns. Phage therapy emerges as a promising alternative, offering a sustainable and precise approach to controlling plant bacterial diseases without harming beneficial soil microorganisms. This review explores the potential of bacteriophages as biocontrol agents, highlighting their specificity, rapid multiplication, and minimal environmental impact. We discuss the historical context, current applications, and prospects of phage therapy in agriculture, emphasizing its role in enhancing crop yield and quality. Additionally, the paper examines the integration of phage therapy with modern agricultural practices and the development phage cocktails and genetically engineered phages to combat resistant pathogens. The findings suggest that phage therapy could revolutionize phytopathological management, contributing to global food security and sustainable agricultural practices. ONE-SENTENCE SUMMARY The burden of plant diseases and phage-based phytopathological treatment.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Joint Doctoral school, Silesian University of Technology , 44-100 Gliwice, Poland
- Postgraduate Program in Technological Innovation, Federal University of Minas Gerais, Belo Horizonte 31270-901 MG, Brazil
- Department of Bioscience, COMSATS University Islamabad, Islamabad 44000, Pakistan
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
| |
Collapse
|
5
|
Camargo AF, Bonatto C, Scapini T, Klanovicz N, Tadioto V, Cadamuro RD, Bazoti SF, Kubeneck S, Michelon W, Reichert Júnior FW, Mossi AJ, Alves Júnior SL, Fongaro G, Treichel H. Fungus-based bioherbicides on circular economy. Bioprocess Biosyst Eng 2023; 46:1729-1754. [PMID: 37743409 DOI: 10.1007/s00449-023-02926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
This review aimed to show that bioherbicides are possible in organic agriculture as natural compounds from fungi and metabolites produced by them. It is discussed that new formulations must be developed to improve field stability and enable the commercialization of microbial herbicides. Due to these bottlenecks, it is crucial to advance the bioprocesses behind the formulation and fermentation of bio-based herbicides, scaling up, strategies for field application, and the potential of bioherbicides in the global market. In this sense, it proposed insights for modern agriculture based on sustainable development and circular economy, precisely the formulation, scale-up, and field application of microbial bioherbicides.
Collapse
Affiliation(s)
- Aline Frumi Camargo
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | - Thamarys Scapini
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Natalia Klanovicz
- Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, University of São Paulo, São Paulo, Brazil
| | - Viviani Tadioto
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Suzana Fátima Bazoti
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Simone Kubeneck
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil
| | | | | | - Altemir José Mossi
- Laboratory of Agroecology, Federal University of Fronteira Sul, Erechim, Brazil
| | | | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Helen Treichel
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis, Brazil.
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Erechim, Brazil.
| |
Collapse
|
6
|
Bhatnagar S, Kumari R, Kaur I. Seaweed and a biocontrol agent and their effects on the growth and production of Brassica juncea: a sustainable approach. World J Microbiol Biotechnol 2023; 40:16. [PMID: 37978090 DOI: 10.1007/s11274-023-03835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
Chemical fertilizers are crucial for increasing agricultural growth and productivity, but inorganic fertilizers can negatively impact agricultural systems. To address this issue, sustainable techniques like organic farming are being developed, which improve soil quality and nutritional status while preserving human safety. In the Botanical Garden, of Department of Botany at the University of Delhi, India, experiments on Brassica juncea were carried out over a three-year period in six micro plots, each measuring 10 square meters. Vermicompost (V), Sargassum johnstoni (S), NPK (N), Trichoderma viride (T), and Sargassum + Trichoderma viride were five distinct organic combinations that were used to replenish the garden soil (ST). The aim of the study was to assess the effects of organic fertilizers and compare the results with commercially available chemical fertilizers (NPK) on Brassica growth and yield. The study found that soil modified with seaweed fertilizers significantly improved the morphological, reproductive, and biochemical properties of plants. Sargassum + Trichoderma soil amendment led to early flowering and fruiting, better-quality produce, and a low incidence of fungal infection and aphid infestation. This study reveals a new cost-effective method for crop development and production sustainability, benefiting both farmers and environmentalists.
Collapse
Affiliation(s)
- Sonal Bhatnagar
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India
| | - Reeta Kumari
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India.
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India.
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India.
| | - Inderdeep Kaur
- Department of Environmental Studies, Shyama Prasad Mukherji College for Women, University of Delhi, New Delhi, 110026, India
- Department of Botany, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, 110078, India
- Department of Botany, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, New Delhi, 110007, India
| |
Collapse
|
7
|
Herrera-Quinteros G, Jara-Rojas R. Food losses perceived by family farms: Challenges and policy implications from a micro-approach quantification. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.961120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During the last decade, food loss and waste (FLW) has been gaining more attention due to its negative effect on food security. However, the lack of information about FLW quantification and characterization remains a problem, especially from the perspectives of local citizens and farmers. There is limited literature examining food losses (FL) in primary production of the food supply chain (FSC) and specific policies are needed to improve the FLW measurement. The aim of this research is to analyze how much FL is generated at the farm level using a micro-approach methodology from harvest to primary commercialization stages among farmers located in Central Chile. Additionally, we explore factors affecting FL using a fractional regression model with special emphasis on the harvest stage. Data were collected using phone interviews, conducted in 2019, with 177 small-scale producers of vegetables and berries. FL generated by the sample from harvest to primary commercialization was 14.5% on average. Farmers identified a considerable volume of FL during primary production, mostly during the harvest. The factors that increased FL among small-scale farmers were the production system and its harvest period, commercialization channels, labor shortage, and cosmetic standards. As a case study, the information collected here can be useful for encouraging further research emphasizing the harvest stage and the role of the production systems in generating FLW.
Collapse
|
8
|
Zhang J, Wang J, Zhou Y, Xu L, Chen Y, Ding Y, Ning Y, Liang D, Zhang Y, Li G. Reduced basal and increased topdressing fertilizer rate combined with straw incorporation improves rice yield stability and soil organic carbon sequestration in a rice-wheat system. FRONTIERS IN PLANT SCIENCE 2022; 13:964957. [PMID: 36092398 PMCID: PMC9459092 DOI: 10.3389/fpls.2022.964957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fertilizer management is vital for sustainable agriculture under climate change. Reduced basal and increased topdressing fertilizer rate (RBIT) has been reported to improve the yield of in-season rice or wheat. However, the effect of RBIT on rice and wheat yield stability and soil organic carbon (SOC) sequestration potential is unknown, especially when combined with straw incorporation. Here, we report the effect of RBIT with/without straw incorporation on crop yields, yield stability, SOC stock, and SOC fractions in the lower Yangtze River rice-wheat system region over nine years. RBIT with/without straw incorporation significantly increased nine-year average and annual rice yields but not wheat yields. Compared with conventional fertilization (CF), RBIT did not significantly affect wheat or rice yield stability, but combined with straw incorporation, it increased the sustainable yield index (SYI) of wheat and rice by 7.6 and 12.8%, respectively. RBIT produced a higher C sequestration rate (0.20 Mg C ha-1 year-1) than CF (0.06 Mg ha-1 year-1) in the 0-20 cm layer due to higher root C input and lower C mineralization rate, and RBIT in combination with straw incorporation produced the highest C sequestration rate (0.47 Mg ha-1 year-1). Long-term RBIT had a greater positive effect on silt+clay (0.053 mm)-associated C, microbial biomass C (MBC), dissolved organic C, and hot water organic C in the surface layer (0-10 cm) than in the subsurface layer (10-20 cm). In particular, the increases in SOC pools and mean weight diameter (MWD) of soil aggregates were greater when RBIT was combined with straw incorporation. Correlation analysis indicated that topsoil SOC fractions and MWD were positively correlated with the SYI of wheat and rice. Our findings suggest that the long-term application of RBIT combined with straw incorporation contributed to improving the sustainability of rice production and SOC sequestration in a rice-wheat system.
Collapse
Affiliation(s)
- Jianwei Zhang
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jidong Wang
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, China
| | - Yan Zhou
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Xu
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yinglong Chen
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Yanfeng Ding
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yunwang Ning
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dong Liang
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yongchun Zhang
- Scientific Observing and Experimental Station of Arable Land, Ministry of Agriculture and Rural/National Agricultural Experimental Station for Agricultural Environment/Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ganghua Li
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|