1
|
Davidson JM, Zhang L, Yue GH, Di Ieva A. Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 36:329-363. [PMID: 38468041 DOI: 10.1007/978-3-031-47606-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.
Collapse
Affiliation(s)
- Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Guang H Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Antonio Di Ieva
- Computational Neurosurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
2
|
Update on Paraneoplastic Cerebellar Degeneration. Brain Sci 2021; 11:brainsci11111414. [PMID: 34827413 PMCID: PMC8615604 DOI: 10.3390/brainsci11111414] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose of review: To provide an update on paraneoplastic cerebellar degeneration (PCD), the involved antibodies and tumors, as well as management strategies. Recent findings: PCD represents the second most common presentation of the recently established class of immune mediated cerebellar ataxias (IMCAs). Although rare in general, PCD is one of the most frequent paraneoplastic presentations and characterized clinically by a rapidly progressive cerebellar syndrome. In recent years, several antibodies have been described in association with the clinical syndrome related to PCD; their clinical significance, however, has yet to be determined. The 2021 updated diagnostic criteria for paraneoplastic neurologic symptoms help to establish the diagnosis of PCD, direct cancer screening, and to evaluate the presence of these newly identified antibodies. Recognition of the clinical syndrome and prompt identification of a specific antibody are essential for early detection of an underlying malignancy and initiation of an appropriate treatment, which represents the best opportunity to modulate the course of the disease. As clinical symptoms can precede tumor diagnosis by years, co-occurrence of specific symptoms and antibodies should prompt continuous surveillance of the patient. Summary: We provide an in-depth overview on PCD, summarize recent findings related to PCD, and highlight the transformed diagnostic approach.
Collapse
|
3
|
Parker JA, Merchant SH, Attaripour-Isfahani S, Cho HJ, McGurrin P, Brooks BP, La Spada AR, Hallett M, Huryn LA, Horovitz SG. In vivo assessment of neurodegeneration in Spinocerebellar Ataxia type 7. Neuroimage Clin 2021; 29:102561. [PMID: 33516934 PMCID: PMC7848632 DOI: 10.1016/j.nicl.2021.102561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/12/2020] [Accepted: 01/10/2021] [Indexed: 11/19/2022]
Abstract
Spinocerebellar Ataxia type 7 (SCA7) is a neurodegenerative disease characterized by progressive cerebellar ataxia and retinal degeneration. Increasing loss of visual function complicates the use of clinical scales to track the progression of motor symptoms, hampering our ability to develop accurate biomarkers of disease progression, and thus test the efficacy of potential treatments. We aimed to identify imaging measures of neurodegeneration, which may more accurately reflect SCA7 severity and progression. While common structural MRI techniques have been previously used for this purpose, they can be biased by neurodegeneration-driven increases in extracellular CSF-like water. In a cross-sectional study, we analyzed diffusion tensor imaging (DTI) data collected from a cohort of 13 SCA7 patients and 14 healthy volunteers using: 1) a diffusion tensor-based image registration technique, and 2) a dual-compartment DTI model to control for the potential increase in extracellular CSF-like water. These methodologies allowed us to assess both volumetric and microstructural abnormalities in both white and gray matter brain-wide in SCA7 patients for the first time. To measure tissue volume, we performed diffusion tensor-based morphometry (DTBM) using the tensor-based registration. To assess tissue microstructure, we computed the parenchymal mean diffusivity (pMD) and parenchymal fractional anisotropy (pFA) using the dual compartment model. This model also enabled us to estimate the parenchymal volume fraction (pVF), a measure of parenchymal tissue volume within a given voxel. While DTBM and pVF revealed tissue loss primarily in the brainstem, cerebellum, thalamus, and major motor white matter tracts in patients (p < 0.05, FWE corrected; Hedge's g > 1), pMD and pFA detected microstructural abnormalities in virtually all tissues brain-wide (p < 0.05, FWE corrected; Hedge's g > 1). The Scale for the Assessment and Rating of Ataxia trended towards correlation with cerebellar pVF (r = -0.66, p = 0.104, FDR corrected) and global white matter pFA (r = -0.64, p = 0.104, FDR corrected). These results advance our understanding of neurodegeneration in living SCA7 patients by providing the first voxel-wise characterization of white matter volume loss and gray matter microstructural abnormalities. Moving forward, this comprehensive approach could be applied to characterize the full spatiotemporal pattern of neurodegeneration in SCA7, and potentially develop an accurate imaging biomarker of disease progression.
Collapse
Affiliation(s)
- Jacob A Parker
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Shabbir H Merchant
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Sanaz Attaripour-Isfahani
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Hyun Joo Cho
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Patrick McGurrin
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Albert R La Spada
- Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA; Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, USA; UCI Institute for Neurotherapeutics, University of California, Irvine, CA 92697, USA
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Laryssa A Huryn
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Silvina G Horovitz
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Tauber SC, Djukic M, Gossner J, Eiffert H, Brück W, Nau R. Sepsis-associated encephalopathy and septic encephalitis: an update. Expert Rev Anti Infect Ther 2020; 19:215-231. [PMID: 32808580 DOI: 10.1080/14787210.2020.1812384] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Sepsis-associated encephalopathy (SAE) and septic encephalitis (SE) are associated with increased mortality, long-term cognitive impairment, and focal neurological deficits. AREAS COVERED The PUBMED database was searched 2016-2020. The clinical manifestation of SAE is delirium, SE additionally is characterized by focal neurological symptoms. SAE is caused by inflammation with endothelial/microglial activation, increase of permeability of the blood-brain-barrier, hypoxia, imbalance of neurotransmitters, glial activation, axonal, and neuronal loss. Septic-embolic (SEE) and septic-metastatic encephalitis (SME) are characterized by focal ischemia (SEE) and small abscesses (SME). The continuum between SAE, SME, and SEE is documented by imaging techniques and autopsies. The backbone of treatment is rapid optimum antibiotic therapy. Experimental approaches focus on modulation of inflammation, stabilization of the blood-brain barrier, and restoration of membrane/mitochondrial function. EXPERT OPINION The most promising diagnostic approaches are new imaging techniques. The most important measure to fight delirium remains establishment of daily structure and adequate sensory stimuli. Dexmedetomidine and melatonin appear to reduce the frequency of delirium, their efficacy in SAE and SE remains to be established. Drugs already licensed for other indications or available as food supplements which may be effective in SAE are statins, L-DOPA/benserazide, β-hydroxybutyrate, palmitoylethanolamide, and tetracyclines or other bactericidal non-lytic antibiotics.
Collapse
Affiliation(s)
- Simone C Tauber
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) , Aachen, Germany
| | - Marija Djukic
- Institute of Neuropathology, University Medical Center , Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| | - Johannes Gossner
- Department of Diagnostic and Interventional Radiology, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| | - Helmut Eiffert
- Amedes MVZ for Laboratory Medicine, Medical Microbiology and Infectiology , Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center , Göttingen, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center , Göttingen, Germany.,Department of Geriatrics, Protestant Hospital Göttingen-Weende , Göttingen, Germany
| |
Collapse
|
5
|
Mascalchi M, Vella A. Neuroimaging Biomarkers in SCA2 Gene Carriers. Int J Mol Sci 2020; 21:ijms21031020. [PMID: 32033120 PMCID: PMC7037189 DOI: 10.3390/ijms21031020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
A variety of Magnetic Resonance (MR) and nuclear medicine (NM) techniques have been used in symptomatic and presymptomatic SCA2 gene carriers to explore, in vivo, the physiopathological biomarkers of the neurological dysfunctions characterizing the associated progressive disease that presents with a cerebellar syndrome, or less frequently, with a levodopa-responsive parkinsonian syndrome. Morphometry performed on T1-weighted images and diffusion MR imaging enable structural and microstructural evaluation of the brain in presymptomatic and symptomatic SCA2 gene carriers, in whom they show the typical pattern of olivopontocerebellar atrophy observed at neuropathological examination. Proton MR spectroscopy reveals, in the pons and cerebellum of SCA2 gene carriers, a more pronounced degree of abnormal neurochemical profile compared to other spinocerebellar ataxias with decreased NAA/Cr and Cho/Cr, increased mi/Cr ratios, and decreased NAA and increased mI concentrations. These neurochemical abnormalities are detectable also in presymtomatic gene carriers. Resting state functional MRI (rsfMRI) demonstrates decreased functional connectivity within the cerebellum and of the cerebellum with fronto-parietal cortices and basal ganglia in symptomatic SCA2 subjects. 18F-fluorodeoxyglucose Positron Emission Tomography (PET) shows a symmetric decrease of the glucose uptake in the cerebellar cortex, the dentate nucleus, the brainstem and the parahippocampal cortex. Single photon emission tomography and PET using several radiotracers have revealed almost symmetric nigrostriatal dopaminergic dysfunction irrespective of clinical signs of parkinsonism which are already present in presymtomatic gene carriers. Longitudinal small size studies have proven that morphometry and diffusion MR imaging can track neurodegeneration in SCA2, and hence serve as progression biomarkers. So far, such a capability has not been reported for proton MR spectroscopy, rsfMRI and NM techniques. A search for the best surrogate marker for future clinical trials represents the current challenge for the neuroimaging community.
Collapse
Affiliation(s)
- Mario Mascalchi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, 50121 Florence, Italy
- Correspondence: ; Tel.: +39-329-808-1701
| | | |
Collapse
|
6
|
Neurochemical profiles in hereditary ataxias: A meta-analysis of Magnetic Resonance Spectroscopy studies. Neurosci Biobehav Rev 2019; 108:854-865. [PMID: 31838195 DOI: 10.1016/j.neubiorev.2019.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is applied to investigate the neurochemical profiles of degenerative hereditary ataxias. This meta-analysis provides a quantitative review and reappraisal of MRS findings in spinocerebellar ataxias (SCA) and Friedreich ataxia (FA) available to date. From each study, changes in N-acetyl aspartate (NAA), choline-containing compounds (Cho) and myo-Inositol (mI) ratios to total creatine (Cr) were calculated for groups of patients (1499 patients in total: SCA1 = 223, SCA2 = 298, SCA3 = 711, SCA6 = 165, and FA = 102) relative to their own control group, mostly in cerebellum and pons. SCA1, 2, 3, 6, and FA patients showed overall decreased NAA/Cr compared to controls. Decreased Cho/Cr was visible in SCA1, 2, and 3 and elevated mI/Cr in SCA2 patients in cerebellum. In SCA6 and FA Cho/Cr and mI/Cr did not differ with respect to controls but SCA6 patients indicated higher Cho/Cr compared to SCA1 patients in cerebellum. SCA2 subjects showed the lowest NAA/Cr and Cho/Cr in cerebellum and the highest mI/Cr compared to controls and other genotypes, and therefore the most promising results for a potential biomarker.
Collapse
|
7
|
Mascalchi M, Vella A. Neuroimaging Applications in Chronic Ataxias. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:109-162. [PMID: 30473193 DOI: 10.1016/bs.irn.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the main instruments for neuroimaging investigation of patients with chronic ataxia. MRI has a predominant diagnostic role in the single patient, based on the visual detection of three patterns of atrophy, namely, spinal atrophy, cortical cerebellar atrophy and olivopontocerebellar atrophy, which correlate with the aetiologies of inherited or sporadic ataxia. In fact spinal atrophy is observed in Friedreich ataxia, cortical cerebellar atrophy in Ataxia Telangectasia, gluten ataxia and Sporadic Adult Onset Ataxia and olivopontocerebellar atrophy in Multiple System Atrophy cerebellar type. The 39 types of dominantly inherited spinocerebellar ataxias show either cortical cerebellar atrophy or olivopontocerebellar atrophy. T2 or T2* weighted MR images can contribute to the diagnosis by revealing abnormally increased or decreased signal with a characteristic distribution. These include symmetric T2 hyperintensity of the posterior and lateral columns of the cervical spinal cord in Friedreich ataxia, diffuse and symmetric hyperintensity of the cerebellar cortex in Infantile Neuro-Axonal Dystrophy, symmetric hyperintensity of the peridentate white matter in Cerebrotendineous Xanthomatosis, and symmetric hyperintensity of the middle cerebellar peduncles and peridentate white matter, cerebral white matter and corpus callosum in Fragile X Tremor Ataxia Syndrome. Abnormally decreased T2 or T2* signal can be observed with a multifocal distribution in Ataxia Telangectasia and with a symmetric distribution in the basal ganglia in Multiple System Atrophy. T2 signal hypointensity lining diffusely the outer surfaces of the brainstem, cerebellum and cerebrum enables diagnosis of superficial siderosis of the central nervous system. The diagnostic role of nuclear medicine techniques is smaller. SPECT and PET show decreased uptake of radiotracers investigating the nigrostriatal system in Multiple System Atrophy and in patients with Fragile X Tremor Ataxia Syndrome. Semiquantitative or quantitative MRI, SPECT and PET data describing structural, microstructural and functional changes of the cerebellum, brainstem, and spinal cord have been widely applied to investigate physiopathological changes in patients with chronic ataxias. Moreover they can track diseases progression with a greater sensitivity than clinical scales. So far, a few small-size and single center studies employed neuroimaging techniques as surrogate markers of treatment effects in chronic ataxias.
Collapse
Affiliation(s)
- Mario Mascalchi
- Meyer Children Hospital, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | |
Collapse
|
8
|
Neuroimaging in mitochondrial disorders. Essays Biochem 2018; 62:409-421. [DOI: 10.1042/ebc20170109] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 12/13/2022]
Abstract
MRI and 1H magnetic resonance spectroscopy (1HMRS) are the main neuroimaging methods to study mitochondrial diseases. MRI can demonstrate seven ‘elementary’ central nervous system (CNS) abnormalities in these disorders, including diffuse cerebellar atrophy, cerebral atrophy, symmetric signal changes in subcortical structures (basal ganglia, brainstem, cerebellum), asymmetric signal changes in the cerebral cortex and subcortical white matter, leukoencephalopathy, and symmetric signal changes in the optic nerve and the spinal cord. These elementary MRI abnormalities can be variably combined in the single patient, often beyond what can be expected based on the classically known clinical-pathological patterns. However, a normal brain MRI is also possible. 1HMRS has a diagnostic role in patients with suspected mitochondrial encephalopathy, especially in the acute phase, as it can detect within the lesions, but also in normal appearing nervous tissue or in the ventricular cerebrospinal fluid (CSF), an abnormally prominent lactate peak, reflecting failure of the respiratory chain with a shift from the Krebs cycle to anaerobic glycolysis. So far, studies correlating MRI findings with genotype in mitochondrial disease have been possible only in small samples and would greatly benefit from data pooling. MRI and 1HMRS have provided important information on the pathophysiology of CNS damage in mitochondrial diseases by enabling in vivo non-invasive assessment of tissue abnormalities, the associated changes of blood perfusion and cellular metabolic derangement. MRI and 1HMRS are expected to serve as surrogate biomarkers in trials investigating therapeutic options in mitochondrial disease.
Collapse
|
9
|
Mascalchi M, Marzi C, Giannelli M, Ciulli S, Bianchi A, Ginestroni A, Tessa C, Nicolai E, Aiello M, Salvatore E, Soricelli A, Diciotti S. Histogram analysis of DTI-derived indices reveals pontocerebellar degeneration and its progression in SCA2. PLoS One 2018; 13:e0200258. [PMID: 30001379 PMCID: PMC6042729 DOI: 10.1371/journal.pone.0200258] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/24/2018] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To assess the potential of histogram metrics of diffusion-tensor imaging (DTI)-derived indices in revealing neurodegeneration and its progression in spinocerebellar ataxia type 2 (SCA2). MATERIALS AND METHODS Nine SCA2 patients and 16 age-matched healthy controls, were examined twice (SCA2 patients 3.6±0.7 years and controls 3.3±1.0 years apart) on the same 1.5T scanner by acquiring T1-weighted and diffusion-weighted (b-value = 1000 s/mm2) images. Cerebrum and brainstem-cerebellum regions were segmented using FreeSurfer suite. Histogram analysis of DTI-derived indices, including mean diffusivity (MD), fractional anisotropy (FA), axial (AD) / radial (RD) diffusivity and mode of anisotropy (MO), was performed. RESULTS At baseline, significant differences between SCA2 patients and controls were confined to brainstem-cerebellum. Median values of MD/AD/RD and FA/MO were significantly (p<0.001) higher and lower, respectively, in SCA2 patients (1.11/1.30/1.03×10(-3) mm2/s and 0.14/0.19) than in controls (0.80/1.00/0.70×10(-3) mm2/s and 0.20/0.41). Also, peak location values of MD/AD/RD and FA were significantly (p<0.001) higher and lower, respectively, in SCA2 patients (0.91/1.11/0.81×10(-3) mm2/s and 0.12) than in controls (0.71/0.91/0.63×10(-3) mm2/s and 0.18). Peak height values of FA and MD/AD/RD/MO were significantly (p<0.001) higher and lower, respectively, in SCA2 patients (0.20 and 0.07/0.06/0.07×10(-3) mm2/s/year /0.07) than in controls (0.15 and 0.14/0.11/0.12/×10(-3) mm2/s/year /0.09). The rate of change of MD median values was significantly (p<0.001) higher (i.e., increased) in SCA2 patients (0.010×10(-3) mm2/s/year) than in controls (-0.003×10(-3) mm2/s/year) in the brainstem-cerebellum, whereas no significant difference was found for other indices and in the cerebrum. CONCLUSION Histogram analysis of DTI-derived indices is a relatively straightforward approach which reveals microstructural changes associated with pontocerebellar degeneration in SCA2 and the median value of MD is capable to track its progression.
Collapse
Affiliation(s)
- Mario Mascalchi
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
- * E-mail:
| | - Chiara Marzi
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Stefano Ciulli
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Bianchi
- “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea Ginestroni
- Neuroradiology Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Carlo Tessa
- Department of Radiology and Nuclear Medicine, Versilia Hospital, AUSL 12 Viareggio, Lido di Camaiore (Lu), Italy
| | | | | | - Elena Salvatore
- Department of Neurological Sciences, University of Naples Federico II, Naples, Italy
| | | | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”, University of Bologna, Cesena, Italy
| |
Collapse
|
10
|
Marzi C, Ciulli S, Giannelli M, Ginestroni A, Tessa C, Mascalchi M, Diciotti S. Structural Complexity of the Cerebellum and Cerebral Cortex is Reduced in Spinocerebellar Ataxia Type 2. J Neuroimaging 2018; 28:688-693. [PMID: 29975004 DOI: 10.1111/jon.12534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Fractal dimension (FD) is an index of structural complexity of cortical gray matter (GM) and white matter (WM). Application of FD to pontocerebellar degeneration has revealed cerebellar changes. However, so far, possible concurrent cerebral changes and progression of changes in brain complexity have not been investigated. METHODS We computed FD of cerebellar and cerebral cortex and WM derived from longitudinal brain MRI of patients with spinocerebellar ataxia type 2 (SCA2), which is an inherited cause of pontocerebellar degeneration. Nine SCA2 patients and 16 age-matched healthy controls were examined twice (3.6 ± .7 and 3.3 ± 1.0 years apart, respectively) on the same 1.5T MR scanner with T1-weighted imaging. Cortical GM and WM of the cerebrum and cerebellum were segmented using FreeSurfer and FD of these segmentations were computed. RESULTS At baseline, FD values of cerebellar GM and WM were significantly (P < .001) lower in SCA2 patients (2.48 ± .04 for GM and 1.74 ± .09 for WM) than in controls (2.56 ± .02 for GM and 2.22 ± .19 for WM). Also, FD values of cerebral GM were significantly (P < .05) lower in SCA2 patients (2.39 ± .03) than in controls (2.43 ± .02). No significant differences were observed for FD of the cerebral WM. The rate of change of FD values was not significantly different between SCA2 patients and controls. CONCLUSIONS The structural complexity of the cerebellum and cerebral cortex is reduced in SCA2 patients. Fractal analysis seems not to be able to demonstrate progression of changes associated with degeneration in SCA2.
Collapse
Affiliation(s)
- Chiara Marzi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Stefano Ciulli
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Andrea Ginestroni
- Neuroradiology Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Carlo Tessa
- Department of Radiology and Nuclear Medicine, Versilia Hospital, Lido di Camaiore (Lu), Italy
| | - Mario Mascalchi
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Yan L, Dong X, Xu H, Huang J, Wang W, Huang L, Wan Q, Gong J. Paraneoplastic cerebellar degeneration associated with breast cancer: A case report and review of the literature. Mol Clin Oncol 2018; 9:163-167. [PMID: 30101014 PMCID: PMC6083401 DOI: 10.3892/mco.2018.1638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/25/2018] [Indexed: 01/19/2023] Open
Abstract
Paraneoplastic cerebellar degeneration (PCD) is a rare neurological complication of cancer characterized by rapid development of cerebellar ataxia. We herein present a case of a 67-year-old female patient with PCD caused by breast cancer. The patient presented with progressively worsening cerebellar deficits that had been misdiagnosed for several months prior to the identification of the anti-Yo autoantibodies in the serum. A whole-body positron emission tomography/computed tomography scan revealed a lesion in the lower outer quadrant of the left breast with slightly increased metabolism. On mammography, a lobulated high-density mass was identified in the left breast. The patient underwent left breast lumpectomy and the histological examination confirmed the presence of an invasive ductal carcinoma. After breast surgery, the patient exhibited marked neurological improvement at the 12-month follow-up. Therefore, it is crucial that clinicians include paraneoplastic neurological syndromes in the differential diagnosis of neurological disorders. The detection of characterized onconeural antibodies in the serum or cerebrospinal fluid may provide guidance in the search for an underlying tumor.
Collapse
Affiliation(s)
- Lanyun Yan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xin Dong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huan Xu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jingjing Huang
- Department of Gerontology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Huang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jie Gong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
12
|
|
13
|
Abstract
Single-photon emission computed tomography (SPECT) and positron emission tomography (PET) with different radiotracers enable regional evaluation of blood flow and glucose metabolism, of receptors and transporters of several molecules, and of abnormal deposition of peptides and proteins in the brain. The cerebellum has been used as a reference region for different radiotracers in several disease conditions. Whole-brain voxel-wise analysis is not affected by a priori knowledge bias and should be preferred. SPECT and PET have contributed to establishing the cerebellum role in motion, cognition, and emotion control in physiologic and pathophysiologic conditions. The basic abnormal imaging findings include decreased or increased uptake of flow or metabolism tracers in the cerebellum alone or as part of a network. Decreased uptake is generally observed in primary structural damage of the cerebellum, but can also represent a distant effect of cerebral damage (crossed diaschisis). Increased uptake can be observed in Freidreich ataxia, inflammatory or immune-mediated diseases of the cerebellum, and in status epilepticus. The possibility is also recognized that primary structural damage of the cerebellum might determine distance effects on other brain structures (reversed diaschisis). So far, SPECT and PET have been predominantly used in clinical studies to investigate cerebellar changes in neurologic and psychiatric diseases and in connection with pharmacologic, transcranial magnetic stimulation, deep-brain stimulation, or surgical treatments.
Collapse
|
14
|
Sugiyama A, Sato N, Nakata Y, Kimura Y, Enokizono M, Maekawa T, Kondo M, Takahashi Y, Kuwabara S, Matsuda H. Clinical and magnetic resonance imaging features of elderly onset dentatorubral-pallidoluysian atrophy. J Neurol 2017; 265:322-329. [PMID: 29236168 DOI: 10.1007/s00415-017-8705-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant spinocerebellar ataxia caused by CAG triplet expansion in atrophin 1 and is frequently associated with cerebral white matter lesions. To elucidate the clinical features of elderly onset DRPLA and the key radiological findings for differentiating DRPLA from physiological white matter lesions in healthy elderly subjects, we reviewed the clinical and magnetic resonance imaging (MRI) features of ten patients with elderly onset genetically confirmed DRPLA (> 60 years) and compared their MRI findings with those of age- and sex-matched ten healthy subjects with asymptomatic cerebral white matter lesions. The initial symptom was cerebellar ataxia in all DRPLA patients, and five of them did not have any symptoms other than ataxia at the time of MRI examination. Atrophy of the brainstem, superior cerebellar peduncle, and cerebellum was detected in all DRPLA patients and none of the healthy subjects. Abnormal signals in the brainstem (inferior olive, pons, and midbrain), thalamus, and cerebellar white matter were frequently observed in elderly onset DRPLA patients but not in healthy subjects. In conclusion, elderly onset DRPLA presents as cerebellar ataxia alone in the early stage of disease. Atrophy of the brainstem, superior cerebellar peduncle, and cerebellum and abnormal signals in the brainstem, cerebellum, and thalamus are key findings for differentiating elderly onset DRPLA from asymptomatic cerebral white matter lesions in healthy subjects.
Collapse
Affiliation(s)
- Atsuhiko Sugiyama
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-0031, Japan.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Radiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-0031, Japan.
| | - Yasuhiro Nakata
- Department of Radiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-0031, Japan
| | - Mikako Enokizono
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-0031, Japan
| | - Tomoko Maekawa
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-0031, Japan
| | - Madoka Kondo
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
15
|
Sarro L, Nanetti L, Castaldo A, Mariotti C. Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 2017; 17:919-931. [PMID: 28805093 DOI: 10.1080/14737175.2017.1364628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Spinocerebellar ataxias (SCAs) are autosomal dominant diseases characterized by progressive gait and limb incoordination, disequilibrium, dysarthria, and eye movement disturbances. Approximately 40 genetic subtypes of SCAs are known and classified according to the causative disease gene/locus. With the possibility of the specific genetic diagnosis in patients and at-risk family members, several clinical scales and functional tests have been validated and used in ataxic patients with the purposes of measuring the entity of disease progression in natural history studies and the possible slowing of neurological impairment in therapeutic trials. Areas covered: This paper reviews the most widely used clinical scales and quantitative tests that contributed in monitoring disease progression of the most common forms of SCAs. Expert commentary: The currently available and validated clinical scales and quantitative performance scores are adequate to measure disease severity, but may require a considerable number of subjects and a long period of treatment to allow the recognition of beneficial effect of interventional therapies. Advanced MRI techniques are a consistent biomarker and maybe useful to track disease progression from the preclinical to the manifest ataxic phase in association with appropriate clinical or paraclinical investigations.
Collapse
Affiliation(s)
- Lidia Sarro
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Lorenzo Nanetti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Anna Castaldo
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| | - Caterina Mariotti
- a Unit of Genetics of Neurodegenerative and Metabolic Diseases , Fondazione IRCCS Istituto Neurologico Carlo Besta , Milan , Italy
| |
Collapse
|
16
|
Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Aiba Y, Terada H, Inaoka T, Sawai S, Kuwabara S, Nomura F. Genetic Screening for Spinocerebellar Ataxia Genes in a Japanese Single-Hospital Cohort. J Mov Disord 2017; 10:116-122. [PMID: 28782341 PMCID: PMC5615168 DOI: 10.14802/jmd.17011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/07/2017] [Accepted: 06/15/2017] [Indexed: 11/30/2022] Open
Abstract
Objective
Diagnosis of sporadic cerebellar ataxia is a challenge for neurologists. A wide range of potential causes exist, including chronic alcohol use, multiple system atrophy of cerebellar type (MSA-C), and sporadic late cortical cerebellar atrophy. Recently, an autosomal-dominant spinocerebellar ataxia (SCA) mutation was identified in a cohort of patients with non-MSA-C sporadic cerebellar ataxia. The aim of this study is to genetically screen genes involved in SCA in a Japanese single-hospital cohort.
Methods
Over an 8-year period, 140 patients with cerebellar ataxia were observed. There were 109 patients with sporadic cerebellar ataxia (no family history for at least four generations, 73 patients with MSA-C, and 36 patients with non-MSA-C sporadic cerebellar ataxia) and 31 patients with familial cerebellar ataxia. We performed gene analysis comprising SCA1, 2, 3, 6, 7, 8, 12, 17, 31, and dentatorubro-pallidoluysian atrophy (DRPLA) in 28 of 31 non-MSA-C sporadic patients who requested the test. Familial patients served as a control. Results
Gene abnormalities were found in 57% of non-MSA-C sporadic cerebellar ataxia cases. Among patients with sporadic cerebellar ataxia, abnormalities in SCA6 were the most common (36%), followed by abnormalities in SCA1 (7.1%), SCA2 (3.6%), SCA3 (3.6%), SCA8 (3.6%), and DRPLA (3.6%). In contrast, gene abnormalities were found in 75% of familial cerebellar ataxia cases, with abnormalities in SCA6 being the most common (29%). For sporadic versus familial cases for those with SCA6 abnormalities, the age of onset was older (69 years vs. 59 years, respectively), and CAG repeat length was shorter (23 vs. 25, respectively) in the former than in the latter (not statistically significant). Conclusion
Autosomal-dominant mutations in SCA genes, particularly in SCA6, are not rare in sporadic cerebellar ataxia. The reason for the frequency of mutations in SCA6 remains unclear; however, the reason may reflect a higher age at onset and variable penetrance of SCA6 mutations.
Collapse
Affiliation(s)
- Ryuji Sakakibara
- Deparment of Neurology and Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Fuyuki Tateno
- Deparment of Neurology and Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Masahiko Kishi
- Deparment of Neurology and Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Yohei Tsuyusaki
- Deparment of Neurology and Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Yosuke Aiba
- Deparment of Neurology and Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Hitoshi Terada
- Deparment of Radiology, Sakura Medical Center, Toho University, Sakura, Japan
| | - Tsutomu Inaoka
- Deparment of Radiology, Sakura Medical Center, Toho University, Sakura, Japan
| | - Setsu Sawai
- Deparment of Gene Analysis, Chiba University, Chiba, Japan.,Deparment of Neurology, Chiba University, Chiba, Japan
| | | | - Fumio Nomura
- Deparment of Gene Analysis, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Lindsay E, Storey E. Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sci 2017; 7:brainsci7070083. [PMID: 28708110 PMCID: PMC5532596 DOI: 10.3390/brainsci7070083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The dominantly-inherited ataxias characterised by expanded polyglutamine tracts—spinocere bellar ataxias (SCAs) 1, 2, 3, 6, 7, 17, dentatorubral pallidoluysian atrophy (DRPLA) and, in part, SCA 8—have all been shown to result in various degrees of cognitive impairment. We survey the literature on the cognitive consequences of each disorder, attempting correlation with their published neuropathological, magnetic resonance imaging (MRI) and clinical features. We suggest several psychometric instruments for assessment of executive function, whose results are unlikely to be confounded by visual, articulatory or upper limb motor difficulties. Finally, and with acknowledgement of the inadequacies of the literature to date, we advance a tentative classification of these disorders into three groups, based on the reported severity of their cognitive impairments, and correlated with their neuropathological topography and MRI findings: group 1—SCAs 6 and 8—mild dysexecutive syndrome based on disruption of cerebello-cortical circuitry; group 2—SCAs 1, 2, 3, and 7—more extensive deficits based largely on disruption of striatocortical in addition to cerebello-cerebral circuitry; and group 3—SCA 17 and DRPLA—in which cognitive impairment severe enough to cause a dementia syndrome is a frequent feature.
Collapse
Affiliation(s)
- Evelyn Lindsay
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
18
|
Tauber SC, Eiffert H, Brück W, Nau R. Septic encephalopathy and septic encephalitis. Expert Rev Anti Infect Ther 2016; 15:121-132. [DOI: 10.1080/14787210.2017.1265448] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Simone C. Tauber
- Department of Neurology, RWTH University Hospital, Aachen, Germany
| | - Helmut Eiffert
- Department of Medical Microbiology, Georg-August-University, Göttingen, Germany
| | - Wolfgang Brück
- Department of Neuropathology, Georg-August-University, Göttingen, Germany
| | - Roland Nau
- Department of Neuropathology, Georg-August-University, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
19
|
Abstract
BACKGROUND Chronic ataxia, greater than two months in duration, is encountered relatively commonly in clinical pediatric neurology practise and presents with diagnostic challenges. It is caused by multiple and diverse disorders. Our aims were to describe the neuroimaging features and the value of repeat neuroimaging in pediatric chronic ataxia to ascertain their contribution to the diagnosis and management. MATERIALS AND METHODS A retrospective charts and neuroimaging reports review was undertaken in 177 children with chronic ataxia. Neuroimaging in 130 of 177 patients was also reviewed. RESULTS Nineteen patients had head computed tomography only, 103 brain magnetic resonance imaging only, and 55 had both. Abnormalities in the cerebellum or other brain regions were associated with ataxia. Neuroimaging was helpful in 73 patients with 30 disorders: It was diagnostic in 9 disorders, narrowed down the diagnostic possibilities in 14 disorders, and revealed important but non-diagnostic abnormalities, e.g. cerebellar atrophy in 7 disorders. Having a normal magnetic resonance imaging scan was mostly seen in genetic diseases or in the early course of ataxia telangiectasia. Repeat neuroimaging, performed in 108 patients, was generally helpful in monitoring disease evolution and in making a diagnosis. Neuroimaging was not directly helpful in 36 patients with 10 disorders or by definition the 55 patients with unknown disease etiology. CONCLUSIONS Normal or abnormal neuroimaging findings and repeat neuroimaging are very valuable in the diagnosis and management of disorders associated with pediatric chronic ataxia.
Collapse
|
20
|
Manto M, Habas C. Cerebellar disorders: clinical/radiologic findings and modern imaging tools. HANDBOOK OF CLINICAL NEUROLOGY 2016; 135:479-491. [PMID: 27432679 DOI: 10.1016/b978-0-444-53485-9.00023-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cerebellar disorders, also called cerebellar ataxias, comprise a large group of sporadic and genetic diseases. Their core clinical features include impaired control of coordination and gait, as well as cognitive/behavioral deficits usually not detectable by a standard neurologic examination and therefore often overlooked. Two forms of cognitive/behavioral syndromes are now well identified: (1) the cerebellar cognitive affective syndrome, which combines an impairment of executive functions, including planning and working memory, deficits in visuospatial skills, linguistic deficiencies such as agrammatism, and inappropriate behavior; and (2) the posterior fossa syndrome, a very acute form of cerebellar cognitive affective syndrome occurring essentially in children. Sporadic ataxias include stroke, toxic causes, immune ataxias, infectious/parainfectious ataxias, traumatic causes, neoplasias and paraneoplastic syndromes, endocrine disorders affecting the cerebellum, and the so-called "degenerative ataxias" (multiple system atrophy, and sporadic adult-onset ataxias). Genetic ataxias include mainly four groups of disorders: autosomal-recessive cerebellar ataxias, autosomal-dominant ataxias (spinocerebellar ataxias and episodic ataxias), mitochondrial disorders, and X-linked ataxias. In addition to biochemical studies and genetic tests, brain imaging techniques are a cornerstone for the diagnosis, clinicoanatomic correlations, and follow-up of cerebellar ataxias. Modern radiologic tools to assess cerebellar ataxias include: functional imaging studies, magnetic resonance spectroscopy, volumetric studies, and tractography. These complementary methods provide a multimodal appreciation of the whole long-range cerebellar network functioning, and allow the extraction of potential biomarkers for prognosis and rating level of recovery after treatment.
Collapse
Affiliation(s)
- Mario Manto
- Department of Neurology, Université Libre de Bruxelles Erasme, Brussels, Belgium.
| | - Christophe Habas
- Neuroimaging Service, Centre National d'Ophtalmologie des Quinze-Vingts, Paris, France
| |
Collapse
|
21
|
Baldarçara L, Currie S, Hadjivassiliou M, Hoggard N, Jack A, Jackowski AP, Mascalchi M, Parazzini C, Reetz K, Righini A, Schulz JB, Vella A, Webb SJ, Habas C. Consensus paper: radiological biomarkers of cerebellar diseases. THE CEREBELLUM 2015; 14:175-96. [PMID: 25382714 DOI: 10.1007/s12311-014-0610-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hereditary and sporadic cerebellar ataxias represent a vast and still growing group of diseases whose diagnosis and differentiation cannot only rely on clinical evaluation. Brain imaging including magnetic resonance (MR) and nuclear medicine techniques allows for characterization of structural and functional abnormalities underlying symptomatic ataxias. These methods thus constitute a potential source of radiological biomarkers, which could be used to identify these diseases and differentiate subgroups of them, and to assess their severity and their evolution. Such biomarkers mainly comprise qualitative and quantitative data obtained from MR including proton spectroscopy, diffusion imaging, tractography, voxel-based morphometry, functional imaging during task execution or in a resting state, and from SPETC and PET with several radiotracers. In the current article, we aim to illustrate briefly some applications of these neuroimaging tools to evaluation of cerebellar disorders such as inherited cerebellar ataxia, fetal developmental malformations, and immune-mediated cerebellar diseases and of neurodegenerative or early-developing diseases, such as dementia and autism in which cerebellar involvement is an emerging feature. Although these radiological biomarkers appear promising and helpful to better understand ataxia-related anatomical and physiological impairments, to date, very few of them have turned out to be specific for a given ataxia with atrophy of the cerebellar system being the main and the most usual alteration being observed. Consequently, much remains to be done to establish sensitivity, specificity, and reproducibility of available MR and nuclear medicine features as diagnostic, progression and surrogate biomarkers in clinical routine.
Collapse
|
22
|
Goveas J, O'Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, Passamonti L, Tessa C, Toschi N, Giannelli M. Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging 2015; 33:853-76. [PMID: 25917917 DOI: 10.1016/j.mri.2015.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
Collapse
Affiliation(s)
- Joseph Goveas
- Department of Psychiatry and Behavioral Medicine, and Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Quantitative and Functional Neuroradiology Research Program at Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Unit of Neuroradiology, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Silvia De Santis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Carlo Tessa
- Division of Radiology, "Versilia" Hospital, AUSL 12 Viareggio, Lido di Camaiore, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Medical Physics Section, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
23
|
Mascalchi M, Toschi N, Giannelli M, Ginestroni A, Della Nave R, Nicolai E, Bianchi A, Tessa C, Salvatore E, Aiello M, Soricelli A, Diciotti S. Progression of microstructural damage in spinocerebellar ataxia type 2: a longitudinal DTI study. AJNR Am J Neuroradiol 2015; 36:1096-101. [PMID: 25882284 DOI: 10.3174/ajnr.a4343] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/21/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE The ability of DTI to track the progression of microstructural damage in patients with inherited ataxias has not been explored so far. We performed a longitudinal DTI study in patients with spinocerebellar ataxia type 2. MATERIALS AND METHODS Ten patients with spinocerebellar ataxia type 2 and 16 healthy age-matched controls were examined twice with DTI (mean time between scans, 3.6 years [patients] and 3.3 years [controls]) on the same 1.5T MR scanner. Using tract-based spatial statistics, we analyzed changes in DTI-derived indices: mean diffusivity, axial diffusivity, radial diffusivity, fractional anisotropy, and mode of anisotropy. RESULTS At baseline, the patients with spinocerebellar ataxia type 2, as compared with controls, showed numerous WM tracts with significantly increased mean diffusivity, axial diffusivity, and radial diffusivity and decreased fractional anisotropy and mode of anisotropy in the brain stem, cerebellar peduncles, cerebellum, cerebral hemisphere WM, corpus callosum, and thalami. Longitudinal analysis revealed changes in axial diffusivity and mode of anisotropy in patients with spinocerebellar ataxia type 2 that were significantly different than those in the controls. In patients with spinocerebellar ataxia type 2, axial diffusivity was increased in WM tracts of the right cerebral hemisphere and the corpus callosum, and the mode of anisotropy was extensively decreased in hemispheric cerebral WM, corpus callosum, internal capsules, cerebral peduncles, pons and left cerebellar peduncles, and WM of the left paramedian vermis. There was no correlation between the progression of changes in DTI-derived indices and clinical deterioration. CONCLUSIONS DTI can reveal the progression of microstructural damage of WM fibers in the brains of patients with spinocerebellar ataxia type 2, and mode of anisotropy seems particularly sensitive to such changes. These results support the potential of DTI-derived indices as biomarkers of disease progression.
Collapse
Affiliation(s)
- M Mascalchi
- From the Quantitative and Functional Neuroradiology Research Unit (M.M.), Meyer Children and Careggi Hospitals of Florence, Florence, Italy "Mario Serio" Department of Experimental and Clinical Biomedical Sciences (M.M., A.B.), University of Florence, Florence, Italy
| | - N Toschi
- Medical Physics Section (N.T.), Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy Department of Radiology (N.T.), Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts Harvard Medical School (N.T.), Boston, Massachusetts
| | - M Giannelli
- Unit of Medical Physics (M.G.), Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana," Pisa, Italy
| | - A Ginestroni
- Neuroradiology Unit (A.G.), Careggi General Hospital, Florence, Italy
| | | | - E Nicolai
- IRCSS SDN Foundation (E.N., M.A., A.S.), Naples, Italy
| | - A Bianchi
- From the Quantitative and Functional Neuroradiology Research Unit (M.M.), Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - C Tessa
- Unit of Radiology (C.T.), Versilia Hospital, Lido di Camaiore, Italy
| | - E Salvatore
- Department of Neurological Sciences (E.S.), University of Naples Federico II, Naples, Italy
| | - M Aiello
- IRCSS SDN Foundation (E.N., M.A., A.S.), Naples, Italy
| | - A Soricelli
- IRCSS SDN Foundation (E.N., M.A., A.S.), Naples, Italy University of Naples Parthenope (A.S.), Naples, Italy
| | - S Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" (S.D.), University of Bologna, Cesena, Italy
| |
Collapse
|
24
|
Martel S, De Angelis F, Lapointe E, Larue S, Speranza G. Paraneoplastic neurologic syndromes: Clinical presentation and management. Curr Probl Cancer 2014; 38:115-34. [DOI: 10.1016/j.currproblcancer.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Lin DJ, Hermann KL, Schmahmann JD. Multiple system atrophy of the cerebellar type: clinical state of the art. Mov Disord 2014; 29:294-304. [PMID: 24615754 DOI: 10.1002/mds.25847] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/27/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023] Open
Abstract
Multiple system atrophy (MSA) is a late-onset, sporadic neurodegenerative disorder clinically characterized by autonomic failure and either poorly levodopa-responsive parkinsonism or cerebellar ataxia. It is neuropathologically defined by widespread and abundant central nervous system α-synuclein-positive glial cytoplasmic inclusions and striatonigral and/or olivopontocerebellar neurodegeneration. There are two clinical subtypes of MSA distinguished by the predominant motor features: the parkinsonian variant (MSA-P) and the cerebellar variant (MSA-C). Despite recent progress in understanding the pathobiology of MSA, investigations into the symptomatology and natural history of the cerebellar variant of the disease have been limited. MSA-C presents a unique challenge to both clinicians and researchers alike. A key question is how to distinguish early in the disease course between MSA-C and other causes of adult-onset cerebellar ataxia. This is a particularly difficult question, because the clinical framework for conceptualizing and studying sporadic adult-onset ataxias continues to undergo flux. To date, several investigations have attempted to identify clinical features, imaging, and other biomarkers that may be predictive of MSA-C. This review presents a clinically oriented overview of our current understanding of MSA-C with a focus on evidence for distinguishing MSA-C from other sporadic, adult-onset ataxias.
Collapse
Affiliation(s)
- David J Lin
- Ataxia Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
26
|
Zalesky A, Akhlaghi H, Corben LA, Bradshaw JL, Delatycki MB, Storey E, Georgiou-Karistianis N, Egan GF. Cerebello-cerebral connectivity deficits in Friedreich ataxia. Brain Struct Funct 2013; 219:969-81. [PMID: 23563750 DOI: 10.1007/s00429-013-0547-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/20/2013] [Indexed: 01/19/2023]
Abstract
Brain pathology in Friedreich ataxia is characterized by progressive degeneration of nervous tissue in the brainstem, cerebellum and cerebellar peduncles. Evidence of cerebral involvement is however equivocal. This brain imaging study investigates cerebello-cerebral white matter connectivity in Friedreich ataxia with diffusion MRI and tractography performed in 13 individuals homozygous for a GAA expansion in intron one of the frataxin gene and 14 age- and gender-matched control participants. New evidence is presented for disrupted cerebello-cerebral connectivity in the disease, leading to secondary effects in distant cortical and subcortical regions. Remote regions affected by primary cerebellar and brainstem pathology include the supplementary motor area, cingulate cortex, frontal cortices, putamen and other subcortical nuclei. The connectivity disruptions identified provide an explanation for some of the non-ataxic symptoms observed in the disease and support the notion of reverse cerebellar diaschisis. This is the first study to comprehensively map white matter connectivity disruptions in Friedreich ataxia using tractography, connectomic techniques and super-resolution track density imaging.
Collapse
Affiliation(s)
- Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Level 3, Alan Gilbert Building, Melbourne, VIC, 3010, Australia,
| | | | | | | | | | | | | | | |
Collapse
|