1
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
2
|
Keil Stietz KP, Sethi S, Klocke CR, de Ruyter TE, Wilson MD, Pessah IN, Lein PJ. Sex and Genotype Modulate the Dendritic Effects of Developmental Exposure to a Human-Relevant Polychlorinated Biphenyls Mixture in the Juvenile Mouse. Front Neurosci 2021; 15:766802. [PMID: 34924936 PMCID: PMC8678536 DOI: 10.3389/fnins.2021.766802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022] Open
Abstract
While many neurodevelopmental disorders (NDDs) are thought to result from interactions between environmental and genetic risk factors, the identification of specific gene-environment interactions that influence NDD risk remains a critical data gap. We tested the hypothesis that polychlorinated biphenyls (PCBs) interact with human mutations that alter the fidelity of neuronal Ca2+ signaling to confer NDD risk. To test this, we used three transgenic mouse lines that expressed human mutations known to alter Ca2+ signals in neurons: (1) gain-of-function mutation in ryanodine receptor-1 (T4826I-RYR1); (2) CGG-repeat expansion in the 5′ non-coding portion of the fragile X mental retardation gene 1 (FMR1); and (3) a double mutant (DM) that expressed both mutations. Transgenic and wildtype (WT) mice were exposed throughout gestation and lactation to the MARBLES PCB mix at 0.1, 1, or 6 mg/kg in the maternal diet. The MARBLES mix simulates the relative proportions of the twelve most abundant PCB congeners found in serum from pregnant women at increased risk for having a child with an NDD. Using Golgi staining, the effect of developmental PCB exposure on dendritic arborization of pyramidal neurons in the CA1 hippocampus and somatosensory cortex of male and female WT mice was compared to pyramidal neurons from transgenic mice. A multilevel linear mixed-effects model identified a main effect of dose driven by increased dendritic arborization of cortical neurons in the 1 mg/kg PCB dose group. Subsequent analyses with genotypes indicated that the MARBLES PCB mixture had no effect on the dendritic arborization of hippocampal neurons in WT mice of either sex, but significantly increased dendritic arborization of cortical neurons of WT males in the 6 mg/kg PCB dose group. Transgene expression increased sensitivity to the impact of developmental PCB exposure on dendritic arborization in a sex-, and brain region-dependent manner. In conclusion, developmental exposure to PCBs present in the gestational environment of at-risk humans interfered with normal dendritic morphogenesis in the developing mouse brain in a sex-, genotype- and brain region-dependent manner. Overall, these observations provide proof-of-principle evidence that PCBs interact with heritable mutations to modulate a neurodevelopmental outcome of relevance to NDDs.
Collapse
Affiliation(s)
- Kimberly P Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Tryssa E de Ruyter
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Machelle D Wilson
- Clinical and Translational Science Center, Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Sethi S, Keil Stietz KP, Valenzuela AE, Klocke CR, Silverman JL, Puschner B, Pessah IN, Lein PJ. Developmental Exposure to a Human-Relevant Polychlorinated Biphenyl Mixture Causes Behavioral Phenotypes That Vary by Sex and Genotype in Juvenile Mice Expressing Human Mutations That Modulate Neuronal Calcium. Front Neurosci 2021; 15:766826. [PMID: 34938155 PMCID: PMC8685320 DOI: 10.3389/fnins.2021.766826] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 01/13/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are putative environmental risks for neurodevelopmental disorders. Here, we tested two hypotheses: (1) developmental exposure to a human-relevant PCB mixture causes behavioral phenotypes relevant to neurodevelopmental disorders; and (2) expression of human mutations that dysregulate neuronal Ca2+ homeostasis influence sensitivity to behavioral effects of developmental PCB exposures. To test these hypotheses, we used mice that expressed a gain-of-function mutation (T4826I) in ryanodine receptor 1 (RYR1), the X-linked fragile X mental retardation 1 (FMR1) CGG repeat expansion or both mutations (double mutant; DM). Transgenic mice and wildtype (WT) mice were exposed to the MARBLES PCB mix at 0, 0.1, 1, and 6 mg/kg/day in the maternal diet throughout gestation and lactation. The MARBLES PCB mix simulates the relative proportions of the 12 most abundant PCB congeners found in the serum of pregnant women at increased risk for having a child with a neurodevelopmental disorder. We assessed ultrasonic vocalizations at postnatal day 7 (P7), spontaneous repetitive behaviors at P25-P30, and sociability at P27-P32. Developmental PCB exposure reduced ultrasonic vocalizations in WT litters in all dose groups, but had no effect on ultrasonic vocalizations in transgenic litters. Developmental PCB exposure significantly increased self-grooming and decreased sociability in WT males in the 0.1 mg/kg dose group, but had no effect on WT females in any dose group. Genotype alone influenced ultrasonic vocalizations, self-grooming and to a lesser extent sociability. Genotype alone also influenced effects of PCBs on sociability. PCB levels in the brain tissue of pups increased in a dose-dependent manner, but within any dose group did not differ between genotypes. In summary, developmental PCB exposure phenocopied social behavior phenotypes observed in mice expressing human mutations that modify intracellular Ca2+ dynamics, and expression of these mutations alleviated PCB effects on ultrasonic vocalizations and repetitive behavior, and modified the dose-response relationships and sex-dependent effects of PCB effects on social behavior. These findings suggest that: (1) developmental PCB exposure causes behavioral phenotypes that vary by sex and genotype; and (2) sex-specific responses to environmental factors may contribute to sex biases in the prevalence and/or severity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kimberly P. Keil Stietz
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Carolyn R. Klocke
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Birgit Puschner
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- The MIND Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Polychlorinated Biphenyls (PCBs): Risk Factors for Autism Spectrum Disorder? TOXICS 2020; 8:toxics8030070. [PMID: 32957475 PMCID: PMC7560399 DOI: 10.3390/toxics8030070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders defined clinically by core deficits in social reciprocity and communication, restrictive interests and repetitive behaviors. ASD affects one in 54 children in the United States, one in 89 children in Europe, and one in 277 children in Asia, with an estimated worldwide prevalence of 1-2%. While there is increasing consensus that ASD results from complex gene x environment interactions, the identity of specific environmental risk factors and the mechanisms by which environmental and genetic factors interact to determine individual risk remain critical gaps in our understanding of ASD etiology. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants that have been linked to altered neurodevelopment in humans. Preclinical studies demonstrate that PCBs modulate signaling pathways implicated in ASD and phenocopy the effects of ASD risk genes on critical morphometric determinants of neuronal connectivity, such as dendritic arborization. Here, we review human and experimental evidence identifying PCBs as potential risk factors for ASD and discuss the potential for PCBs to influence not only core symptoms of ASD, but also comorbidities commonly associated with ASD, via effects on the central and peripheral nervous systems, and/or peripheral target tissues, using bladder dysfunction as an example. We also discuss critical data gaps in the literature implicating PCBs as ASD risk factors. Unlike genetic factors, which are currently irreversible, environmental factors are modifiable risks. Therefore, data confirming PCBs as risk factors for ASD may suggest rational approaches for the primary prevention of ASD in genetically susceptible individuals.
Collapse
|
5
|
Differential diagnosis of Parkinson and essential tremor with convolutional LSTM networks. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Abstract
PURPOSE OF REVIEW Tremor may be defined as an involuntary movement that is rhythmic (ie, regularly recurrent) and oscillatory (ie, rotating around a central plane) and may manifest in a variety of ways; accordingly, tremor has a rich clinical phenomenology. Consequently, the diagnosis of tremor disorders can be challenging, and misdiagnoses are common. The goal of this article is to provide the reader with straightforward approaches to the diagnosis and treatment of tremors. RECENT FINDINGS Focused ultrasound thalamotomy of the ventral intermediate nucleus of the thalamus is an emerging and promising therapy for the treatment of essential tremor. SUMMARY The evaluation should start with a detailed tremor history followed by a focused neurologic examination, which should attend to the many subtleties of tremor phenomenology. Among other things, the history and examination are used to establish whether the primary tremor is an action tremor (ie, postural, kinetic, or intention tremor) or a resting tremor. The clinician should then formulate two sets of diagnoses: disorders in which action tremor is the predominant tremor versus those in which resting tremor is the predominant tremor. Among the most common of the former type are essential tremor, enhanced physiologic tremor, drug-induced tremor, dystonic tremor, primary writing tremor, orthostatic tremor, and cerebellar tremor. Parkinson disease is the most common disorder of resting tremor. This article details the clinical features of each of these disorders, as well as those of additional tremor disorders.
Collapse
|
7
|
Rude KM, Pusceddu MM, Keogh CE, Sladek JA, Rabasa G, Miller EN, Sethi S, Keil KP, Pessah IN, Lein PJ, Gareau MG. Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:708-721. [PMID: 31336350 PMCID: PMC6719698 DOI: 10.1016/j.envpol.2019.07.066] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 05/05/2023]
Abstract
The gut microbiota is important for maintaining homeostasis of the host. Gut microbes represent the initial site for toxicant processing following dietary exposures to environmental contaminants. The diet is the primary route of exposure to polychlorinated biphenyls (PCBs), which are absorbed via the gut, and subsequently interfere with neurodevelopment and behavior. Developmental exposures to PCBs have been linked to increased risk of neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), which are also associated with a high prevalence of gastrointestinal (GI) distress and intestinal dysbiosis. We hypothesized that developmental PCB exposure impacts colonization of the gut microbiota, resulting in GI pathophysiology, in a genetically susceptible host. Mouse dams expressing two heritable human mutations (double mutants [DM]) that result in abnormal Ca2+ dynamics and produce behavioral deficits (gain of function mutation in the ryanodine receptor 1 [T4826I-RYR1] and a human CGG repeat expansion [170-200 CGG repeats] in the fragile X mental retardation gene 1 [FMR1 premutation]). DM and congenic wild type (WT) controls were exposed to PCBs (0-6 mg/kg/d) in the diet starting 2 weeks before gestation and continuing through postnatal day 21 (P21). Intestinal physiology (Ussing chambers), inflammation (qPCR) and gut microbiome (16S sequencing) studies were performed in offspring mice (P28-P30). Developmental exposure to PCBs in the maternal diet caused significant mucosal barrier defects in ileum and colon (increased secretory state and tight junction permeability) of juvenile DM mice. Furthermore, PCB exposure increased the intestinal inflammatory profile (Il6, Il1β, and Il22), and resulted in dysbiosis of the gut microbiota, including altered β-diversity, in juvenile DM mice developmentally exposed to 1 mg/kg/d PCBs when compared to WT controls. Collectively, these findings demonstrate a novel interaction between PCB exposure and the gut microbiota in a genetically susceptible host that provide novel insight into environmental risk factors for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kavi M Rude
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Matteo M Pusceddu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Jessica A Sladek
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Gonzalo Rabasa
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Elaine N Miller
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, United States.
| |
Collapse
|
8
|
Abstract
Microsatellite expansions cause more than 40 neurological disorders, including Huntington's disease, myotonic dystrophy, and C9ORF72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). These repeat expansion mutations can produce repeat-associated non-ATG (RAN) proteins in all three reading frames, which accumulate in disease-relevant tissues. There has been considerable interest in RAN protein products and their downstream consequences, particularly for the dipeptide proteins found in C9ORF72 ALS/FTD. Understanding how RAN translation occurs, what cellular factors contribute to RAN protein accumulation, and how these proteins contribute to disease should lead to a better understanding of the basic mechanisms of gene expression and human disease.
Collapse
Affiliation(s)
- John Douglas Cleary
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Amrutha Pattamatta
- From the Center for NeuroGenetics
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
| | - Laura P W Ranum
- From the Center for NeuroGenetics,
- Departments of Molecular Genetics and Microbiology and
- Genetics Institute, and
- Neurology, College of Medicine
- McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Tremor, which is a rhythmic oscillation of a body part, is among the most common involuntary movements. Rhythmic oscillations may manifest in a variety of ways; as a result, a rich clinical phenomenology surrounds tremor. For this reason, diagnosing tremor disorders can be particularly challenging. The aim of this article is to provide the reader with a straightforward approach to the diagnosis and management of patients with tremor. RECENT FINDINGS Scientific understanding of the pathophysiologic basis of tremor disorders has grown considerably in recent years with the use of a broad range of neuroimaging approaches and rigorous, controlled postmortem studies. The basal ganglia and cerebellum are structures that seem to play a prominent role. SUMMARY The diagnosis of tremor disorders is challenging. The approach to tremor involves a history and a neurologic examination that is focused on the nuances of tremor phenomenology, of which there are many. The evaluation should begin with a tremor history and a focused neurologic examination. The examination should attend to the many subtleties of tremor phenomenology. Among other things, the history and examination are used to establish whether the main type of tremor is an action tremor (ie, postural, kinetic, or intention tremor) or a resting tremor. The clinician should then formulate two sets of differential diagnoses: disorders in which action tremor is the predominant tremor versus those in which resting tremor is the main tremor. Among the most common of the former type are essential tremor, enhanced physiologic tremor, drug-induced tremor, dystonic tremor, orthostatic tremor, and cerebellar tremor. Parkinson disease is the most common form of resting tremor, along with drug-induced resting tremor. This article details the clinical features of each of these as well as other tremor disorders.
Collapse
|
10
|
McPartland J, Dantzker H, Portier C. Elucidating environmental dimensions of neurological disorders and disease: Understanding new tools from federal chemical testing programs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:634-640. [PMID: 28364604 DOI: 10.1016/j.scitotenv.2017.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Federal agencies are making significant investments to advance predictive approaches to evaluate chemical hazards and risks. Environmental Defense Fund (EDF) believes that engagement with the broader scientific community is critical to building and maintaining a strong biological foundation for these approaches. OBJECTIVES On June 18-19, 2015, EDF organized a meeting to 1) foster a conversation between federal scientists advancing predictive approaches and environmental health researchers investigating environmental exposures and neurological outcomes, and 2) explore opportunities and challenges for the use of federal chemical high-throughput in vitro screening (HTS) data in hypothesis-driven research toward, ultimately, improved data for public health decision-making. DISCUSSION The meeting achieved its objectives. Government scientists showcased their chemical testing programs and vision for how emerging data may be used to meet agency missions. Environmental health researchers shared their experiences using federal HTS data, offered recommendations for strengthening federal HTS platforms, and expressed great interest in continued engagement with evolving federal chemical testing initiatives. CONCLUSIONS The meeting provided an invaluable exchange between two scientific communities with a shared interest in protecting public health from harmful environmental exposures, but who have not sufficiently engaged with each other. Discussions identified opportunities and work ahead for the use of HTS data in hypothesis-driven research. Though the meeting focused on neurological outcomes, the purpose, objectives and experience of the meeting are broadly applicable. EDF strongly encourages more discourse and collaboration between federal and non-government scientists working to understand environmental influences on health outcomes.
Collapse
Affiliation(s)
- Jennifer McPartland
- Environmental Defense Fund, 1875 Connecticut Ave. NW, Ste. 600, Washington, DC 20009, USA.
| | - Heather Dantzker
- Dantzker Consulting, LLC, 2613 N. Harrison St., Arlington, VA 22207, USA.
| | - Christopher Portier
- Environmental Defense Fund, 1875 Connecticut Ave. NW, Ste. 600, Washington, DC 20009, USA.
| |
Collapse
|
11
|
Schreglmann SR, Bhatia KP, Stamelou M. Advances in the Clinical Differential Diagnosis of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:79-127. [PMID: 28554422 DOI: 10.1016/bs.irn.2017.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The differential diagnosis of Parkinson's disease has widened considerably in recent years. This chapter aims to summarize the current knowledge on the clinical differential diagnoses of sporadic Parkinson's disease. As the number of monogenic familial Parkinson's disease variants and risk factors is growing, so is the number of appreciated etiologies of atypical parkinsonian and other pallidopyramidal syndromes. This work aims at summarizing the current knowledge on both motor and nonmotor neurological signs and symptoms that aid the clinical diagnosis of Parkinson's disease and its differential diagnoses.
Collapse
Affiliation(s)
| | | | - Maria Stamelou
- University of Athens Medical School, Hospital Attikon, Athens, Greece; HYGEIA Hospital, Athens, Greece; Philipps University, Marburg, Germany.
| |
Collapse
|
12
|
Abstract
Many physicians are unaware of the many phenotypes associated with the fragile X premutation, an expansion in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene that consists of 55-200 CGG repeats. The most severe of these phenotypes is fragile X-associated tremor/ataxia syndrome (FXTAS), which occurs in the majority of ageing male premutation carriers but in fewer than 20% of ageing women with the premutation. The prevalence of the premutation is 1 in 150-300 females, and 1 in 400-850 males, so physicians are likely to see people affected by FXTAS. Fragile X DNA testing is broadly available in the Western world. The clinical phenotype of FXTAS at presentation can vary and includes intention tremor, cerebellar ataxia, neuropathic pain, memory and/or executive function deficits, parkinsonian features, and psychological disorders, such as depression, anxiety and/or apathy. FXTAS causes brain atrophy and white matter disease, usually in the middle cerebellar peduncles, the periventricular area, and the splenium and/or genu of the corpus callosum. Here, we review the complexities involved in the clinical management of FXTAS and consider how targeted treatment for these clinical features of FXTAS will result from advances in our understanding of the molecular mechanisms that underlie this neurodegenerative disorder. Such targeted approaches should also be more broadly applicable to earlier forms of clinical involvement among premutation carriers.
Collapse
|
13
|
Green KM, Linsalata AE, Todd PK. RAN translation-What makes it run? Brain Res 2016; 1647:30-42. [PMID: 27060770 DOI: 10.1016/j.brainres.2016.04.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 12/14/2022]
Abstract
Nucleotide-repeat expansions underlie a heterogeneous group of neurodegenerative and neuromuscular disorders for which there are currently no effective therapies. Recently, it was discovered that such repetitive RNA motifs can support translation initiation in the absence of an AUG start codon across a wide variety of sequence contexts, and that the products of these atypical translation initiation events contribute to neuronal toxicity. This review examines what we currently know and do not know about repeat associated non-AUG (RAN) translation in the context of established canonical and non-canonical mechanisms of translation initiation. We highlight recent findings related to RAN translation in three repeat expansion disorders: CGG repeats in fragile X-associated tremor ataxia syndrome (FXTAS), GGGGCC repeats in C9orf72 associated amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) and CAG repeats in Huntington disease. These studies suggest that mechanistic differences may exist for RAN translation dependent on repeat type, repeat reading frame, and the surrounding sequence context, but that for at least some repeats, RAN translation retains a dependence on some of the canonical translational initiation machinery. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease.
Collapse
Affiliation(s)
- Katelyn M Green
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexander E Linsalata
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter K Todd
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Veterans Affairs Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
14
|
Hagerman PJ, Hagerman RJ. Fragile X-associated tremor/ataxia syndrome. Ann N Y Acad Sci 2015; 1338:58-70. [PMID: 25622649 PMCID: PMC4363162 DOI: 10.1111/nyas.12693] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/04/2014] [Accepted: 12/18/2014] [Indexed: 12/20/2022]
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that affects some but not all carriers of small, noncoding CGG-repeat expansions (55-200 repeats; premutation) within the fragile X gene (FMR1). Principal features of FXTAS include intention tremor, cerebellar ataxia, Parkinsonism, memory and executive function deficits, autonomic dysfunction, brain atrophy with white matter disease, and cognitive decline. Although FXTAS was originally considered to be confined to the premutation range, rare individuals with a gray zone (45-54 repeats) or an unmethylated full mutation (>200 repeats) allele have now been described, the constant feature of the disorder remaining the requirement for FMR1 expression, in contradistinction to the gene silencing mechanism of fragile X syndrome. Although transcriptional activity is required for FXTAS pathogenesis, the specific trigger(s) for FXTAS pathogenesis remains elusive, highlighting the need for more research in this area. This need is underscored by recent neuroimaging findings of changes in the central nervous system that consistently appear well before the onset of clinical symptoms, thus creating an opportunity to delay or prevent the appearance of FXTAS.
Collapse
Affiliation(s)
- Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California , Davis , School of Medicine, Davis, California; The MIND Institute, University of California , Davis , Health System, Sacramento, California
| | | |
Collapse
|
15
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Valenti D, de Bari L, De Filippis B, Henrion-Caude A, Vacca RA. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci Biobehav Rev 2014; 46 Pt 2:202-17. [DOI: 10.1016/j.neubiorev.2014.01.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/05/2013] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
|
17
|
Juang BT, Ludwig AL, Benedetti KL, Gu C, Collins K, Morales C, Asundi A, Wittmann T, L'Etoile N, Hagerman PJ. Expression of an expanded CGG-repeat RNA in a single pair of primary sensory neurons impairs olfactory adaptation in Caenorhabditis elegans. Hum Mol Genet 2014; 23:4945-59. [PMID: 24821701 PMCID: PMC4140470 DOI: 10.1093/hmg/ddu210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a severe neurodegenerative disorder that affects carriers of premutation CGG-repeat expansion alleles of the fragile X mental retardation 1 (FMR1) gene; current evidence supports a causal role of the expanded CGG repeat within the FMR1 mRNA in the pathogenesis of FXTAS. Though the mRNA has been observed to induce cellular toxicity in FXTAS, the mechanisms are unclear. One common neurophysiological characteristic of FXTAS patients is their inability to properly attenuate their response to an auditory stimulus upon receipt of a small pre-stimulus. Therefore, to gain genetic and cell biological insight into FXTAS, we examined the effect of expanded CGG repeats on the plasticity of the olfactory response of the genetically tractable nematode, Caenorhabditis elegans (C. elegans). While C. elegans is innately attracted to odors, this response can be downregulated if the odor is paired with starvation. We found that expressing expanded CGG repeats in olfactory neurons interfered with this plasticity without affecting either the innate odor-seeking response or the olfactory neuronal morphology. Interrogation of three RNA regulatory pathways indicated that the expanded CGG repeats act via the C. elegans microRNA (miRNA)-specific Argonaute ALG-2 to diminish olfactory plasticity. This observation suggests that the miRNA-Argonaute pathway may play a pathogenic role in subverting neuronal function in FXTAS.
Collapse
Affiliation(s)
- Bi-Tzen Juang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Anna L Ludwig
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Kelli L Benedetti
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chen Gu
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kimberly Collins
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christopher Morales
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aarati Asundi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noelle L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA 95616, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA 95817, USA
| |
Collapse
|
18
|
Pretto DI, Mendoza-Morales G, Lo J, Cao R, Hadd A, Latham GJ, Durbin-Johnson B, Hagerman R, Tassone F. CGG allele size somatic mosaicism and methylation in FMR1 premutation alleles. J Med Genet 2014; 51:309-18. [PMID: 24591415 DOI: 10.1136/jmedgenet-2013-102021] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Greater than 200 CGG repeats in the 5'UTR of the FMR1 gene lead to epigenetic silencing and lack of the FMR1 protein, causing fragile X Syndrome. Individual carriers of a premutation (PM) allele with 55-200 CGG repeats are typically unmethylated and can present with clinical features defined as FMR1-associated conditions. METHODS Blood samples from 17 male PM carriers were assessed clinically and molecularly by Southern blot, western blot, PCR and QRT-PCR. Blood and brain tissue from an additional 18 PM males were also similarly examined. Continuous outcomes were modelled using linear regression and binary outcomes were modelled using logistic regression. RESULTS Methylated alleles were detected in different fractions of blood cells in all PM cases (n=17). CGG repeat numbers correlated with percent of methylation and mRNA levels and, especially in the upper PM range, with greater number of clinical involvements. Inter-tissue/intra-tissue somatic instability and differences in percent methylation were observed between blood and fibroblasts (n=4) and also observed between blood and different brain regions in three of the 18 PM cases examined. CGG repeat lengths in lymphocytes remained unchanged over a period of time ranging from 2 to 6 years, three cases for whom multiple samples were available. CONCLUSIONS In addition to CGG size instability, individuals with a PM expanded allele can exhibit methylation and display more clinical features likely due to RNA toxicity and/or FMR1 silencing. The observed association between CGG repeat length and percent of methylation with the severity of the clinical phenotypes underscores the potential value of methylation in affected PM to further understand penetrance, inform diagnosis and expand treatment options.
Collapse
Affiliation(s)
- Dalyir I Pretto
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Besterman AD, Wilke SA, Mulligan TE, Allison SC, Hagerman R, Seritan AL, Bourgeois JA. Towards an Understanding of Neuropsychiatric Manifestations in Fragile X Premutation Carriers. FUTURE NEUROLOGY 2014; 9:227-239. [PMID: 25013385 DOI: 10.2217/fnl.14.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fragile X-associated disorders (FXD) are a group of disorders caused by expansion of non-coding CGG repeat elements in the fragile X (FMR1) gene. One of these disorders, fragile X syndrome (FXS), is the most common heritable cause of intellectual disability, and is caused by large CGG repeat expansions (>200) resulting in silencing of the FMR1 gene. An increasingly recognized number of neuropsychiatric FXD have recently been identified that are caused by 'premutation' range expansions (55-200). These disorders are characterized by a spectrum of neuropsychiatric manifestations ranging from an increased risk of neurodevelopmental, mood and anxiety disorders to neurodegenerative phenotypes such as the fragile X-associated tremor ataxia syndrome (FXTAS). Here, we review advances in the clinical understanding of neuropsychiatric disorders in premutation carriers across the lifespan and offer guidance for the detection of such disorders by practicing psychiatrists and neurologists.
Collapse
Affiliation(s)
- Aaron D Besterman
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Scott A Wilke
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Tua-Elisabeth Mulligan
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Stephen C Allison
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| | - Randi Hagerman
- Department of Pediatrics and MIND Institute, University of California Davis, Sacramento, California 95817 USA
| | - Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences and MIND Institute, University of California Davis, Sacramento, California 95817 USA
| | - James A Bourgeois
- Department of Psychiatry, University of California San Francisco School of Medicine, San Francisco, California 94143 USA
| |
Collapse
|
20
|
Barsottini OGP, Albuquerque MVCD, Braga Neto P, Pedroso JL. Adult onset sporadic ataxias: a diagnostic challenge. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:232-40. [DOI: 10.1590/0004-282x20130242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/08/2013] [Indexed: 11/22/2022]
Abstract
Patients with adult onset non-familial progressive ataxia are classified in sporadic ataxia group. There are several disease categories that may manifest with sporadic ataxia: toxic causes, immune-mediated ataxias, vitamin deficiency, infectious diseases, degenerative disorders and even genetic conditions. Considering heterogeneity in the clinical spectrum of sporadic ataxias, the correct diagnosis remains a clinical challenge. In this review, the different disease categories that lead to sporadic ataxia with adult onset are discussed with special emphasis on their clinical and neuroimaging features, and diagnostic criteria.
Collapse
Affiliation(s)
| | | | - Pedro Braga Neto
- Universidade Federal de São Paulo, Brazil; Universidade Estadual do Ceará, Brazil
| | | |
Collapse
|
21
|
Ludwig AL, Espinal GM, Pretto DI, Jamal AL, Arque G, Tassone F, Berman RF, Hagerman PJ. CNS expression of murine fragile X protein (FMRP) as a function of CGG-repeat size. Hum Mol Genet 2014; 23:3228-38. [PMID: 24463622 DOI: 10.1093/hmg/ddu032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large expansions of a CGG-repeat element (>200 repeats; full mutation) in the fragile X mental retardation 1 (FMR1) gene cause fragile X syndrome (FXS), the leading single-gene form of intellectual disability and of autism spectrum disorder. Smaller expansions (55-200 CGG repeats; premutation) result in the neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). Whereas FXS is caused by gene silencing and insufficient FMR1 protein (FMRP), FXTAS is thought to be caused by 'toxicity' of expanded-CGG-repeat mRNA. However, as FMRP expression levels decrease with increasing CGG-repeat length, lowered protein may contribute to premutation-associated clinical involvement. To address this issue, we measured brain Fmr1 mRNA and FMRP levels as a function of CGG-repeat length in a congenic (CGG-repeat knock-in) mouse model using 57 wild-type and 97 expanded-CGG-repeat mice carrying up to ~250 CGG repeats. While Fmr1 message levels increased with repeat length, FMRP levels trended downward over the same range, subject to significant inter-subject variation. Human comparisons of protein levels in the frontal cortex of 7 normal and 17 FXTAS individuals revealed that the mild FMRP decrease in mice mirrored the more limited data for FMRP expression in the human samples. In addition, FMRP expression levels varied in a subset of mice across the cerebellum, frontal cortex, and hippocampus, as well as at different ages. These results provide a foundation for understanding both the CGG-repeat-dependence of FMRP expression and for interpreting clinical phenotypes in premutation carriers in terms of the balance between elevated mRNA and lowered FMRP expression levels.
Collapse
Affiliation(s)
- Anna Lisa Ludwig
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Glenda M Espinal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Dalyir I Pretto
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA, USA and
| | - Amanda L Jamal
- Department of Neurological Surgery, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Gloria Arque
- Department of Neurological Surgery, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA, USA and
| | - Robert F Berman
- MIND Institute, University of California, Davis, Health System, Sacramento, CA, USA and Department of Neurological Surgery, University of California, Davis, School of Medicine, Davis, CA, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, CA, USA, MIND Institute, University of California, Davis, Health System, Sacramento, CA, USA and
| |
Collapse
|
22
|
Goodwin M, Swanson MS. RNA-binding protein misregulation in microsatellite expansion disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:353-88. [PMID: 25201111 PMCID: PMC4483269 DOI: 10.1007/978-1-4939-1221-6_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play pivotal roles in multiple cellular pathways from transcription to RNA turnover by interacting with RNA sequence and/or structural elements to form distinct RNA-protein complexes. Since these complexes are required for the normal regulation of gene expression, mutations that alter RBP functions may result in a cascade of deleterious events that lead to severe disease. Here, we focus on a group of hereditary disorders, the microsatellite expansion diseases, which alter RBP activities and result in abnormal neurological and neuromuscular phenotypes. While many of these diseases are classified as adult-onset disorders, mounting evidence indicates that disruption of normal RNA-protein interaction networks during embryogenesis modifies developmental pathways, which ultimately leads to disease manifestations later in life. Efforts to understand the molecular basis of these disorders has already uncovered novel pathogenic mechanisms, including RNA toxicity and repeat-associated non-ATG (RAN) translation, and current studies suggest that additional surprising insights into cellular regulatory pathways will emerge in the future.
Collapse
Affiliation(s)
- Marianne Goodwin
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL, 32610-3610, USA
| | | |
Collapse
|
23
|
Hunsaker MR. Neurocognitive endophenotypes in CGG KI and Fmr1 KO mouse models of Fragile X-Associated disorders: an analysis of the state of the field. F1000Res 2013; 2:287. [PMID: 24627796 PMCID: PMC3945770 DOI: 10.12688/f1000research.2-287.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2013] [Indexed: 12/31/2022] Open
Abstract
It has become increasingly important that the field of behavioral genetics identifies not only the gross behavioral phenotypes associated with a given mutation, but also the behavioral endophenotypes that scale with the dosage of the particular mutation being studied. Over the past few years, studies evaluating the effects of the polymorphic CGG trinucleotide repeat on the
FMR1 gene underlying Fragile X-Associated Disorders have reported preliminary evidence for a behavioral endophenotype in human Fragile X Premutation carrier populations as well as the CGG knock-in (KI) mouse model. More recently, the behavioral experiments used to test the CGG KI mouse model have been extended to the
Fmr1 knock-out (KO) mouse model. When combined, these data provide compelling evidence for a clear neurocognitive endophenotype in the mouse models of Fragile X-Associated Disorders such that behavioral deficits scale predictably with genetic dosage. Similarly, it appears that the CGG KI mouse effectively models the histopathology in Fragile X-Associated Disorders across CGG repeats well into the full mutation range, resulting in a reliable histopathological endophenotype. These endophenotypes may influence future research directions into treatment strategies for not only Fragile X Syndrome, but also the Fragile X Premutation and Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS).
Collapse
Affiliation(s)
- Michael R Hunsaker
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Reduced excitatory amino acid transporter 1 and metabotropic glutamate receptor 5 expression in the cerebellum of fragile X mental retardation gene 1 premutation carriers with fragile X-associated tremor/ataxia syndrome. Neurobiol Aging 2013; 35:1189-97. [PMID: 24332449 DOI: 10.1016/j.neurobiolaging.2013.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/31/2013] [Accepted: 11/10/2013] [Indexed: 11/23/2022]
Abstract
A premutation (PM) expansion (55-200 CGG) in the fragile X mental retardation gene 1 causes elevated messenger RNA and reduced fragile X mental retardation gene 1 protein. Young PM carriers can develop characteristic physical features and mild cognitive disabilities. In addition, individuals with PM, particularly male carriers, are at high risk to develop fragile X-associated tremor/ataxia syndrome (FXTAS) with aging. Human postmortem FXTAS brains show extensive white matter disease in the cerebellum and the presence of intranuclear inclusions throughout the brain, although their etiologic significance is unknown. In the current work, expression levels of the metabotropic glutamate (Glu) receptor 5 and the Glu transporter excitatory amino acid transporter 1, examined by reverse transcription polymerase chain reaction and western blot analyses, were found to be reduced in the postmortem cerebellum of PM carriers with FXTAS compared with age matched controls, with higher CGG repeat number having greater reductions in both proteins. These data suggests a dysregulation of Glu signaling in PM carriers, which would likely contribute to the development and severity of FXTAS.
Collapse
|
25
|
Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology and mechanisms. Acta Neuropathol 2013; 126:1-19. [PMID: 23793382 DOI: 10.1007/s00401-013-1138-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/30/2013] [Indexed: 12/17/2022]
Abstract
Since its discovery in 2001, our understanding of fragile X-associated tremor/ataxia syndrome (FXTAS) has undergone a remarkable transformation. Initially characterized rather narrowly as an adult-onset movement disorder, the definition of FXTAS is broadening; moreover, the disorder is now recognized as only one facet of a much broader clinical pleiotropy among children and adults who carry premutation alleles of the FMR1 gene. Furthermore, the intranuclear inclusions of FXTAS, once thought to be a CNS-specific marker of the disorder, are now known to be widely distributed in multiple non-CNS tissues; this observation fundamentally changes our concept of the disease, and may provide the basis for understanding the diverse medical problems associated with the premutation. Recent work on the pathogenic mechanisms underlying FXTAS indicates that the origins of the late-onset neurodegenerative disorder actually lie in early development, raising the likelihood that all forms of clinical involvement among premutation carriers have a common underlying mechanistic basis. There has also been great progress in our understanding of the triggering event(s) in FXTAS pathogenesis, which is now thought to involve sequestration of one or more nuclear proteins involved with microRNA biogenesis. Moreover, there is mounting evidence that mitochondrial dysregulation contributes to the decreased cell function and loss of viability, evident in mice even during the neonatal period. Taken together, these recent findings offer hope for early interventions for FXTAS, well before the onset of overt disease, and for the treatment of other forms of clinical involvement among premutation carriers.
Collapse
|
26
|
Stamou M, Streifel KM, Goines PE, Lein PJ. Neuronal connectivity as a convergent target of gene × environment interactions that confer risk for Autism Spectrum Disorders. Neurotoxicol Teratol 2013; 36:3-16. [PMID: 23269408 PMCID: PMC3610799 DOI: 10.1016/j.ntt.2012.12.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Evidence implicates environmental factors in the pathogenesis of Autism Spectrum Disorders (ASD). However, the identity of specific environmental chemicals that influence ASD risk, severity or treatment outcome remains elusive. The impact of any given environmental exposure likely varies across a population according to individual genetic substrates, and this increases the difficulty of identifying clear associations between exposure and ASD diagnoses. Heritable genetic vulnerabilities may amplify adverse effects triggered by environmental exposures if genetic and environmental factors converge to dysregulate the same signaling systems at critical times of development. Thus, one strategy for identifying environmental risk factors for ASD is to screen for environmental factors that modulate the same signaling pathways as ASD susceptibility genes. Recent advances in defining the molecular and cellular pathology of ASD point to altered patterns of neuronal connectivity in the developing brain as the neurobiological basis of these disorders. Studies of syndromic ASD and rare highly penetrant mutations or CNVs in ASD suggest that ASD risk genes converge on several major signaling pathways linked to altered neuronal connectivity in the developing brain. This review briefly summarizes the evidence implicating dysfunctional signaling via Ca(2+)-dependent mechanisms, extracellular signal-regulated kinases (ERK)/phosphatidylinositol-3-kinases (PI3K) and neuroligin-neurexin-SHANK as convergent molecular mechanisms in ASD, and then discusses examples of environmental chemicals for which there is emerging evidence of their potential to interfere with normal neuronal connectivity via perturbation of these signaling pathways.
Collapse
Affiliation(s)
- Marianna Stamou
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Karin M. Streifel
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Paula E. Goines
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California at Davis School of Veterinary Medicine, Davis CA, 95616, United States
| |
Collapse
|
27
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
28
|
Abstract
The human fragile X mental retardation 1 (FMR1) gene contains a (CGG)n trinucleotide repeat in its 5′ untranslated region (5′UTR). Expansions of this repeat result in a number of clinical disorders with distinct molecular pathologies, including fragile X syndrome (FXS; full mutation range, greater than 200 CGG repeats) and fragile X–associated tremor/ataxia syndrome (FXTAS; premutation range, 55–200 repeats). Study of these diseases has been limited by an inability to sequence expanded CGG repeats, particularly in the full mutation range, with existing DNA sequencing technologies. Single-molecule, real-time (SMRT) sequencing provides an approach to sequencing that is fundamentally different from other “next-generation” sequencing platforms, and is well suited for long, repetitive DNA sequences. We report the first sequence data for expanded CGG-repeat FMR1 alleles in the full mutation range that reveal the confounding effects of CGG-repeat tracts on both cloning and PCR. A unique feature of SMRT sequencing is its ability to yield real-time information on the rates of nucleoside addition by the tethered DNA polymerase; for the CGG-repeat alleles, we find a strand-specific effect of CGG-repeat DNA on the interpulse distance. This kinetic signature reveals a novel aspect of the repeat element; namely, that the particular G bias within the CGG/CCG-repeat element influences polymerase activity in a manner that extends beyond simple nearest-neighbor effects. These observations provide a baseline for future kinetic studies of repeat elements, as well as for studies of epigenetic and other chemical modifications thereof.
Collapse
|
29
|
Hagerman PJ. Current Gaps in Understanding the Molecular Basis of FXTAS. Tremor Other Hyperkinet Mov (N Y) 2012; 2:tre-02-63-375-2. [PMID: 23440729 PMCID: PMC3379894 DOI: 10.7916/d80c4th0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/01/2011] [Indexed: 01/26/2023] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder with defining clinical features that include kinetic tremor, gait ataxia, and parkinsonism, with associated features spanning medical, cognitive, and psychiatric clinical domains. The emerging model for the pathogenesis of FXTAS is that of RNA toxicity as a consequence of the sequestration of RNA binding proteins by the expanded CGG-repeat element within the FMR1 message, thus compromising the normal functions of those proteins. A principal challenge at this point is to determine precisely which proteins are involved in FXTAS pathogenesis and how to prevent or reverse this process. A second challenge is to determine why there is incomplete penetrance of FXTAS among premutation carriers with identical CGG-repeat lengths, and what the protective factors are in some carriers. Finally, the discovery in premutation mice of early neurodevelopmental abnormalities, some occurring even during late embryogenesis, raises the question of whether FXTAS is the end-stage of a life-long process of neuronal dysregulation. If an extended pre-clinical phase precedes the development of FXTAS, there is great potential for therapeutic intervention, years or even decades before its clinical features are manifest.
Collapse
Affiliation(s)
- Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| |
Collapse
|
30
|
Spatiotemporal processing deficits in female CGG KI mice modeling the fragile X premutation. Behav Brain Res 2012; 233:29-34. [PMID: 22561129 DOI: 10.1016/j.bbr.2012.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/12/2012] [Accepted: 04/20/2012] [Indexed: 01/05/2023]
Abstract
The fragile X premutation is a tandem CGG trinucleotide repeat expansion in the fragile X mental retardation 1 (FMR1) gene between 55 and 200 repeats in length. A CGG knock-in (CGG KI) mouse has been developed that models the neuropathology and cognitive deficits reported in fragile X premutation carriers. It has been suggested that carriers of the premutation demonstrate a spatiotemporal hypergranularity, or reduced resolution of spatial and temporal processing. A temporal ordering of spatial locations task was used to evaluate the ability of CGG KI mice to process temporal and spatial information with either high or low levels of spatial interference. The results indicate that CGG KI mice showed difficulty performing a spatial novelty detection task when there were high levels of spatial interference, but were able to perform the novelty detection task when there was low spatial interference. These data suggest that CGG KI mice show reduced spatial and temporal resolution that are modulated by the dosage of the Fmr1 gene mutation, such that when behavioral tasks require mice to overcome high levels of either spatial or temporal interference, the CGG KI mice perform increasingly poorly as the CGG repeat length increases.
Collapse
|