1
|
Liang X, Wang L, Zhu Y, Wang Y, He T, Wu L, Huang M, Zhou F. Altered neural intrinsic oscillations in patients with multiple sclerosis: effects of cortical thickness. Front Neurol 2023; 14:1143646. [PMID: 37818221 PMCID: PMC10560735 DOI: 10.3389/fneur.2023.1143646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Objective To investigate the effects of cortical thickness on the identification accuracy of fractional amplitude of low-frequency fluctuation (fALFF) in patients with multiple sclerosis (MS). Methods Resting-state functional magnetic resonance imaging data were collected from 31 remitting MS, 20 acute MS, and 42 healthy controls (HCs). After preprocessing, we first calculated two-dimensional fALFF (2d-fALFF) maps using the DPABISurf toolkit, and 2d-fALFF per unit thickness was obtained by dividing 2d-fALFF by cortical thickness. Then, between-group comparison, clinical correlation, and classification analyses were performed in 2d-fALFF and 2d-fALFF per unit thickness maps. Finally, we also examined whether the effect of cortical thickness on 2d-fALFF maps was affected by the subfrequency band. Results In contrast with 2d-fALFF, more changed regions in 2d-fALFF per unit thickness maps were detected in MS patients, such as increased region of the right inferior frontal cortex and faded regions of the right paracentral lobule, middle cingulate cortex, and right medial temporal cortex. There was a significant positive correlation between the disease duration and the 2d-fALFF values in the left early visual cortex in remitting MS patients (r = 0.517, Bonferroni-corrected, p = 0.008 × 4 < 0.05). In contrast with 2d-fALFF, we detected a positive correlation between the 2d-fALFF per unit thickness of the right ventral stream visual cortex and the modified Fatigue Impact Scale (MFIS) scores (r = 0.555, Bonferroni-corrected, p = 0.017 × 4 > 0.05). For detecting MS patients, 2d-fALFF and 2d- fALFF per unit thickness both performed remarkably well in support vector machine (SVM) analysis, especially in the remitting phase (AUC = 86, 83%). Compared with 2d-fALFF, the SVM model of 2d-fALFF per unit thickness had significantly higher classification performance in distinguishing between remitting and acute MS. More changed regions and more clinically relevant 2d-fALFF per unit thickness maps in the subfrequency band were also detected in MS patients. Conclusion By dividing the functional value by the cortical thickness, the identification accuracy of fALFF in MS patients was detected to be potentially influenced by cortical thickness. Additionally, 2d-fALFF per unit thickness is a potential diagnostic marker that can be utilized to distinguish between acute and remitting MS patients. Notably, we observed similar variations in the subfrequency band.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lei Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yao Wang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ting He
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Medical Imaging, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Caria P, Pilotto S, D'Alterio MN, Fronza M, Murgia F, Frau J, Fenu G, Dettori T, Frau DV, Atzori L, Angioni S, Cocco E, Lorefice L. Leukocyte telomere length in women with multiple sclerosis: Comparison with healthy women during pregnancy and puerperium. J Neuroimmunol 2023; 381:578137. [PMID: 37356355 DOI: 10.1016/j.jneuroim.2023.578137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES Several studies indicated leukocyte telomere length (LTL) as a biomarker of multiple sclerosis (MS) evolution. This study aimed to investigate LTL in women with multiple sclerosis (MS) compared to that in healthy women (HW) across different reproductive phases, and to evaluate its relationship with MS activity. METHODS Blood samples were collected from women with MS and HW during the fertile phase, pregnancy, and puerperium. LTL was determined using quantitative fluorescence in situ hybridization (Q-FISH). RESULTS Blood samples from 68 women with MS (22 during fertile life, 23 during pregnancy, and 23 post-partum) and 52 HW (23 during fertile life, 20 during pregnancy, and 9 post-partum) were analyzed. During pregnancy, LTL in MS women and HW was 84.7 ± 10.5 and 77.6 ± 11.5, respectively (p < 0.005). Regression analysis showed that shorter LTL was associated with pregnancy in HW (p = 0.021); this relationship was not observed in MS women, for whom shorter LTL was related to a higher EDSS (p = 0.036). A longitudinal analysis was performed in eight MS women, showing LTL shortening from pregnancy to puerperium (p = 0.003), which was related to MS reactivation (p = 0.042). CONCLUSION Our results highlight the possible associations between LTL, reproductive biological phases, and MS activity after delivery.
Collapse
Affiliation(s)
- P Caria
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - S Pilotto
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - M N D'Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - M Fronza
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - F Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Italy
| | - J Frau
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - G Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - T Dettori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - D V Frau
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - L Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Italy
| | - S Angioni
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - E Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Italy
| | - L Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Italy.
| |
Collapse
|
3
|
Lorefice L, Mellino P, Fenu G, Cocco E. How to measure the treatment response in progressive multiple sclerosis: Current perspectives and limitations in clinical settings'. Mult Scler Relat Disord 2023; 76:104826. [PMID: 37327601 DOI: 10.1016/j.msard.2023.104826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
New treatment options are available for active progressive multiple sclerosis (MS), including primary and secondary progressive forms. Several pieces of evidence have recently suggested a "window of beneficial treatment opportunities," principally in the early stages of progression. However, for progressive MS, which is characterised by an inevitable tendency to get worse, it is crucial to redefine the "response to treatment" beyond the concept of "no evidence of disease activity" (NEDA-3), which was initially conceived to evaluate disease outcomes in relapsing-remitting form, albeit it is currently applied to all MS cases in clinical practice. This review examines the current perspectives and limitations in assessing the effectiveness of DMTs and disease outcomes in progressive MS, the current criteria applied in defining the response to DMTs, and the strengths and limitations of clinical scales and tools for evaluating MS evolution and patient perception. Additionally, the impact of age and comorbidities on the assessment of MS outcomes was examined.
Collapse
Affiliation(s)
- L Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Address: via Is Guadazzonis 2, Cagliari 09126, Italy.
| | - P Mellino
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Address: via Is Guadazzonis 2, Cagliari 09126, Italy
| | - G Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - E Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Address: via Is Guadazzonis 2, Cagliari 09126, Italy
| |
Collapse
|
4
|
Belimezi M, Kalliaropoulos A, Mentis AFA, Chrousos GP. Diagnostic significance of IgG and albumin indices versus oligoclonal band types in demyelinating disorders. J Clin Pathol 2023; 76:166-171. [PMID: 34526372 DOI: 10.1136/jclinpath-2021-207766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/29/2021] [Indexed: 11/04/2022]
Abstract
AIMS The laboratory diagnosis of demyelinating inflammatory disorders (DIDs) relies on both intrathecal oligoclonal band (OCB) positivity and IgG index. Although OCB typing remains the gold-standard test for DIDs, it can be laborious and ambiguous, complicating diagnostics, and unduly increasing diagnostic time. We examined whether serum or cerebrospinal fluid (CSF) parameters can classify OCB types and, thus, be used as a replacement test to standard OCB typing. METHODS We retrospectively analysed >1000 prospectively collected samples of patients with DIDs and quantified albumin and IgG levels in the CSF and serum. We determined OCB types by isoelectric focusing combined with immunofixation and evaluated the diagnostic accuracies of IgG and albumin indices in discriminating OCB types by receiver operating characteristic curves and multinomial regression. RESULTS An IgG index cut-off of 0.589 differentiated types 2/3 from types 1/4 (area under the curve 0.780, 95% CI 0.761 to 0.812, p<0.001; specificity: 71.10%, sensitivity: 73.45%). Albumin quotient cut-off values of 6.625 and of 6.707 discriminated type 1 from type 4 and type 2 from type 3, respectively (specificity: <55%, sensitivity: <75%). Female sex, age, IgG index, CSF IgG and serum albumin were associated with different OCB types. CONCLUSIONS Our study reveals that IgG and albumin index can differentiate OCB types with adequate accuracy, especially if refined by age and gender.
Collapse
Affiliation(s)
- Maria Belimezi
- Diagnostic Services Laboratory, Hellenic Pasteur Institute, Athens, Greece
| | | | - Alexios-Fotios A Mentis
- Diagnostic Services Laboratory, Hellenic Pasteur Institute, Athens, Greece .,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Silvy P, Magdalena Z, Giuseppe F, Eleonora C, Lorena L. Disease-modifying therapy for multiple sclerosis: implications for gut microbiota. Mult Scler Relat Disord 2023; 73:104671. [DOI: 10.1016/j.msard.2023.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
|
6
|
Lorefice L, Pitzalis M, Murgia F, Fenu G, Atzori L, Cocco E. Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet 2023; 14:1076421. [PMID: 36793897 PMCID: PMC9922720 DOI: 10.3389/fgene.2023.1076421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
From the perspective of precision medicine, the challenge for the future is to improve the accuracy of diagnosis, prognosis, and prediction of therapeutic responses through the identification of biomarkers. In this framework, the omics sciences (genomics, transcriptomics, proteomics, and metabolomics) and their combined use represent innovative approaches for the exploration of the complexity and heterogeneity of multiple sclerosis (MS). This review examines the evidence currently available on the application of omics sciences to MS, analyses the methods, their limitations, the samples used, and their characteristics, with a particular focus on biomarkers associated with the disease state, exposure to disease-modifying treatments (DMTs), and drug efficacies and safety profiles.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- *Correspondence: Lorena Lorefice,
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Federica Murgia
- Dpt of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - Luigi Atzori
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
7
|
Younger DS. Multiple sclerosis: Motor dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:119-147. [PMID: 37620066 DOI: 10.1016/b978-0-323-98817-9.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Multiple sclerosis is a chronic neurological disease characterized by inflammation and degeneration within the central nervous system. Over the course of the disease, most MS patients successively accumulate inflammatory lesions, axonal damage, and diffuse CNS pathology, along with an increasing degree of motor disability. While the pharmacological approach to MS targets inflammation to decrease relapse rates and relieve symptoms, disease-modifying therapy and immunosuppressive medications may not prevent the accumulation of pathology in most patients leading to long-term motor disability. This has been met with recent interest in promoting plasticity-guided concepts, enhanced by neurophysiological and neuroimaging approaches to address the preservation of motor function.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
8
|
Lorefice L, Pilotto S, Fenu G, Cimino P, Firinu D, Frau J, Murgia F, Coghe G, Cocco E. Evolution of teriflunomide use in multiple sclerosis: A real-world experience. J Neurol Sci 2022; 438:120292. [PMID: 35605316 DOI: 10.1016/j.jns.2022.120292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
|
9
|
Nirooei E, Kashani SMA, Owrangi S, Malekpour F, Niknam M, Moazzen F, Nowrouzi-Sohrabi P, Farzinmehr S, Akbari H. Blood Trace Element Status in Multiple Sclerosis: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2022; 200:13-26. [PMID: 33611740 DOI: 10.1007/s12011-021-02621-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
The aim of this meta-analysis was to investigate whether the blood concentrations of patients with multiple sclerosis (MS) are associated with those of the healthy control group in terms of trace elements including zinc (Zn), iron (Fe), manganese (Mn), magnesium (Mg), selenium (Se), and copper (Cu). A comprehensive search was performed in online databases including PubMed, Scopus, Embase, and Web of Science for studies, which have addressed trace elements in MS up to July 23, 2020. The chi-square test and I2 statistic were utilized to evaluate inter-study heterogeneity across the included studies. Weighted mean differences (WMDs) and corresponding 95% CI were considered as a pooled effect size (ES). Twenty-seven articles (or 32 studies) with a total sample comprised of 2895 participants (MS patients (n = 1567) and controls (n = 1328)) were included. Pooled results using random-effects model indicated that the levels of Zn (WMD = - 7.83 mcg/dl, 95% CI = - 12.78 to - 2.87, Z = 3.09, P = 0.002), and Fe (WMD = - 13.66 mcg/dl, 95% CI = - 23.13 to - 4.19, Z = 2.83, P = 0.005) were significantly lower in MS patients than in controls. However, it was found that levels of Mn (WMD = 0.03 mcg/dl, 95% CI = 0.01 to 0.04, Z = 2.89, P = 0.004) were significantly higher in MS patients. Yet, no significant differences were observed in the levels of Mg, Se, and Cu between both groups. This meta-analysis revealed that the circulating levels of Zn and Fe were significantly lower in MS patients and that Mn level was significantly higher than those in the control group. However, it was found that there was no significant difference between MS patients and controls with regard to levels of Mg, Se, and Cu.
Collapse
Affiliation(s)
- Elahe Nirooei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Soroor Owrangi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Malekpour
- Family Medicine Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moazzen
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Peyman Nowrouzi-Sohrabi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somaye Farzinmehr
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hamed Akbari
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
TANYEL KİREMİTÇİ T, MERCAN Ö, MISIRLI C, TÜRKOĞLU R. Activation of NLRP1 and NLRP3 Inflammasomes in Multiple Sclerosis and Clinically Isolated Syndrome. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.730473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Millward JM, Ramos Delgado P, Smorodchenko A, Boehmert L, Periquito J, Reimann HM, Prinz C, Els A, Scheel M, Bellmann-Strobl J, Waiczies H, Wuerfel J, Infante-Duarte C, Chien C, Kuchling J, Pohlmann A, Zipp F, Paul F, Niendorf T, Waiczies S. Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight 2020; 5:140040. [PMID: 33148886 PMCID: PMC7710287 DOI: 10.1172/jci.insight.140040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The brain ventricles are part of the fluid compartments bridging the CNS with the periphery. Using MRI, we previously observed a pronounced increase in ventricle volume (VV) in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here, we examined VV changes in EAE and MS patients in longitudinal studies with frequent serial MRI scans. EAE mice underwent serial MRI for up to 2 months, with gadolinium contrast as a proxy of inflammation, confirmed by histopathology. We performed a time-series analysis of clinical and MRI data from a prior clinical trial in which RRMS patients underwent monthly MRI scans over 1 year. VV increased dramatically during preonset EAE, resolving upon clinical remission. VV changes coincided with blood-brain barrier disruption and inflammation. VV was normal at the termination of the experiment, when mice were still symptomatic. The majority of relapsing-remitting MS (RRMS) patients showed dynamic VV fluctuations. Patients with contracting VV had lower disease severity and a shorter duration. These changes demonstrate that VV does not necessarily expand irreversibly in MS but, over short time scales, can expand and contract. Frequent monitoring of VV in patients will be essential to disentangle the disease-related processes driving short-term VV oscillations from persistent expansion resulting from atrophy. Brain ventricle volumes expand and contract during experimental autoimmune encephalomyelitis and relapsing-remitting multiple sclerosis, suggesting that short-term inflammatory processes are interlaced with gradual brain atrophy.
Collapse
Affiliation(s)
- Jason M Millward
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alina Smorodchenko
- Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Laura Boehmert
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joao Periquito
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Henning M Reimann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Antje Els
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
12
|
Zhu Y, Huang M, Zhao Y, Pei Y, Wang Y, Wang L, He T, Zhou F, Zeng X. Local functional connectivity of patients with acute and remitting multiple sclerosis: A Kendall's coefficient of concordance- and coherence-regional homogeneity study. Medicine (Baltimore) 2020; 99:e22860. [PMID: 33120824 PMCID: PMC7581181 DOI: 10.1097/md.0000000000022860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 02/03/2023] Open
Abstract
Using Kendall's coefficient of concordance (KCC-) and Coherence (Cohe-) regional homogeneity (ReHo) to explore the alterations of brain local functional connectivity in acute and remitting relapsing-remitting multiple sclerosis (RRMS), and its clinical relevance.18 acute RRMS, 26 remitting RRMS and 20 healthy controls received resting-state functional magnetic resonance imaging scanning. After data preprocessing and ReHo (KCC-ReHo and Cohe-ReHo) calculation, analysis of variance and followed post hoc analysis was used to compare the KCC-ReHo or Cohe ReHo maps across groups.After analysis of variance analysis, regions with significant among-group differences detected by the 2 ReHo analysis were overlapped, these overlapped regions located in the left superior frontal gyrus (SFG), right SFG, left cuneus and right middle occipital gyrus (P < .01, Gaussian random field theory correction). Followed post hoc tests showed that, compared with healthy controls,Both acute and remitting RRMS patients has disease-related brain dysfunction, interestingly, relative to remitting RRMS, the acute RRMS patients mobilized more brain regions involving visual information processing in an attempt to maintain functional stability. In addition, our results also provide a methodological consideration for future ReHo analysis.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Yanlin Zhao
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Yixiu Pei
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Yao Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Lei Wang
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Ting He
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Nanchang University
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
13
|
Hosseini A, Estiri H, Akhavan Niaki H, Alizadeh A, Abdolhossein Zadeh B, Ghaderian SMH, Farjadfar A, Fallah A. Multiple Sclerosis Gene Therapy with Recombinant Viral Vectors: Overexpression of IL-4, Leukemia Inhibitory Factor, and IL-10 in Wharton's Jelly Stem Cells Used in EAE Mice Model. CELL JOURNAL 2017; 19:361-374. [PMID: 28836399 PMCID: PMC5570402 DOI: 10.22074/cellj.2017.4497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Immunotherapy and gene therapy play important roles in modern medicine. The aim of this study is to evaluate the overexpression of interleukin-4 (IL-4), IL-10 and leukemia inhibitory factor (LIF) in Wharton's jelly stem cells (WJSCs) in the experimental autoimmune encephalomyelitis (EAE) mice model. MATERIALS AND METHODS In this experimental study, a DNA construction containing IL- 4, IL-10 and LIF was assembled to make a polycistronic vector (as the transfer vector). Transfer and control vectors were co-transfected into Human Embryonic Kidney 293 (HEK-293T) cells with helper plasmids which produced recombinant lentiviral viruses (rLV). WJSCs were transduced with rLV to make recombinant WJSC (rWJSC). In vitro protein and mRNA overexpression of IL-4, LIF, and IL-10 were evaluated using quantitative polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA) and western blot (WB) analysis. EAE was induced in mice by MOG-CFA and pertussis toxin. EAE mice were injected twice with 2×105 rWJSCs. The in vivo level of IL-4, LIF, IL-10 cytokines and IL-17 were measured by ELISA. Brain tissues were analyzed histologically for evaluation of EAE lesions. RESULTS Isolated WJSCs were performed to characterize by in vitro differentiation and surface markers were analyzed by flow cytometry method. Cloning of a single lentiviral vector with five genes was done successfully. Transfection of transfer and control vectors were processed based on CaPO4 method with >90% efficiency. Recombinant viruses were produced and results of titration showed 2-3×107 infection-unit/ml. WJSCs were transduced using recombinant viruses. IL-4, IL-10 and LIF overexpression were confirmed by ELISA, WB and qPCR. The EAE mice treated with rWJSC showed reduction of Il-17, and brain lesions as well as brain cellular infiltration, in vivo. Weights and physical activity were improved in gene-treated group. CONCLUSIONS These results showed that gene therapy using anti-inflammatory cytokines can be a promising approach against multiple sclerosis (MS). In addition, considering the immunomodulatory potential of WJSCs, an approach using a combination of WJSCs and gene therapy will enhance the treatment efficacy.
Collapse
Affiliation(s)
- Ahmad Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cell Biology and Anatomical Science, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hajar Estiri
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian Institute of Cell and Gene Therapy, Tehran, Iran
| | - Haleh Akhavan Niaki
- Cellular and Molecular Biology Research Center, Babol University of Medical Sciences, Babol, Iran.,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Akram Alizadeh
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Baharak Abdolhossein Zadeh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Akbar Farjadfar
- Department of Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Fallah
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,BioViva USA Inc, Bainbridge Island WA, USA
| |
Collapse
|