1
|
Kembro JM, Flesia AG, Acosta-Rodríguez VA, Takahashi JS, Nieto PS. Dietary restriction modulates ultradian rhythms and autocorrelation properties in mice behavior. Commun Biol 2024; 7:303. [PMID: 38461321 PMCID: PMC10925031 DOI: 10.1038/s42003-024-05991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
Animal behavior emerges from integration of many processes with different spatial and temporal scales. Dynamical behavioral patterns, including daily and ultradian rhythms and the dynamical microstructure of behavior (i.e., autocorrelations properties), can be differentially affected by external cues. Identifying these patterns is important for understanding how organisms adapt to their environment, yet unbiased methods to quantify dynamical changes over multiple temporal scales are lacking. Herein, we combine a wavelet approach with Detrended Fluctuation Analysis to identify behavioral patterns and evaluate changes over 42-days in mice subjected to different dietary restriction paradigms. We show that feeding restriction alters dynamical patterns: not only are daily rhythms modulated but also the presence, phase and/or strength of ~12h-rhythms, as well as the nature of autocorrelation properties of feed-intake and wheel running behaviors. These results highlight the underlying complexity of behavioral architecture and offer insights into the multi-scale impact of feeding habits on physiology.
Collapse
Affiliation(s)
- Jackelyn Melissa Kembro
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA) and Departamento de Química, Cátedra de Química Biológica, Córdoba, Córdoba, X5000HUA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- UNC, Córdoba, Córdoba, X5000HUA, Argentina
| | - Ana Georgina Flesia
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Córdoba, X5000HUA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones y Estudios de Matemática (CIEM, CONICET-UNC), Córdoba, Córdoba, X5000HUA, Argentina
| | - Victoria América Acosta-Rodríguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9111, USA
| | - Paula Sofía Nieto
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, Córdoba, Córdoba, X5000HUA, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Física Enrique Gaviola (IFEG, CONICET-UNC), Universidad Nacional de Córdoba, Córdoba, Córdoba, X5000HUA, Argentina.
| |
Collapse
|
2
|
Coskun A, Zarepour A, Zarrabi A. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci 2023; 24:ijms24076275. [PMID: 37047252 PMCID: PMC10094461 DOI: 10.3390/ijms24076275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The concentration of biomolecules in living systems shows numerous systematic and random variations. Systematic variations can be classified based on the frequency of variations as ultradian (<24 h), circadian (approximately 24 h), and infradian (>24 h), which are partly predictable. Random biological variations are known as between-subject biological variations that are the variations among the set points of an analyte from different individuals and within-subject biological variation, which is the variation of the analyte around individuals’ set points. The random biological variation cannot be predicted but can be estimated using appropriate measurement and statistical procedures. Physiological rhythms and random biological variation of the analytes could be considered the essential elements of predictive, preventive, and particularly personalized laboratory medicine. This systematic review aims to summarize research that have been done about the types of physiological rhythms, biological variations, and their effects on laboratory tests. We have searched the PubMed and Web of Science databases for biological variation and physiological rhythm articles in English without time restrictions with the terms “Biological variation, Within-subject biological variation, Between-subject biological variation, Physiological rhythms, Ultradian rhythms, Circadian rhythm, Infradian rhythms”. It was concluded that, for effective management of predicting, preventing, and personalizing medicine, which is based on the safe and valid interpretation of patients’ laboratory test results, both physiological rhythms and biological variation of the measurands should be considered simultaneously.
Collapse
|
3
|
Shi Z, Bonillas AC, Wong J, Padilla SL, Brooks VL. Neuropeptide Y suppresses thermogenic and cardiovascular sympathetic nerve activity via Y1 receptors in the paraventricular nucleus and dorsomedial hypothalamus. J Neuroendocrinol 2021; 33:e13006. [PMID: 34235800 PMCID: PMC8653878 DOI: 10.1111/jne.13006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
In hungry animals, neuropeptide Y (NPY) neurones in the arcuate nucleus (ArcN) are activated to suppress energy expenditure, in part by decreasing brown adipose tissue sympathetic nerve activity (BAT SNA); however, the NPY receptor subtype and brain neurocircuitry are unclear. In the present study, we investigated the inhibition of BAT SNA by exogenous and endogenous NPY via binding to Y1 receptors (NPY1R) in the hypothalamic paraventricular nucleus (PVN) and dorsomedial hypothalamus (DMH), in anaesthetised male rats. Downstream projections of PVN/DMH NPY1R-expressing neurones were identified using male Npy1r-cre mice and localised unilateral DMH or PVN injections of an adeno-associated virus, which allows for the cre-dependent expression of a fluorescent protein (mCherry) in the cell bodies, axon fibres and nerve terminals of NPY1R-containing neurones. Nanoinjections of NPY into the DMH of cooled rats decreased BAT SNA, as well as mean arterial pressure (MAP) and heart rate (HR), and these responses were reversed by subsequent injection of the selective NPY1R antagonist, BIBO3304. In warmed rats, with little to no BAT SNA, bilateral nanoinjections of BIBO3304 into the DMH or PVN increased BAT SNA, MAP and HR. DMH NPY1R-expressing neurones projected heavily to the raphe pallidus (RPa), which houses BAT presympathetic neurones, as well as the PVN. In anaesthetised mice, DMH BIBO3304 increased splanchnic SNA, MAP and HR, all of which were reversed by nonselective blockade of the PVN with muscimol, suggesting that DMH-to-PVN connections are involved in this DMH BIBO3304 disinhibition. PVN Y1R expressing neurones also projected to the RPa, as well as to the nucleus tractus solitarius. We conclude that NPY tonically released in the DMH and PVN suppresses BAT SNA, MAP and HR via Y1R. Downstream neuropathways for BAT SNA may utilise direct projections to the RPa. Release of tonic NPY inhibition of BAT SNA may contribute to feeding- and diet-induced thermogenesis.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Alyssa C. Bonillas
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Jennifer Wong
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| | - Stephanie L. Padilla
- Department of Biology, University of Massachusetts,
Amherst, Amherst, MA, USA 01003
| | - Virginia L. Brooks
- Department of Chemical Physiology and Biochemistry, Oregon
Health & Science University, Portland, OR, USA 97239
| |
Collapse
|
4
|
Rothhaas R, Chung S. Role of the Preoptic Area in Sleep and Thermoregulation. Front Neurosci 2021; 15:664781. [PMID: 34276287 PMCID: PMC8280336 DOI: 10.3389/fnins.2021.664781] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sleep and body temperature are tightly interconnected in mammals: warming up our body helps to fall asleep and the body temperature in turn drops while falling asleep. The preoptic area of the hypothalamus (POA) serves as an essential brain region to coordinate sleep and body temperature. Understanding how these two behaviors are controlled within the POA requires the molecular identification of the involved circuits and mapping their local and brain-wide connectivity. Here, we review our current understanding of how sleep and body temperature are regulated with a focus on recently discovered sleep- and thermo-regulatory POA neurons. We further discuss unresolved key questions including the anatomical and functional overlap of sleep- and thermo-regulatory neurons, their pathways and the role of various signaling molecules. We suggest that analysis of genetically defined circuits will provide novel insights into the mechanisms underlying the coordinated regulation of sleep and body temperature in health and disease.
Collapse
Affiliation(s)
- Rebecca Rothhaas
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Shinjae Chung
- Department of Neuroscience, Perelman School of Medicine, Chronobiology and Sleep Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Sela Y, Hoekstra MM, Franken P. Sub-minute prediction of brain temperature based on sleep-wake state in the mouse. eLife 2021; 10:62073. [PMID: 33683202 PMCID: PMC7939547 DOI: 10.7554/elife.62073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Although brain temperature has neurobiological and clinical importance, it remains unclear which factors contribute to its daily dynamics and to what extent. Using a statistical approach, we previously demonstrated that hourly brain temperature values co-varied strongly with time spent awake (Hoekstra et al., 2019). Here we develop and make available a mathematical tool to simulate and predict cortical temperature in mice based on a 4-s sleep-wake sequence. Our model estimated cortical temperature with remarkable precision and accounted for 91% of the variance based on three factors: sleep-wake sequence, time-of-day ('circadian'), and a novel 'prior wake prevalence' factor, contributing with 74%, 9%, and 43%, respectively (including shared variance). We applied these optimized parameters to an independent cohort of mice and predicted cortical temperature with similar accuracy. This model confirms the profound influence of sleep-wake state on brain temperature, and can be harnessed to differentiate between thermoregulatory and sleep-wake-driven effects in experiments affecting both.
Collapse
Affiliation(s)
- Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Marieke Mb Hoekstra
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Terasawa E. Mechanism of pulsatile GnRH release in primates: Unresolved questions. Mol Cell Endocrinol 2019; 498:110578. [PMID: 31518609 PMCID: PMC6944307 DOI: 10.1016/j.mce.2019.110578] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022]
Abstract
The pulsatility of GnRH release is essential for reproductive function. The key events in reproductive function, such as puberty onset and ovulatory cycles, are regulated by the frequency and amplitude modulation of pulsatile GnRH release. Abnormal patterns of GnRH pulsatility are seen in association with disease states, such as polycystic ovarian syndrome and anorexia nervosa. Recent studies with physiological, track-tracing, optogenetic and electrophysiological recording experiments indicate that a group of kisspeptin neurons in the arcuate nucleus (ARC) of the hypothalamus are responsible for pulsatile GnRH release. Thus, the kisspeptin neuron in the ARC has been called the "GnRH pulse-generator." However, a few pieces of evidence do not quite fit into this concept. This article reviews some old works and discusses unresolved issues on the mechanism of GnRH pulse generation.
Collapse
Affiliation(s)
- Ei Terasawa
- AWisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53715, USA; Department of Pediatrics, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|