1
|
De A, Shukla A, Masood Husain S. One-Pot Multienzyme Cascades for Stereodivergent Synthesis of Tetrahydroquinolines. Angew Chem Int Ed Engl 2024:e202411561. [PMID: 39188019 DOI: 10.1002/anie.202411561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
The tetrahydroquinoline (THQ) framework is commonly found in natural products and pharmaceutically relevant molecules. Apart from using transition metal catalysts and chiral phosphoric acids, the chiral 2-substituted 1,2,3,4-THQs are synthesized using amine oxidase biocatalysts. However, the use of imine reductases (IREDs) in their asymmetric synthesis remained unexplored. In the current work, IREDs are employed in telescopic multienzyme cascades to catalyze the intramolecular reductive amination leading to chiral 2-alkyl and 2-aryl substituted-1,2,3,4-tetrahydroquinolines starting from inexpensive nitroalkenones. The cascades containing NtDBR (an ene reductase), NfsB (a nitro reductase) with either Na2S2O4 or V2O5, various IREDs, and glucose dehydrogenase (for NADPH regeneration) are used to synthesize a broad range of (R)/(S)-2-alkyl-substituted (THQs) (26 examples) with high yield (up to 93 %) and excellent ee (up to 99 %) in one-pot. The method further facilitates the one-pot biocatalytic synthesis of chiral 2-aryl substituted THQs (26 examples) from amino chalcones. Lastly, the asymmetric synthesis of several (R)- and (S)-THQ based intermediates of Hancock alkaloids showed the practical application of the newly developed biocatalytic cascades.
Collapse
Affiliation(s)
- Arijit De
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, INDIA
| | - Ajeet Shukla
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, INDIA
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, INDIA
| |
Collapse
|
2
|
Pedrinho A, Karas PA, Kanellopoulos A, Feray E, Korman I, Wittenberg G, Ramot O, Karpouzas DG. The effect of natural products used as pesticides on the soil microbiota: OECD 216 nitrogen transformation test fails to identify effects that were detected via q-PCR microbial abundance measurement. PEST MANAGEMENT SCIENCE 2024; 80:2563-2576. [PMID: 38243771 DOI: 10.1002/ps.7961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Natural products present an environmentally attractive alternative to synthetic pesticides which have been implicated in the off-target effect. Currently, the assessment of pesticide toxicity on soil microorganisms relies on the OECD 216 N transformation assay (OECD stands for the Organisation Economic Co-operation and Development, which is a key international standard-setting organisation). We tested the hypotheses that (i) the OECD 216 assay fails to identify unacceptable effects of pesticides on soil microbiota compared to more advanced molecular and standardized tests, and (ii) the natural products tested (dihydrochalcone, isoflavone, aliphatic phenol, and spinosad) are less toxic to soil microbiota compared to a synthetic pesticide compound (3,5-dichloraniline). We determined the following in three different soils: (i) ammonium (NH4 +) and nitrate (NO3 -) soil concentrations, as dictated by the OECD 216 test, and (ii) the abundance of phylogenetically (bacteria and fungi) and functionally distinct microbial groups [ammonia-oxidizing archaea (AOA) and bacteria (AOB)] using quantitative polymerase chain reaction (q-PCR). RESULTS All pesticides tested exhibited limited persistence, with spinosad demonstrating the highest persistence. None of the pesticides tested showed clear dose-dependent effects on NH4 + and NO3 - levels and the observed effects were <25% of the control, suggesting no unacceptable impacts on soil microorganisms. In contrast, q-PCR measurements revealed (i) distinct negative effects on the abundance of total bacteria and fungi, which were though limited to one of the studied soils, and (ii) a significant reduction in the abundance of both AOA and AOB across soils. This reduction was attributed to both natural products and 3,5-dichloraniline. CONCLUSION Our findings strongly advocate for a revision of the current regulatory framework regarding the toxicity of pesticides to soil microbiota, which should integrate advanced and well-standardized tools. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandre Pedrinho
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
- Metabolic Insights Ltd, Ness Ziona, Israel
| | - Panagiotis A Karas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Alexandros Kanellopoulos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| | - Emma Feray
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
- National Museum of Natural History, Paris, France
| | - Ido Korman
- Metabolic Insights Ltd, Ness Ziona, Israel
| | | | - Ofir Ramot
- Metabolic Insights Ltd, Ness Ziona, Israel
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
3
|
Liu H, Zhang R, Zhou BF, Shen Z, Chen XY, Gao J, Wang B. Chromosome-scale genome assembly of sweet tea (Lithocarpus polystachyus Rehder). Sci Data 2023; 10:873. [PMID: 38057329 PMCID: PMC10700502 DOI: 10.1038/s41597-023-02791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023] Open
Abstract
Lithocarpus, with >320 species, is the second largest genus of Fagaceae. However, the lack of a reference genome limits the molecular biology and functional study of Lithocarpus species. Here, we report the chromosome-scale genome assembly of sweet tea (Lithocarpus polystachyus Rehder), the first Lithocarpus species to be sequenced to date. Sweet tea has a 952-Mb genome, with a 21.4-Mb contig N50 value and 98.6% complete BUSCO score. In addition, the per-base consensus accuracy and completeness of the genome were estimated at 60.6 and 81.4, respectively. Genome annotation predicted 37,396 protein-coding genes, with repetitive sequences accounting for 64.2% of the genome. The genome did not undergo whole-genome duplication after the gamma (γ) hexaploidy event. Phylogenetic analysis showed that sweet tea diverged from the genus Quercus approximately at 59 million years ago. The high-quality genome assembly and gene annotation resources enrich the genomics of sweet tea, and will facilitate functional genomic studies in sweet tea and other Fagaceae species.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China.
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China.
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Biao-Feng Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Zhao Shen
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Xue-Yan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Jie Gao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden/Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, 666303, Yunnan, China
| | - Baosheng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, Guangdong, China.
- South China National Botanical Garden, Chinese Academy of Sciences (CAS), Guangzhou, China.
| |
Collapse
|
4
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
5
|
Miranda S, Lagrèze J, Knoll AS, Angeli A, Espley RV, Dare AP, Malnoy M, Martens S. De novo transcriptome assembly and functional analysis reveal a dihydrochalcone 3-hydroxylase(DHC3H) of wild Malus species that produces sieboldin in vivo. FRONTIERS IN PLANT SCIENCE 2022; 13:1072765. [PMID: 36589107 PMCID: PMC9800874 DOI: 10.3389/fpls.2022.1072765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Sieboldin is a specialised secondary metabolite of the group of dihydrochalcones (DHC), found in high concentrations only in some wild Malus species, closely related to the domesticated apple (Malus × domestica L.). To date, the first committed step towards the biosynthesis of sieboldin remains unknown. In this study, we combined transcriptomic analysis and a de novo transcriptome assembly to identify two putative 3-hydroxylases in two wild Malus species (Malus toringo (K. Koch) Carriere syn. sieboldii Rehder, Malus micromalus Makino) whose DHC profile is dominated by sieboldin. We assessed the in vivo activity of putative candidates to produce 3-hydroxyphloretin and sieboldin by de novo production in Saccharomyces cerevisiae. We found that CYP98A proteins of wild Malus accessions (CYP98A195, M. toringo and CYP98A196, M. micromalus) were able to produce 3-hydroxyphloretin, ultimately leading to sieboldin accumulation by co-expression with PGT2. CYP98A197-198 genes of M. × domestica, however, were unable to hydroxylate phloretin in vivo. CYP98A195-196 proteins exerting 3-hydroxylase activity co-localised with an endoplasmic reticulum marker. CYP98A protein model from wild accessions showed mutations in key residues close to the ligand pocket predicted using phloretin for protein docking modelling. These mutations are located within known substrate recognition sites of cytochrome P450s, which could explain the acceptance of phloretin in CYP98A protein of wild accessions. Screening a Malus germplasm collection by HRM marker analysis for CYP98A genes identified three clusters that correspond to the alleles of domesticated and wild species. Moreover, CYP98A isoforms identified in M. toringo and M. micromalus correlate with the accumulation of sieboldin in other wild and hybrid Malus genotypes. Taken together, we provide the first evidence of an enzyme producing sieboldin in vivo that could be involved in the key hydroxylation step towards the synthesis of sieboldin in Malus species.
Collapse
Affiliation(s)
- Simón Miranda
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, Trento, Italy
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Jorge Lagrèze
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, Trento, Italy
| | - Anne-Sophie Knoll
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Andrea Angeli
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mickael Malnoy
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Stefan Martens
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
6
|
Faleva AV, Ul’yanovskii NV, Falev DI, Onuchina AA, Budaev NA, Kosyakov DS. New Oligomeric Dihydrochalcones in the Moss Polytrichum commune: Identification, Isolation, and Antioxidant Activity. Metabolites 2022; 12:974. [PMID: 36295876 PMCID: PMC9607112 DOI: 10.3390/metabo12100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
One of the most widespread representatives of mosses in the temperate and boreal latitudes of the Northern Hemisphere is common haircap (Polytrichum commune), which is known as the largest moss in the world and widely used in traditional herbal medicine. Polyphenolic compounds constitute one of the most important groups of biologically active secondary metabolites of P. commune, however, the available information on their chemical composition is still incomplete and contradictory. In the present study, a group of dihydrochalcone polyphenolic derivatives that were not previously found in mosses was isolated from P. commune biomass using pressurized liquid extraction with aqueous acetone. The combination of two-dimensional NMR spectroscopy and high-performance liquid chromatography-high-resolution mass spectrometry allowed for identifying them as 3-hydroxyphloretin oligomers formed through a carbon-carbon bond between phloroglucinol and pyrocatechol moieties ("head-to-tail" coupling), with a polymerization degree of 2-5. The individual compounds isolated by preparative reverse-phase HPLC had a purity of 71 to 97% and demonstrated high radical scavenging activity (17.5-42.5% with respect to Trolox) determined by the photochemiluminescence method. Along with the low toxicity predicted by QSAR/QSTR algorithms, this makes 3-hydroxyphloretin oligomers a promising source for the production of biologically active food additives and pharmaceuticals.
Collapse
Affiliation(s)
- Anna V. Faleva
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
| | | | | | | | | | - Dmitry S. Kosyakov
- Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center “Arktika”, M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
| |
Collapse
|
7
|
Ardaillou A, Alsarraf J, Legault J, Simard F, Pichette A. Hemisynthesis and Biological Evaluation of Cinnamylated, Benzylated, and Prenylated Dihydrochalcones from a Common Bio-Sourced Precursor. Antibiotics (Basel) 2021; 10:620. [PMID: 34067407 PMCID: PMC8224620 DOI: 10.3390/antibiotics10060620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Several families of naturally occurring C-alkylated dihydrochalcones display a broad range of biological activities, including antimicrobial and cytotoxic properties, depending on their alkylation sidechain. The catalytic Friedel-Crafts alkylation of the readily available aglycon moiety of neohesperidin dihydrochalcone was performed using cinnamyl, benzyl, and isoprenyl alcohols. This procedure provided a straightforward access to a series of derivatives that were structurally related to natural balsacones, uvaretin, and erioschalcones, respectively. The antibacterial and cytotoxic potential of these novel analogs was evaluated in vitro and highlighted some relations between the structure and the pharmacological properties of alkylated dihydrochalcones.
Collapse
Affiliation(s)
| | - Jérôme Alsarraf
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada; (A.A.); (J.L.); (F.S.)
| | | | | | - André Pichette
- Centre de Recherche sur la Boréalie (CREB), Laboratoire d’Analyse et de Séparation des Essences Végétales (LASEVE), Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada; (A.A.); (J.L.); (F.S.)
| |
Collapse
|
8
|
Tomassini L, Ventrone A, Frezza C, Fabbri AM, Fortuna S, Volpe MT, Cometa MF. Phytochemical analysis of Viburnum davidii Franch. and cholinesterase inhibitory activity of its dihydrochalcones. Nat Prod Res 2020; 35:5794-5800. [PMID: 33094633 DOI: 10.1080/14786419.2020.1837814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
One flavonoid (quercetin, 1) and three dihydrochalcones (6''-O-p-hydroxybenzoyl-davidioside, 2, 4'-O-methyl-davidioside, 3, and davidioside, 4) were isolated from the leaves and young branches of Viburnum davidii Franch. All the structures were identified by comparison of their spectroscopic data (NMR and MS) with those present in literature. In addition, compounds 2-4 were evaluated for their cholinesterase inhibitory (ChEI) activity, for the first time. Accordingly, compounds 2 and 4 showed significant inhibition of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values equal to 36.883 and 39.274 µM, respectively for the former and 39.504 and 43.101 µM, respectively for the latter.
Collapse
Affiliation(s)
- Lamberto Tomassini
- Department of Environmental Biology, "La Sapienza" University, Rome, Italy
| | - Antonio Ventrone
- Department of Environmental Biology, "La Sapienza" University, Rome, Italy
| | - Claudio Frezza
- Department of Environmental Biology, "La Sapienza" University, Rome, Italy
| | - Anna Maria Fabbri
- Department of Environmental Biology, "La Sapienza" University, Rome, Italy
| | - Stefano Fortuna
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa Volpe
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Mayr F, Möller G, Garscha U, Fischer J, Rodríguez Castaño P, Inderbinen SG, Temml V, Waltenberger B, Schwaiger S, Hartmann RW, Gege C, Martens S, Odermatt A, Pandey AV, Werz O, Adamski J, Stuppner H, Schuster D. Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. Int J Mol Sci 2020; 21:E7102. [PMID: 32993084 PMCID: PMC7582679 DOI: 10.3390/ijms21197102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/01/2022] Open
Abstract
Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17β-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.
Collapse
Affiliation(s)
- Fabian Mayr
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; (G.M.); (J.A.)
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany; (U.G.); (J.F.)
| | - Jana Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany; (U.G.); (J.F.)
| | - Patricia Rodríguez Castaño
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital Bern, Freiburgstrasse 15, 3010 Bern, Switzerland; (P.R.C.); (A.V.P.)
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Silvia G. Inderbinen
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (S.G.I.); (A.O.)
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Rolf W. Hartmann
- Helmholtz Institute of Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany;
- Saarland University, Pharmaceutical and Medicinal Chemistry, Campus E8.1, 66123 Saarbrücken, Germany
| | - Christian Gege
- University of Heidelberg, Institute of Pharmacy and Molecular Biotechnology (IPMB), Medicinal Chemistry, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010 San Michele all’Adige, Italy;
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (S.G.I.); (A.O.)
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital Bern, Freiburgstrasse 15, 3010 Bern, Switzerland; (P.R.C.); (A.V.P.)
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany;
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; (G.M.); (J.A.)
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Ibdah M, Martens S, Gang DR. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2273-2280. [PMID: 29171271 DOI: 10.1021/acs.jafc.7b04445] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Newe Ya'ar Research Center , Agriculture Research Organization , Post Office Box 1021, Ramat Yishay 30095 , Israel
| | - Stefan Martens
- Department of Food Quality and Nutrition, Centro Ricerca e Innovazione , Fondazione Edmund Mach , Via E. Mach 1 , 38010 San Michele all'Adige , Trentino , Italy
| | - David R Gang
- Institute of Biological Chemistry , Washington State University , Post Office Box 646340, Pullman , Washington 99164-6340 , United States
| |
Collapse
|
11
|
Yahyaa M, Ali S, Davidovich-Rikanati R, Ibdah M, Shachtier A, Eyal Y, Lewinsohn E, Ibdah M. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.). PHYTOCHEMISTRY 2017; 140:125-133. [PMID: 28482241 DOI: 10.1016/j.phytochem.2017.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/23/2017] [Accepted: 04/26/2017] [Indexed: 05/11/2023]
Abstract
Apple (Malus x domestica Brokh.) is a widely cultivated deciduous tree species of significant economic importance. Apple leaves accumulate high levels of flavonoids and dihydrochalcones, and their formation is dependent on enzymes of the chalcone synthase family. Three CHS genes were cloned from apple leaves and expressed in Escherichia coli. The encoded recombinant enzymes were purified and functionally characterized. In-vitro activity assays indicated that MdCHS1, MdCHS2 and MdCHS3 code for proteins exhibiting polyketide synthase activity that accepted either p-dihydrocoumaroyl-CoA, p-coumaroyl-CoA, or cinnamoyl-CoA as starter CoA substrates in the presence of malonyl-CoA, leading to production of phloretin, naringenin chalcone, and pinocembrin chalcone. MdCHS3 coded a chalcone-dihydrochalcone synthase enzyme with narrower substrate specificity than the previous ones. The apparent Km values of MdCHS3 for p-dihydrocoumaryl-CoA and p-coumaryl-CoA were both 5.0 μM. Expression analyses of MdCHS genes varied according to tissue type. MdCHS1, MdCHS2 and MdCHS3 expression levels were associated with the levels of phloretin accumulate in the respective tissues.
Collapse
Affiliation(s)
- Mosaab Yahyaa
- Newe Yaar Research Center, Agriculture Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel
| | - Samah Ali
- Newe Yaar Research Center, Agriculture Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel
| | | | - Muhammad Ibdah
- Sakhnin College Academic College for Teacher Education, Sakhnin, Israel
| | - Alona Shachtier
- Newe Yaar Research Center, Agriculture Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel
| | - Yoram Eyal
- Institute of Plant Science, The Volcani Center, ARO, P.O. Box 6, Bet Dagan, 50250, Israel
| | - Efraim Lewinsohn
- Newe Yaar Research Center, Agriculture Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agriculture Research Organization, P.O.Box 1021, Ramat Yishay, 30095, Israel.
| |
Collapse
|