1
|
O’Brien WT, Spitz G, Xie B, Major BP, Mutimer S, Giesler LP, Bain J, Evans LJ, Duarte Martins B, Piantella S, Alhassan A, Brady S, Cappellari D, Somma V, McColl T, Symons GF, Gore T, Sun M, Kuek T, Horan S, Bei M, Ponsford JL, Willmott C, Reyes J, Ashton NJ, Zetterberg H, Mitra B, O’Brien TJ, Shultz SR, McDonald SJ. Biomarkers of Neurobiologic Recovery in Adults With Sport-Related Concussion. JAMA Netw Open 2024; 7:e2415983. [PMID: 38848061 PMCID: PMC11161851 DOI: 10.1001/jamanetworkopen.2024.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 06/10/2024] Open
Abstract
Importance Sport-related concussion (SRC), a form of mild traumatic brain injury, is a prevalent occurrence in collision sports. There are no well-established approaches for tracking neurobiologic recovery after SRC. Objective To examine the levels of serum glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) in Australian football athletes who experience SRC. Design, Setting, and Participants A cohort study recruiting from April 10, 2021, to September 17, 2022, was conducted through the Victorian Amateur Football Association, Melbourne, Australia. Participants included adult Australian football players with or without SRC. Data analysis was performed from May 26, 2023, to March 27, 2024. Exposure Sport-related concussion, defined as at least 1 observable sign and/or 2 or more symptoms. Main Outcomes and Measures Primary outcomes were serum GFAP and NfL levels at 24 hours, and 1, 2, 4, 6, 8, 12, and 26 weeks. Secondary outcomes were symptoms, cognitive performance, and return to training times. Results Eighty-one individuals with SRC (median age, 22.8 [IQR, 21.3-26.0] years; 89% male) and 56 control individuals (median age, 24.6 [IQR, 22.4-27.3] years; 96% male) completed a total of 945 of 1057 eligible testing sessions. Compared with control participants, those with SRC exhibited higher GFAP levels at 24 hours (mean difference [MD] in natural log, pg/mL, 0.66 [95% CI, 0.50-0.82]) and 4 weeks (MD, 0.17 [95% CI, 0.02-0.32]), and NfL from 1 to 12 weeks (1-week MD, 0.31 [95% CI, 0.12-0.51]; 2-week MD, 0.38 [95% CI, 0.19-0.58]; 4-week MD, 0.31 [95% CI, 0.12-0.51]; 6-week MD, 0.27 [95% CI, 0.07-0.47]; 8-week MD, 0.36 [95% CI, 0.15-0.56]; and 12-week MD, 0.25 [95% CI, 0.04-0.46]). Growth mixture modeling identified 2 GFAP subgroups: extreme prolonged (16%) and moderate transient (84%). For NfL, 3 subgroups were identified: extreme prolonged (7%), moderate prolonged (15%), and minimal or no change (78%). Individuals with SRC who reported loss of consciousness (LOC) (33% of SRC cases) had higher GFAP at 24 hours (MD, 1.01 [95% CI, 0.77-1.24]), 1 week (MD, 0.27 [95% CI, 0.06-0.49]), 2 weeks (MD, 0.21 [95% CI, 0.004-0.42]) and 4 weeks (MD, 0.34 [95% CI, 0.13-0.55]), and higher NfL from 1 week to 12 weeks (1-week MD, 0.73 [95% CI, 0.42-1.03]; 2-week MD, 0.91 [95% CI, 0.61-1.21]; 4-week MD, 0.90 [95% CI, 0.59-1.20]; 6-week MD, 0.81 [95% CI, 0.50-1.13]; 8-week MD, 0.73 [95% CI, 0.42-1.04]; and 12-week MD, 0.54 [95% CI, 0.22-0.85]) compared with SRC participants without LOC. Return to training times were longer in the GFAP extreme compared with moderate subgroup (incident rate ratio [IRR], 1.99 [95% CI, 1.69-2.34]; NfL extreme (IRR, 3.24 [95% CI, 2.63-3.97]) and moderate (IRR, 1.43 [95% CI, 1.18-1.72]) subgroups compared with the minimal subgroup, and for individuals with LOC compared with those without LOC (IRR, 1.65 [95% CI, 1.41-1.93]). Conclusions and Relevance In this cohort study, a subset of SRC cases, particularly those with LOC, showed heightened and prolonged increases in GFAP and NfL levels, that persisted for at least 4 weeks. These findings suggest that serial biomarker measurement could identify such cases, guiding return to play decisions based on neurobiologic recovery. While further investigation is warranted, the association between prolonged biomarker elevations and LOC may support the use of more conservative return to play timelines for athletes with this clinical feature.
Collapse
Affiliation(s)
- William T. O’Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Gershon Spitz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Becca Xie
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Brendan P. Major
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Steven Mutimer
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lauren P. Giesler
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jesse Bain
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Lauren J. Evans
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | | | - Stefan Piantella
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Afizu Alhassan
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Shelby Brady
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - David Cappellari
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Vincenzo Somma
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Thomas McColl
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Georgia F. Symons
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Tenae Gore
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Matthew Sun
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Timothy Kuek
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Seamus Horan
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Michael Bei
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Jennie L. Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Catherine Willmott
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Jonathan Reyes
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Australian Football League, Melbourne, Victoria, Australia
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, United Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, United Kingdom
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, United Kingdom
- UK Dementia Research Institute at University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison
| | - Biswadev Mitra
- Emergency & Trauma Centre, The Alfred Hospital, Australia
- School of Public Health & Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
- Health Sciences, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Jildeh TR, Castle JP, Buckley PJ, Abbas MJ, Hegde Y, Okoroha KR. Lower Extremity Injury After Return to Sports From Concussion: A Systematic Review. Orthop J Sports Med 2022; 10:23259671211068438. [PMID: 35111864 PMCID: PMC8801663 DOI: 10.1177/23259671211068438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Recent studies have suggested increased rates of lower extremity (LE) musculoskeletal injury after a diagnosed concussion, although significant heterogeneity exists. Purpose: To examine the current body of research and determine whether there is an increased risk for LE musculoskeletal injury after a concussion and to identify populations at an increased risk. Study Design: Systematic review; Level of evidence, 3. Methods: A systematic review of current literature using MEDLINE and PubMed databases was performed. Keywords included concussion, athlete, lower extremity injury, and return to sport. Inclusion criteria required original research articles written in the English language examining the rate of LE injuries after a diagnosed concussion. Results: A total of 13 studies involving 4349 athletes (88.1% male and 11.9% female; mean age, 19.8 years) met inclusion criteria. Athletes were classified as high school (46.1%), collegiate (17.0%), or professional (36.9%). Of the 13 studies, 4 demonstrated an increased risk of LE injury within 90 days of a diagnosed concussion (odds ratio [OR], 3.44; 95% CI, 2.99-4.42), and 6 revealed an elevated risk of injury within 1 year of concussion (OR, 1.85; 95% CI, 1.73-2.84). Increased risk was seen in professional (OR, 2.49; 95% CI, 2.40-2.72) and collegiate (OR, 2.00; 95% CI, 1.96-2.16) athletes compared with high school athletes (OR, 0.97; 95% CI, 0.89-1.05). A stepwise increase in risk of sustaining an LE injury was observed with multiple concussions, with increasing risk observed from ≥2 (OR, 2.29; 95% CI, 1.85-2.83) to ≥3 (OR, 2.86; 95% CI, 2.36-3.48) career concussions. Conclusion: An increased incidence of LE injuries was observed at 90 days and 1 year after the diagnosis of a concussion. Higher levels of competition, such as at the collegiate and professional levels, resulted in an increased risk of sustaining a subsequent LE injury after a diagnosed concussion. These results suggest an at-risk population who may benefit from injury prevention methods after a concussion. Future studies should focus on identifying which injuries are most common, during what time period athletes are most vulnerable, and methods to prevent injury after return to sports.
Collapse
Affiliation(s)
- Toufic R. Jildeh
- Department of Orthopaedic Surgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Joshua P. Castle
- Department of Orthopaedic Surgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Patrick J. Buckley
- Department of Orthopaedic Surgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Muhammad J. Abbas
- Department of Orthopaedic Surgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Yash Hegde
- Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Kelechi R. Okoroha
- Division of Sports Medicine, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Liebel SW, Van Pelt KL, Garcia GGP, Czerniak LL, McCrea MA, McAllister TW, Broglio SP. The Relationship between Sport-Related Concussion and Sensation-Seeking. Int J Mol Sci 2020; 21:ijms21239097. [PMID: 33265913 PMCID: PMC7729784 DOI: 10.3390/ijms21239097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Sensation-seeking, or the need for novel and exciting experiences, is thought to play a role in sport-related concussion (SRC), yet much remains unknown regarding these relationships and, more importantly, how sensation-seeking influences SRC risk. The current study assessed sensation-seeking, sport contact level, and SRC history and incidence in a large sample of NCAA collegiate athletes. Data included a full study sample of 22,374 baseline evaluations and a sub-sample of 2037 incident SRC. Independent samples t-test, analysis of covariance, and hierarchical logistic regression were constructed to address study hypotheses. Results showed that (1) among participants without SRC, sensation-seeking scores were higher in athletes playing contact sports compared to those playing limited- or non-contact sports (p < 0.001, R2 = 0.007, η2p = 0.003); (2) in the full study sample, a one-point increase in sensation-seeking scores resulted in a 21% greater risk of prior SRC (OR = 1.212; 95% CI: 1.154-1.272), and in the incident SRC sub-sample, a 28% greater risk of prior SRC (OR = 1.278; 95% CI: 1.104-1.480); (3) a one-point increase in sensation-seeking scores resulted in a 12% greater risk of incident SRC among the full study sample; and (4) sensation-seeking did not vary as a function of incident SRC (p = 0.281, η2p = 0.000). Our findings demonstrate the potential usefulness of considering sensation-seeking in SRC management.
Collapse
Affiliation(s)
- Spencer W. Liebel
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI 48109, USA;
- Correspondence:
| | - Kathryn L. Van Pelt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA;
| | - Gian-Gabriel P. Garcia
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (G.-G.P.G.); (L.L.C.)
| | - Lauren L. Czerniak
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (G.-G.P.G.); (L.L.C.)
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI 53226, USA;
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Steven P. Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|