1
|
Bakrim S, Elouafy Y, Touhtouh J, Aanniz T, El Kadri K, Khalid A, Fawzy S, Mesaik MA, Lee LH, Chamkhi I, Bouyahya A. Exploring the chemistry, biological effects, and mechanism insights of natural coumaroyltyramine: First report. Fitoterapia 2024; 178:106182. [PMID: 39153554 DOI: 10.1016/j.fitote.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Today, pharmaceutical drugs have been shown to have serious side effects, while the bioactive components of botanical plants are proven to be effective in the treatment of several diseases marked by enhanced oxidative stress and mild inflammation, often associated with minimal adverse events. Coumaroyltyramine, designated by various nomenclatures such as paprazine, N-p-trans-coumaroyltyramine, p-coumaroyltyramine and N-p-coumaroyltyramine, could be a promising bioactive ingredient to address health issues thanks to its powerful anti-inflammatory and antioxidant effects. This review represents the first in-depth analysis of coumaroyltyramine, an intriguing phenylpropanoid substance found in many species of plants. In fact, an in-depth examination of coumaroyltyramine's biological characteristics, chemical attributes, and synthesis process has been undertaken. All previous research relating to the discovery, extraction, biosynthesis, and characterization of the biologically and pharmacologically active properties of coumaroyltyramine has been reviewed and taken into consideration in this analysis. All articles published in a peer-reviewed English-language journal were examined between the initial compilations of the appropriate database until February 12, 2024. A variety of phytochemicals revealed that coumaroyltyramine is a neutral amide of hydroxycinnamic acid that tends to concentrate in plants as a reaction against infection caused by pathogens and is extracted from several medicinal herbs such as Cannabis sativa, Solanum melongena, Allium bakeri, Annona cherimola, Polygonatum zanlanscianense, and Lycopersicon esculentum. Thanks to its effectiveness in suppressing the effect of the enzyme α-glucosidase, coumaroltyramine has demonstrated antihyperglycemic activity and could have an impact on diabetes and metabolic disorders. It has considerable anti-inflammatory and antioxidant effects. These results were obtained through biological and pharmacological studies in silico, in vivo, and in vitro. In addition, coumaroyltyramine has demonstrated hypocholesterolemic and neuroprotective benefits, thereby diminishing heart and vascular disease incidence and helping to prevent neurological disorders. Other interesting properties of coumaroltyramine include anticancer, antibacterial, anti-urease, antifungal, antiviral, and antidysmenorrheal activities. Targeted pathways encompass activity at different molecular levels, notably through induction of endoplasmic reticulum stress-dependent apoptosis, arrest of the cell cycle, and inhibition of the growth of cancer cells, survival, and proliferation. Although the findings from in silico, in vivo, and in vitro experiments illustrate coumaroyltyramine's properties and modes of action, further research is needed to fully exploit its therapeutic potential. To improve our understanding of the compound's pharmacodynamic effects and pharmacokinetic routes, large-scale research should first be undertaken. To determine whether coumaroyltyramine is clinically safe and effective, further studies are required in the clinical and toxicological fields. This upcoming research will be crucial to achieving the overall potency of this substance as a natural drug and in terms of its potential synergies with other drugs.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat BP 1014, Morocco.
| | - Jihane Touhtouh
- Natural Resources and Environment Laboratory, Multidisciplinary Faculty of Taza, Sidi Mohammed Ben Abdellah University, Fez 30000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco.
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia.
| | - Shereen Fawzy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - M Ahmed Mesaik
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia.
| | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, 315000 Ningbo, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia.
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony. Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
2
|
Marques MP, Varela C, Mendonça L, Cabral C. Nanotechnology-Based Topical Delivery of Natural Products for the Management of Atopic Dermatitis. Pharmaceutics 2023; 15:1724. [PMID: 37376172 DOI: 10.3390/pharmaceutics15061724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic eczematous inflammatory disease that may arise from environmental, genetic, and immunological factors. Despite the efficacy of current treatment options such as corticosteroids, such approaches are mainly focused on symptom relief and may present certain undesirable side effects. In recent years, isolated natural compounds, oils, mixtures, and/or extracts have gained scientific attention because of their high efficiency and moderate to low toxicity. Despite their promising therapeutic effects, the applicability of such natural healthcare solutions is somewhat limited by their instability, poor solubility, and low bioavailability. Therefore, novel nanoformulation-based systems have been designed to overcome these limitations, thus enhancing the therapeutic potential, by promoting the capacity of these natural drugs to properly exert their action in AD-like skin lesions. To the best of our knowledge, this is the first literature review that has focused on summarizing recent nanoformulation-based solutions loaded with natural ingredients, specifically for the management of AD. We suggest that future studies should focus on robust clinical trials that may confirm the safety and effectiveness of such natural-based nanosystems, thus paving the way for more reliable AD treatments.
Collapse
Affiliation(s)
- Mário Pedro Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Varela
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products (CIEPQPF), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Laura Mendonça
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Gurushankar K, Jeyaseelan SC, Grishina M, Siswanto I, Tiwari R, Puspaningsih NNT. Density Functional Theory, Molecular Dynamics and AlteQ Studies Approaches of Baimantuoluoamide A and Baimantuoluoamide B to Identify Potential Inhibitors of M pro Proteins: a Novel Target for the Treatment of SARS COVID-19. JETP LETTERS 2023; 117:1-10. [PMID: 37360903 PMCID: PMC10184967 DOI: 10.1134/s0021364023600039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 has resulted in epidemi conditions over the world. Despite efforts by scientists from all over the world to develop an effective va ine against this virus, there is presently no recognized cure for COVID-19. The most succeed treatments for various ailments come from natural components found in medicinal plants, which are also rucial for the development of new medications. This study intends to understand the role of the baimantuoluoamide A and baimantuoluoamide B molecules in the treatment of Covid19. Initially, density functional theory (DFT) used to explore their electronic potentials along with the Becke3-Lee-Yang-Parr (B3LYP) 6-311 + G(d, p) basis set. A number of characteristics, including the energy gap, hardness, local softness, electronegativity, and electrophilicity, have also been calculated to discuss the reactivity of mole ules. Using natural bond orbital, the title compound's bioactive nature and stability were investigated. Further, both compounds potential inhibitors with main protease (Mpro) proteins, molecular dynamics simulations and AlteQ investigations also studied. Supplementary Information The online version contains supplementary material available at 10.1134/S0021364023600039.
Collapse
Affiliation(s)
- K. Gurushankar
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Physics, Kalasalingam Academy of Research and Education, 626126 Krishnankoil, Tamilnadu India
| | - S. Ch. Jeyaseelan
- Post Graduate & Research Department of Physics, N.M.S.S.V.N. College, 625019 Madurai, Tamilnadu India
- Post Graduate Department of Physics, Mannar Thirumalai Naciker College, 625004 Madurai, Tamilnadu India
| | - M. Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - I. Siswanto
- Bioinformati Laboratory, UCoE Research Center for Bio-Molecule Engineering Universitas Airlangga, 60115 Surabaya, Indonesia
| | - R. Tiwari
- Department of Physics, Coordinator Research and Development Cell, Dr CV Raman University, 495113 Kargi Kota, Bilaspur CG India
| | - N. N. T. Puspaningsih
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, 60115 Surabaya, Indonesia
| |
Collapse
|
4
|
Farhan N, Rageh Al-Maleki A, Ataei S, Muhamad Sarih N, Yahya R. Synthesis, DFT study, theoretical and experimental spectroscopy of fatty amides based on extra-virgin olive oil and their antibacterial activity. Bioorg Chem 2023; 135:106511. [PMID: 37027951 DOI: 10.1016/j.bioorg.2023.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 μg/mL during eight h of FHA and 0.3 μg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.
Collapse
|
5
|
Thepbandit W, Srisuwan A, Siriwong S, Nawong S, Athinuwat D. Bacillus vallismortis TU-Orga21 blocks rice blast through both direct effect and stimulation of plant defense. FRONTIERS IN PLANT SCIENCE 2023; 14:1103487. [PMID: 36890906 PMCID: PMC9986491 DOI: 10.3389/fpls.2023.1103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Beneficial microorganisms are an important strategy for sustainable plant production processes such as stimulate root exudation, stress tolerance, and yield improvement. This study investigated various microorganisms isolated from the rhizosphere of Oryza sativa L. in order to inhibit Magnaporthe oryzae cause of rice blast, by direct and indirect mode of action. The results indicated that Bacillus vallismortis strain TU-Orga21 significantly reduced M. oryzae mycelium growth and deformed the hyphal structures. The effects of biosurfactant TU-Orga21 was studied against M. oryzae spore development. The dose of ≥5% v/v biosurfactant significantly inhibited the germ tubes and appressoria formation. The biosurfactants were evaluated as surfactin and iturin A by Matrix-assisted laser desorption ionization dual time-of-flight tandem mass spectrometry. Under greenhouse conditions, priming the biosurfactant three times before M. oryzae infection significantly accumulated endogenous salicylic acid, phenolic compounds, and hydrogen peroxide (H2O2) during the infection process of M. oryzae. The SR-FT-IR spectral changes from the mesophyll revealed higher integral area groups of lipids, pectins, and proteins amide I and amide II in the elicitation sample. Furthermore, scanning electron microscope revealed appressorium and hyphal enlargement in un-elicitation leaves whereas appressorium formation and hyphal invasion were not found in biosurfactant-elicitation at 24 h post inoculation. The biosurfactant treatment significantly mitigated rice blast disease severity. Therefore, B. vallismortis can be a promising novel biocontrol agent which contains the preformed active metabolites for a rapid control of rice blast by a direct action against pathogen and by boosting plant immunity.
Collapse
Affiliation(s)
| | - Anake Srisuwan
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| | | | - Siriwan Nawong
- Synchrotron Light Research Institute, Nakhon Ratchasima, Thailand
| | - Dusit Athinuwat
- Faculty of Science and Technology, Thammasat University, Pathumtani, Thailand
- Center of Excellence in Agriculture Innovation Centre through Supply Chain and Value Chain, Thammasat University, Pathumtani, Thailand
| |
Collapse
|
6
|
Török AI, Moldovan A, Kovacs E, Cadar O, Becze A, Levei EA, Neag E. Lithium Accumulation in Salvinia natans Free-Floating Aquatic Plant. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7243. [PMID: 36295307 PMCID: PMC9611884 DOI: 10.3390/ma15207243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The new context of the intensive use of lithium-based batteries led to increased production of Li and Li-containing wastes. All these activities are potential sources of environmental pollution with Li. However, the negative impact of Li on ecosystems, its specific role in the plants' development, uptake mechanism, and response to the induced stress are not fully understood. In this sense, the Li uptake and changes induced by Li exposure in the major and trace element contents, photosynthetic pigments, antioxidant activity, and elemental composition of Salvinia natans were also investigated. The results showed that Salvinia natans grown in Li-enriched nutrient solutions accumulated much higher Li contents than those grown in spring waters with a low Li content. However, the Li bioaccumulation factor in Salvinia natans grown in Li-enriched nutrient solutions was lower (13.3-29.5) than in spring waters (13.0-42.2). The plants exposed to high Li contents showed a decrease in their K and photosynthetic pigments content, while their total antioxidant activity did not change substantially.
Collapse
Affiliation(s)
- Anamaria Iulia Török
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ana Moldovan
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Eniko Kovacs
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, 3–5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Anca Becze
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Erika Andrea Levei
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Emilia Neag
- Research Institute for Analytical Instrumentation Subsidiary, National Institute for Research and Development for Optoelectronics INOE 2000, 67 Donath Street, 400293 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Shafiee SA, Danial WH, Perry SC, Ali ZI, Mohamed Huri MA, Mohmad Sabere AS. Qualitative and Quantitative Methods of Capsaicinoids: a Mini-Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
El-Sayed ESR, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Express 2022. [PMID: 35438322 DOI: 10.1186/s13568-022-01386x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The search for new bioactive compounds with innovative modes of action and chemistry are desperately needed to tackle the increased emergence of drug-resistant microbes. With this view, this paper was conducted for the isolation, identification, and biological evaluation of fungal endophytes of eleven different plant species. A total of 69 endophytic strains were isolated and tested for the presence of bioactive metabolites with antifungal, antibacterial, anticancer, and antioxidant properties in their extracts. Upon screening, two promising strains were found to have all the before-mentioned activities. These strains were Aspergillus sydowii isolated from the bark of Ricinus communis and Aspergillus flavus isolated from the twigs of Psidium guajava. Major compounds present in extracts of the two strains were identified by GC-Mass analyses. Several well-known bioactive compounds as well as unreported ones were identified in the fungal extracts of the two strains. Furthermore, gamma irradiation (at 1000 Gy) of the fungal cultures resulted in improved bioactivities of extracts from the two strains. These findings recommend the two fungal strains as sources of antimicrobial, anticancer, and antioxidant compounds which may aid in the development of novel drugs. The presented research also explains the high-value of fungal endophytes as untapped sources of bioactive metabolites.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Magdia A Hazaa
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Magdy M Shebl
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Amer
- Department of Botany, and Microbiology Faculty of Science, Benha University, Benha, Qalubiya Governorate, Egypt
| | - Samar R Mahmoud
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Abeer A Khattab
- Department of Botany, and Microbiology Faculty of Science, Benha University, Benha, Qalubiya Governorate, Egypt
| |
Collapse
|
9
|
El-Sayed ESR, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Express 2022; 12:46. [PMID: 35438322 PMCID: PMC9018947 DOI: 10.1186/s13568-022-01386-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 01/25/2023] Open
Abstract
The search for new bioactive compounds with innovative modes of action and chemistry are desperately needed to tackle the increased emergence of drug-resistant microbes. With this view, this paper was conducted for the isolation, identification, and biological evaluation of fungal endophytes of eleven different plant species. A total of 69 endophytic strains were isolated and tested for the presence of bioactive metabolites with antifungal, antibacterial, anticancer, and antioxidant properties in their extracts. Upon screening, two promising strains were found to have all the before-mentioned activities. These strains were Aspergillus sydowii isolated from the bark of Ricinus communis and Aspergillus flavus isolated from the twigs of Psidium guajava. Major compounds present in extracts of the two strains were identified by GC-Mass analyses. Several well-known bioactive compounds as well as unreported ones were identified in the fungal extracts of the two strains. Furthermore, gamma irradiation (at 1000 Gy) of the fungal cultures resulted in improved bioactivities of extracts from the two strains. These findings recommend the two fungal strains as sources of antimicrobial, anticancer, and antioxidant compounds which may aid in the development of novel drugs. The presented research also explains the high-value of fungal endophytes as untapped sources of bioactive metabolites.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Magdia A Hazaa
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Magdy M Shebl
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Amer
- Department of Botany, and Microbiology Faculty of Science, Benha University, Benha, Qalubiya Governorate, Egypt
| | - Samar R Mahmoud
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Abeer A Khattab
- Department of Botany, and Microbiology Faculty of Science, Benha University, Benha, Qalubiya Governorate, Egypt
| |
Collapse
|
10
|
Oloya B, Namukobe J, Heydenreich M, Ssengooba W, Schmidt B, Byamukama R. Antimycobacterial Activity of the Extract and Isolated Compounds From the Stem Bark of Zanthoxylum leprieurii Guill. and Perr. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211035851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Zanthoxylum leprieurii Guill. and Perr. (Rutaceae) stem bark is used locally in Uganda for treating tuberculosis (TB) and cough-related infections. Lupeol (1), sesamin (2), trans-fagaramide (3), arnottianamide (4), ( S)-marmesinin (5), and hesperidin (6) were isolated from the chloroform/methanol (1:1) extract of Z. leprieurii stem bark. Their structures were elucidated using spectroscopic techniques and by comparison with literature data. Furthermore, the extract and isolated compounds were subjected to antimycobacterial activity. The extract exhibited moderate activity against the susceptible (H37Rv) TB strain, but weak activity against the multidrug resistant (MDR)-TB strain with minimum inhibitory concentrations (MICs) of 586.0 and 1172.0 μg/mL, respectively. Compound 3 (trans-fagaramide) showed significant antimycobacterial activity against the susceptible (H37Rv) TB strain (MIC 6 μg/mL), but moderate activity against the MDR-TB strain (MIC 12.2 μg/mL). Compounds 2, 5, 6, and 1 showed moderate activities against the susceptible (H37Rv) strain (MIC 12.2-98.0 μg/mL) and moderate to weak activities against the MDR-TB strain (MIC 24.4-195.0 μg/mL). This study reports for the first time the isolation of compounds 1 to 6 from the stem bark of Z leprieurii. trans-Fagaramide (3) may present a vital template in pursuit of novel and highly effective TB drugs.
Collapse
Affiliation(s)
- Benson Oloya
- Department of Chemistry, Makerere University, Kampala, Uganda
- Department of Chemistry, Muni University, Arua, Uganda
| | - Jane Namukobe
- Department of Chemistry, Makerere University, Kampala, Uganda
| | | | - Willy Ssengooba
- Department of Microbiology, Makerere University, Kampala, Uganda
| | - Bernd Schmidt
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
11
|
Zeiss DR, Piater LA, Dubery IA. Hydroxycinnamate Amides: Intriguing Conjugates of Plant Protective Metabolites. TRENDS IN PLANT SCIENCE 2021; 26:184-195. [PMID: 33036915 DOI: 10.1016/j.tplants.2020.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 05/09/2023]
Abstract
The syntheses of aromatic monoamines and aliphatic polyamines (PAs) are responsive to environmental stresses, with some modulating aspects of plant defense. Conjugation of amines to hydroxycinnamic acids (HCAs) generates HCA amides (HCAAs), with the conjugates possessing properties from both compounds. Conjugation may reduce the polarity of the resulting metabolite and assist in translocation, stability, and compartmentalization. Recent metabolomic insights identified HCAAs as biomarkers during plant-pathogen interactions, supporting a functional role in defense. The conjugates may contribute to regulation of the dynamic metabolic pool of hydroxycinnamates. This review highlights the occurrence of aromatic amines (AAs) and PAs in stress metabolism, conjugation to HCAs, and the roles of HCAAs during host defense, adding emphasis on their involvement in hydrogen peroxide (H2O2) production and cell-wall strengthening.
Collapse
Affiliation(s)
- Dylan R Zeiss
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park, Johannesburg, South Africa.
| |
Collapse
|
12
|
Novel Amides Derivative with Antimicrobial Activity of Piper betle var. nigra Leaves from Indonesia. Molecules 2021; 26:molecules26020335. [PMID: 33440705 PMCID: PMC7826617 DOI: 10.3390/molecules26020335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/04/2022] Open
Abstract
Piper betle var. nigra is a tropical plant closely related to the common piper. P. betle has also been dubbed a promising source of natural antioxidants in herbal health products, antibacterial, antifungal, antimalarial, cytotoxic activity against the cancer cell lines K562 and HL-60, and antileishmanial. The aim of this study to observation Antimicrobial activity and isolation of chemical compound. The antimicrobial activity of P. betle extract was performed by well diffusion method against two oral pathogenic bacteria (Streptococcus mutans and Streptococcus sanguinis) and opportunistic pathogenic yeast (Candida albicans). The inoculum (bacterial and yeast suspension) was prepared from a 24-h culture on NB for bacterial suspension and on TSB for yeast suspension. Extraction and isolation using various method of chromatography. Isolated compounds were characterized by spectroscopic means. Our study showed antimicrobial activity from crude ethanol extract of leaves P. betle L. var. nigra against two oral pathogenic bacteria and opportunistic pathogenic yeast with concentration 0.5% and 1%. The first report of two new amides derivatives, piperenamide A (1) and piperenamide B (2) in P. betle L. var. nigra.
Collapse
|
13
|
Ghouizi AE, Menyiy NE, Falcão SI, Vilas-Boas M, Lyoussi B. Chemical composition, antioxidant activity, and diuretic effect of Moroccan fresh bee pollen in rats. Vet World 2020; 13:1251-1261. [PMID: 32848298 PMCID: PMC7429394 DOI: 10.14202/vetworld.2020.1251-1261] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Aim: This study investigated the chemical composition, antioxidant activity, and diuretic effect of Moroccan aqueous extract of fresh bee pollen (AEFBP) in normal rats. Materials and Methods: The chemical composition of the extracted bioactive compounds was assessed using liquid chromatography with diode array detection coupled to electrospray ionization (ESI) tandem mass spectrometry (LC/DAD/ESI-MSn). 2,2-diphenyl-1-picrylhydrazyl and the reducing power were used to assess the antioxidant properties of the extract, together with the determination of total phenols and flavonoids. To assess the diuretic effect, 20 normal rats were divided into five groups: The first was a control group administered by distilled water (10 mL/kg body weight), the second group received furosemide (10 mg/kg body weight), the third group received 100 mg/kg body weight of AEFBP, the fourth group received 250 mg/kg body weight of AEFBP, and the fifth group received 500 mg/kg body weight of AEFBP for 30 days. Toward the end of this experiment, urine output was measured, and plasma and urine were sampled to analyze creatinine, potassium, chloride, and sodium levels. Results: N1,N5,N10-tri-p-coumaroylspermidine is a spermidine derivative and was the main compound in this sample, in a total of 19 compounds identified, including flavonoids, glucoside flavonoids, and methylated derivatives. Force feeding with the AEFBP induced a significant increase in urine output and urinary electrolyte levels with a dependent dose-effect without changes in plasma electrolytes, whereas furosemide decreased plasma potassium. Conclusion: Moroccan fresh bee pollen extract contains flavonols and spermidines that induce a potential antioxidant activity related to significant diuretic effect without changes in plasma composition.
Collapse
Affiliation(s)
- Asmae El Ghouizi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), University of Sidi Mohamed Ben Abdellah, Fez 30 000, Morocco
| | - Nawal El Menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), University of Sidi Mohamed Ben Abdellah, Fez 30 000, Morocco
| | - Soraia I Falcão
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), University of Sidi Mohamed Ben Abdellah, Fez 30 000, Morocco
| |
Collapse
|