1
|
Lukow PB, Lowther M, Pike AC, Yamamori Y, Chavanne AV, Gormley S, Aylward J, McCloud T, Goble T, Rodriguez-Sanchez J, Tuominen EW, Buehler SK, Kirk P, Robinson OJ. Amygdala activity after subchronic escitalopram administration in healthy volunteers: A pharmaco-functional magnetic resonance imaging study. J Psychopharmacol 2024; 38:1071-1082. [PMID: 39364684 PMCID: PMC11531087 DOI: 10.1177/02698811241286773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are used for the treatment of several conditions including anxiety disorders, but the basic neurobiology of serotonin function remains unclear. The amygdala and prefrontal cortex are strongly innervated by serotonergic projections and have been suggested to play an important role in anxiety expression. However, serotonergic function in behaviour and SSRI-mediated neurobiological changes remain incompletely understood. AIMS To investigate the neural correlates of subchronic antidepressant administration. METHODS We investigated whether the 2- to 3-week administration of a highly selective SSRI (escitalopram) would alter brain activation on a task robustly shown to recruit the bilateral amygdala and frontal cortices in a large healthy volunteer sample. Participants performed the task during a functional magnetic resonance imaging acquisition before (n = 96) and after subchronic escitalopram (n = 46, days of administration mean (SD) = 15.7 (2.70)) or placebo (n = 40 days of administration mean (SD) = 16.2 (2.90)) self-administration. RESULTS Compared to placebo, we found an elevation in right amygdala activation to the task after escitalopram administration without significant changes in mood. This effect was not seen in the left amygdala, the dorsomedial region of interest, the subgenual anterior cingulate cortex or the right fusiform area. There were no significant changes in connectivity between the dorsomedial cortex and amygdala or the subgenual anterior cingulate cortex after escitalopram administration. CONCLUSIONS To date, this most highly powered study of subchronic SSRI administration indicates that, contrary to effects often seen in patients with anxiety disorders, subchronic SSRI treatment may increase amygdala activation in healthy controls. This finding highlights important gaps in our understanding of the functional role of serotonin.
Collapse
Affiliation(s)
- Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Millie Lowther
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alexandra C Pike
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK
| | - Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alice V Chavanne
- Institute of Cognitive Neuroscience, University College London, London, UK
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales Psychiatrie,” Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Siobhan Gormley
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Jessica Aylward
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Tayla McCloud
- Institute of Cognitive Neuroscience, University College London, London, UK
- UCL Division of Psychiatry, Maple House, London, UK
| | - Talya Goble
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Julia Rodriguez-Sanchez
- Institute of Cognitive Neuroscience, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Ella W Tuominen
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah K Buehler
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Peter Kirk
- Institute of Cognitive Neuroscience, University College London, London, UK
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
2
|
Goulty M, Botton-Amiot G, Rosato E, Sprecher SG, Feuda R. The monoaminergic system is a bilaterian innovation. Nat Commun 2023; 14:3284. [PMID: 37280201 DOI: 10.1038/s41467-023-39030-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Monoamines like serotonin, dopamine, and adrenaline/noradrenaline (epinephrine/norepinephrine) act as neuromodulators in the nervous system. They play a role in complex behaviours, cognitive functions such as learning and memory formation, as well as fundamental homeostatic processes such as sleep and feeding. However, the evolutionary origin of the genes required for monoaminergic modulation is uncertain. Using a phylogenomic approach, in this study, we show that most of the genes involved in monoamine production, modulation, and reception originated in the bilaterian stem group. This suggests that the monoaminergic system is a bilaterian novelty and that its evolution may have contributed to the Cambrian diversification.
Collapse
Affiliation(s)
- Matthew Goulty
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, UK
| | - Gaelle Botton-Amiot
- Department of Biology, Institute of Zoology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, UK
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, CH-1700, Fribourg, Switzerland
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicestershire, UK.
| |
Collapse
|
3
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
4
|
Deidda G, Crunelli V, Di Giovanni G. 5-HT/GABA interaction in epilepsy. PROGRESS IN BRAIN RESEARCH 2021; 259:265-286. [PMID: 33541679 DOI: 10.1016/bs.pbr.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epilepsy is a neurological condition characterized by synchronous neuronal oscillations (seizures) in the electroencephalogram. Seizures are classified in focal or generalized (depending on the brain territory interested during seizures), and in convulsive and/or not convulsive (depending on the presence or not of involuntary movements). The current pharmacological treatments are mainly based on GABA modulation although different neurotransmitters are also involved in epilepsy, including serotonin. However despite much extensive progress in the understanding of epilepsy mechanisms, still, a percentage of people with epilepsy are pharmaco-resistant calling for the need for new therapeutic targets. Here we review preclinical and human evidence showing that serotonin modulates epilepsy that this likely happens via a major modulation/interaction with GABA.
Collapse
Affiliation(s)
- Gabriele Deidda
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Vincenzo Crunelli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|