1
|
Kim OV, Litvinov RI, Gagne AL, French DL, Brass LF, Weisel JW. Megakaryocyte-induced contraction of plasma clots: cellular mechanisms and structural mechanobiology. Blood 2024; 143:548-560. [PMID: 37944157 PMCID: PMC11033616 DOI: 10.1182/blood.2023021545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alyssa L. Gagne
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence F. Brass
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
3
|
Beussman KM, Mollica MY, Leonard A, Miles J, Hocter J, Song Z, Stolla M, Han SJ, Emery A, Thomas WE, Sniadecki NJ. Black dots: High-yield traction force microscopy reveals structural factors contributing to platelet forces. Acta Biomater 2023; 163:302-311. [PMID: 34781024 PMCID: PMC9098698 DOI: 10.1016/j.actbio.2021.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Measuring the traction forces produced by cells provides insight into their behavior and physiological function. Here, we developed a technique (dubbed 'black dots') that microcontact prints a fluorescent micropattern onto a flexible substrate to measure cellular traction forces without constraining cell shape or needing to detach the cells. To demonstrate our technique, we assessed human platelets, which can generate a large range of forces within a population. We find platelets that exert more force have more spread area, are more circular, and have more uniformly distributed F-actin filaments. As a result of the high yield of data obtainable by this technique, we were able to evaluate multivariate mixed effects models with interaction terms and conduct a clustering analysis to identify clusters within our data. These statistical techniques demonstrated a complex relationship between spread area, circularity, F-actin dispersion, and platelet force, including cooperative effects that significantly associate with platelet traction forces. STATEMENT OF SIGNIFICANCE: Cells produce contractile forces during division, migration, or wound healing. Measuring cellular forces provides insight into their health, behavior, and function. We developed a technique that calculates cellular forces by seeding cells onto a pattern and quantifying how much each cell displaces the pattern. This technique is capable of measuring hundreds of cells without needing to detach them. Using this technique to evaluate human platelets, we find that platelets exerting more force tend to have more spread area, are more circular in shape, and have more uniformly distributed cytoskeletal filaments. Due to our high yield of data, we were able to apply statistical techniques that revealed combinatorial effects between these factors.
Collapse
Affiliation(s)
- Kevin M Beussman
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Molly Y Mollica
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Jeffrey Miles
- Bloodworks Northwest Research Institute, Seattle, WA
| | - John Hocter
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Zizhen Song
- School of Computer Science & Engineering, University of Washington, Seattle, WA, United States
| | - Moritz Stolla
- Bloodworks Northwest Research Institute, Seattle, WA; Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Sangyoon J Han
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States
| | - Ashley Emery
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States; Department of Bioengineering, University of Washington, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, United States; Resuscitation Engineering Science Unit (RESCU), University of Washington, Seattle, WA, United States.
| |
Collapse
|
4
|
Cheung HYF, Zou J, Tantiwong C, Fernandez DI, Huang J, Ahrends R, Roest M, Cavill R, Gibbins J, Heemskerk JWM. High-throughput assessment identifying major platelet Ca 2+ entry pathways via tyrosine kinase-linked and G protein-coupled receptors. Cell Calcium 2023; 112:102738. [PMID: 37060673 DOI: 10.1016/j.ceca.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
In platelets, elevated cytosolic Ca2+ is a crucial second messenger, involved in most functional responses, including shape change, secretion, aggregation and procoagulant activity. The platelet Ca2+ response consists of Ca2+ mobilization from endoplasmic reticulum stores, complemented with store-operated or receptor-operated Ca2+ entry pathways. Several channels can contribute to the Ca2+ entry, but their relative contribution is unclear upon stimulation of ITAM-linked receptors such as glycoprotein VI (GPVI) and G-protein coupled receptors such as the protease-activated receptors (PAR) for thrombin. We employed a 96-well plate high-throughput assay with Fura-2-loaded human platelets to perform parallel [Ca2+]i measurements in the presence of EGTA or CaCl2. Per agonist condition, this resulted in sets of EGTA, CaCl2 and Ca2+ entry ratio curves, defined by six parameters, reflecting different Ca2+ ion fluxes. We report that threshold stimulation of GPVI or PAR, with a variable contribution of secondary mediators, induces a maximal Ca2+ entry ratio of 3-7. Strikingly, in combination with Ca2+-ATPase inhibition by thapsigargin, the maximal Ca2+ entry ratio increased to 400 (GPVI) or 40 (PAR), pointing to a strong receptor-dependent enhancement of store-operated Ca2+ entry. By pharmacological blockage of specific Ca2+ channels in platelets, we found that, regardless of GPVI or PAR stimulation, the Ca2+ entry ratio was strongest affected by inhibition of ORAI1 (2-APB, Synta66) > Na+/Ca2+ exchange (NCE) > P2×1 (only initial). In contrast, inhibition of TRPC6, Piezo1/2 or STIM1 was without effect. Together, these data reveal ORAI1 and NCE as dominating Ca2+ carriers regulating GPVI- and PAR-induced Ca2+ entry in human platelets.
Collapse
Affiliation(s)
- Hilaire Yam Fung Cheung
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jinmi Zou
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Chukiat Tantiwong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Delia I Fernandez
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Jingnan Huang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, 15706, Spain
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Dept. of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Mark Roest
- Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands
| | - Rachel Cavill
- Department of Advanced Computing Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jon Gibbins
- Institute for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Synapse Research Institute Maastricht, 6217 KD Maastricht, The Netherlands.
| |
Collapse
|
5
|
Gruba S, Wu X, Spanolios E, He J, Xiong-Hang K, Haynes CL. Platelet Response to Allergens, CXCL10, and CXCL5 in the Context of Asthma. ACS BIO & MED CHEM AU 2023; 3:87-96. [PMID: 36820311 PMCID: PMC9936497 DOI: 10.1021/acsbiomedchemau.2c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Asthma is a chronic respiratory disease initiated by a variety of factors, including allergens. During an asthma attack, the secretion of C-X-C-motif chemokine 10 (CXCL10) and chemokine ligand 5 (CCL5) causes the migration of immune cells, including platelets, into the lungs and airway. Platelets, which contain three classes of chemical messenger-filled granules, can secrete vasodilators (adenosine diphosphate and adenosine triphosphate), serotonin (a vasoconstrictor and a vasodilator, depending on the biological system), platelet-activating factor, N-formylmethionyl-leucyl-phenylalanine ((fMLP), a bacterial tripeptide that stimulates chemotaxis), and chemokines (CCL5, platelet factor 4 (PF4), and C-X-C-motif chemokine 12 (CXCL12)), amplifying the asthma response. The goal of this work was threefold: (1) to understand if and how the antibody immunoglobulin E (IgE), responsible for allergic reactions, affects platelet response to the common platelet activator thrombin; (2) to understand how allergen stimulation compares to thrombin stimulation; and (3) to monitor platelet response to fMLP and the chemokines CXCL10 and CCL5. Herein, high-pressure liquid chromatography with electrochemical detection and/or carbon-fiber microelectrode amperometry measured granular secretion events from platelets with and without IgE in the presence of the allergen 2,4,6-trinitrophenyl-conjugated ovalbumin (TNP-Ova), thrombin, CXCL10, or CCL5. Platelet adhesion and chemotaxis were measured using a microfluidic platform in the presence of CXCL10, CCL5, or TNP-OVA. Results indicate that IgE binding promotes δ-granule secretion in response to platelet stimulation by thrombin in bulk. Single-cell results on platelets with exogenous IgE exposure showed significant changes in the post-membrane-granule fusion behavior during chemical messenger delivery events after thrombin stimulation. In addition, TNP-Ova allergen stimulation of IgE-exposed platelets secreted serotonin to the same extent as thrombin platelet stimulation. Enhanced adhesion to endothelial cells was demonstrated by TNP-Ova stimulation. Finally, only after incubation with IgE did platelets secrete chemical messengers in response to stimulation with fMLP, CXCL10, and CCL5.
Collapse
Affiliation(s)
- Sarah Gruba
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaojie Wu
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eleni Spanolios
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiayi He
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kang Xiong-Hang
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Repsold L, Pool R, Karodia M, Tintinger G, Joubert AM. Ex vivo platelet morphology assessment of chronic myeloid leukemia patients before and after Imatinib treatment. Microsc Res Tech 2022; 85:2222-2233. [PMID: 35174933 DOI: 10.1002/jemt.24079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease and the first line treatment is through the administration of Imatinib, a first generation tyrosine kinase inhibitor. Thrombocytosis and bleeding irregularities are common in CML, however, the morphological variations in CML patients' platelets are not well documented. In this study, ex vivo platelet morphology of control participants, as well as CML patients were assessed before and after Imatinib treatment. The topographical and structural morphology of platelets were determined via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Qualitative data of SEM and TEM revealed that CML patient's platelets were prone to aggregation and coagulation at time of diagnosis; the samples that were not aggregated at time of diagnosis showed typical discoid shaped platelets, which was comparable to control participants' platelets. TEM results of CML patients' platelets at diagnosis showed that internal granular constituents including dense bodies were decreased in comparison to control participants. In all CML patients, platelets appeared activated after 6 months of treatment with Imatinib with membrane structure abnormalities and constituent variations. Research to date has primarily focused on the effects of CML on leukocyte populations, however, the results of the current study implicate the impact of CML pathogenesis on platelets, seemingly as a result of alterations in normal hematopoiesis. In addition, the impact of Imatinib treatment on platelet morphology was also established, indicating an increase in platelet activation. Recognizing and understanding the impact of CML disease progression on platelets is of importance to aid improved patient treatment.
Collapse
Affiliation(s)
- Lisa Repsold
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Roger Pool
- Department of Haematology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Mohammed Karodia
- Department of Haematology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gregory Tintinger
- Department of Internal Medicine, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, Faculty of Health Sciences, School of Medicine, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
8
|
Božič D, Vozel D, Hočevar M, Jeran M, Jan Z, Pajnič M, Pađen L, Iglič A, Battelino S, Kralj-Iglič V. Enrichment of plasma in platelets and extracellular vesicles by the counterflow to erythrocyte settling. Platelets 2021; 33:592-602. [PMID: 34384320 DOI: 10.1080/09537104.2021.1961716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In order to prepare optimal platelet and extracellular vesicle (EV)-rich plasma for the treatment of chronic temporal bone inflammation, we studied effects of centrifugation parameters on redistribution of blood constituents in blood samples of 23 patients and 20 volunteers with no record of disease. Concentrations of blood cells and EVs were measured by flow cytometry. Sample content was inspected by scanning electron microscopy. A mathematical model was constructed to interpret the experimental results. The observed enrichment of plasma in platelets and EVs after a single spin of blood depended on the erythrocyte sedimentation rate, thereby indicating the presence of a flow of plasma that carried platelets and EVs in the direction opposite to settling of erythrocytes. Prolonged handling time correlated with the decrease of concentration of platelets and larger EVs in platelet and EV-rich plasma (PVRP), R = -0.538, p = 0.003, indicating cell fragmentation during the processing of samples. In further centrifugation of the obtained plasma, platelet and EV enrichment depended on the average distance of the sample from the centrifuge rotor axis. Based on the agreement of the model predictions with observations, we propose the centrifugation protocol optimal for platelet and EV enrichment and recovery in an individual sample, adjusted to the dimensions of the centrifuge rotor, volume of blood and erythrocyte sedimentation rate.[Figure: see text].
Collapse
Affiliation(s)
- Darja Božič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Physics, Ljubljana, Slovenia
| | - Domen Vozel
- University Medical Centre Ljubljana, Department of Otorhinolaryngology and Cervicofacial Surgery, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Medicine, Department of Otorhinolaryngology, Ljubljana, Slovenia
| | - Matej Hočevar
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, Ljubljana, Slovenia
| | - Marko Jeran
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Physics, Ljubljana, Slovenia
| | - Zala Jan
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, Ljubljana, Slovenia
| | - Manca Pajnič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, Ljubljana, Slovenia
| | - Ljubiša Pađen
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, Ljubljana, Slovenia
| | - Aleš Iglič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Physics, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Medicine, Chair of Orthopedics, Laboratory of Clinical Biophysics, Ljubljana, Slovenia
| | - Saba Battelino
- University Medical Centre Ljubljana, Department of Otorhinolaryngology and Cervicofacial Surgery, Ljubljana, Slovenia.,University of Ljubljana, Faculty of Medicine, Department of Otorhinolaryngology, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, Ljubljana, Slovenia
| |
Collapse
|
9
|
Kuiper M, van de Nes A, Nieuwland R, Varga Z, van der Pol E. Reliable measurements of extracellular vesicles by clinical flow cytometry. Am J Reprod Immunol 2020; 85:e13350. [PMID: 32966654 PMCID: PMC7900981 DOI: 10.1111/aji.13350] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/13/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are cell‐derived particles with a phospholipid membrane present in all body fluids. Because EV properties change in health and disease, EVs have excellent potential to become biomarkers for diagnosis, prognosis, or monitoring of disease. The only technique capable of detecting, sizing, and phenotyping a million of EVs within minutes is (clinical) flow cytometry. A flow cytometer measures light scattering and fluorescence signals of single EVs. Although these signals contain valuable information about the presence and composition of EVs, the signals are expressed in arbitrary units, which make the comparison of measurement results impossible between instruments and laboratories. Additionally, unintended and undocumented variations in the source, preparation, and analysis of the sample lead to orders of magnitude variations in the measured EV concentrations. Here, we will explain the basics, challenges, and common misconceptions of EV flow cytometry. In addition, we provide an overview of recent standardization initiatives, which are a prerequisite for comparison of clinical data and thus for clinical biomarker exploration of EVs.
Collapse
Affiliation(s)
- Martine Kuiper
- Biomedical Engineering and Physics, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Vesicle Observation Center, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Dutch Metrology Institute, VSL, Delft, The Netherlands
| | | | - Rienk Nieuwland
- Laboratory Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Vesicle Observation Center, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zoltan Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Edwin van der Pol
- Biomedical Engineering and Physics, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Vesicle Observation Center, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
MiRNA profiles in blood plasma from mother-child duos in human biobanks and the implication of sample quality: Circulating miRNAs as potential early markers of child health. PLoS One 2020; 15:e0231040. [PMID: 32240265 PMCID: PMC7117735 DOI: 10.1371/journal.pone.0231040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/13/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been linked to several diseases and to regulation of almost every biological process. This together with their stability while freely circulating in blood suggests that they could serve as minimal-invasive biomarkers for a wide range of diseases. Successful miRNA-based biomarker discovery in plasma is dependent on controlling sources of preanalytical variation, such as cellular contamination and hemolysis, as they can be major causes of altered miRNA expression levels. Analysis of plasma quality is therefore a crucial step for the best output when searching for novel miRNA biomarkers. METHODS Plasma quality was assessed by three different methods in samples from mother-child duos (maternal and cord blood, N = 2x38), with collection and storage methods comparable to large cohort study biobanks. Total RNA was isolated and the expression profiles of 201 miRNAs was obtained by qPCR to identify differentially expressed miRNAs in cord and maternal plasma samples. RESULTS All three methods for quality assurance indicate that the plasma samples used in this study are of high quality with very low levels of contamination, suitable for analysis of circulating miRNAs. We identified 19 significantly differentially expressed miRNAs between cord and maternal plasma samples (paired t-tests, FDR<0.05, and fold change>±1.5), and we observed low correlation of miRNA transcript levels between cord and maternal samples throughout our dataset. CONCLUSIONS Our findings suggest that good quality plasma samples suitable for miRNA profiling can be achieved from samples collected and stored by large biobanks. Incorporation of extensive quality control measures, such as those established here, would be beneficial for future projects. The overall low correlation of miRNA expression between cord and maternal samples is an interesting observation, and promising for our future studies on identification of miRNA-based biomarkers in cord blood plasma, considering that these samples were collected at term and some exchange of blood components between cord and maternal blood frequently occur.
Collapse
|
11
|
Düregger K, Trik S, Leonhardt S, Eblenkamp M. Additive-manufactured microporous polymer membranes for biomedical in vitro applications. J Biomater Appl 2018; 33:116-126. [PMID: 29874967 DOI: 10.1177/0885328218780460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microscale porous membranes are used in a wide range of technical and medical applications such as water treatment, dialysis and in vitro test systems. A promising approach to control membrane properties and overcome limitations of conventional fabrication techniques is given by additive manufacturing (AM). In this study, we designed and printed a microporous membrane via digital light processing and validated its use for biomedical in vitro applications based on the example of a cell culture insert. A multi-layer technique was developed, resulting in an eight-layer membrane with an average pore diameter of 25 µm. Image analyses proved the printing accuracy to be high with small deviations for an increasing number of layers. Permeability tests with brilliant blue FCF (E133, triarylmethane dye) and growth factors comparing the printed to track-etched membranes showed similar transfer dynamics and confirmed sufficient separation properties. Overall, the results showed that printing microporous polymer membranes is possible and highlight the potential of AM for biomedical in vitro applications such as cell culture inserts, scaffolds for tissue engineering or bioreactors.
Collapse
Affiliation(s)
- Katharina Düregger
- Institute of Medical and Polymer Engineering, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Sina Trik
- Institute of Medical and Polymer Engineering, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Stefan Leonhardt
- Institute of Medical and Polymer Engineering, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| | - Markus Eblenkamp
- Institute of Medical and Polymer Engineering, Department of Mechanical Engineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
12
|
Dunster JL, Panteleev MA, Gibbins JM, Sveshnikova AN. Mathematical Techniques for Understanding Platelet Regulation and the Development of New Pharmacological Approaches. Methods Mol Biol 2018; 1812:255-279. [PMID: 30171583 DOI: 10.1007/978-1-4939-8585-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mathematical and computational modeling is currently in the process of becoming an accepted tool in the arsenal of methods utilized for the investigation of complex biological systems. For some problems in the field, like cellular metabolic regulation, neural impulse propagation, or cell cycle, progress is already unthinkable without use of such methods. Mathematical models of platelet signaling, function, and metabolism during the last years have not only been steadily increasing in their number, but have also been providing more in-depth insights, generating hypotheses, and allowing predictions to be made leading to new experimental designs and data. Here we describe the basic approaches to platelet mathematical model development and validation, highlighting the challenges involved. We then review the current theoretical models in the literature and how these are being utilized to increase our understanding of these complex cells.
Collapse
Affiliation(s)
- Joanna L Dunster
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Anastacia N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, Russia
| |
Collapse
|
13
|
Yadav S, Storrie B. The cellular basis of platelet secretion: Emerging structure/function relationships. Platelets 2017; 28:108-118. [PMID: 28010140 PMCID: PMC5627609 DOI: 10.1080/09537104.2016.1257786] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022]
Abstract
Platelet activation has long been known to be accompanied by secretion from at least three types of compartments. These include dense granules, the major source of small molecules; α-granules, the major protein storage organelle; and lysosomes, the site of acid hydrolase storage. Despite ~60 years of research, there are still many unanswered questions about the cell biology of platelet secretion: for example, how are these secretory organelles organized to support cargo release and what are the key routes of cargo release, granule to plasma membrane or granule to canalicular system. Moreover, in recent years, increasing evidence points to the platelet being organized for secretion of the contents from other organelles, namely the dense tubular system (endoplasmic reticulum) and the Golgi apparatus. Conceivably, protein secretion is a widespread property of the platelet and its organelles. In this review, we concentrate on the cell biology of the α-granule and its structure/function relationships. We both review the literature and discuss the wide array of 3-dimensional, high-resolution structural approaches that have emerged in the last few years. These have begun to reveal new and unanticipated outcomes and some of these are discussed. We are hopeful that the next several years will bring rapid advances to this field that will resolve past controversies and be clinically relevant.
Collapse
Affiliation(s)
- Shilpi Yadav
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Brian Storrie
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
14
|
Yadav S, Williamson JK, Aronova MA, Prince AA, Pokrovskaya ID, Leapman RD, Storrie B. Golgi proteins in circulating human platelets are distributed across non-stacked, scattered structures. Platelets 2016; 28:400-408. [PMID: 27753523 DOI: 10.1080/09537104.2016.1235685] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Platelets are small, anucleate cell fragments that are central to hemostasis, thrombosis, and inflammation. They are derived from megakaryocytes from which they inherit their organelles. As platelets can synthesize proteins and contain many of the enzymes of the secretory pathway, one might expect all mature human platelets to contain a stacked Golgi apparatus, the central organelle of the secretory pathway. By thin section electron microscopy, stacked membranes resembling the stacked Golgi compartment in megakaryocytes and other nucleated cells can be detected in both proplatelets and platelets. However, the incidence of such structures is low and whether each and every platelet contains such a structure remains an open question. By single-label, immunofluorescence staining, Golgi glycosyltransferases are found within each platelet and map to scattered structures. Whether these structures are positive for marker proteins from multiple Golgi subcompartments remains unknown. Here, we have applied state-of-the-art techniques to probe the organization state of the Golgi apparatus in resting human platelets. By the whole cell volume technique of serial-block-face scanning electron microscopy (SBF-SEM), we failed to observe stacked, Golgi-like structures in any of the 65 platelets scored. When antibodies directed against Golgi proteins were tested against HeLa cells, labeling was restricted to an elongated juxtanuclear ribbon characteristic of a stacked Golgi apparatus. By multi-label immunofluorescence microscopy, we found that each and every resting human platelet was positive for cis, trans, and trans Golgi network (TGN) proteins. However, in each case, the proteins were found in small puncta scattered about the platelet. At the resolution of deconvolved, widefield fluorescence microscopy, these proteins had limited tendency to map adjacent to one another. When the results of 3D structured illumination microscopy (3D SIM), a super resolution technique, were scored quantitatively, the Golgi marker proteins failed to map together indicating at the protein level considerable degeneration of the platelet Golgi apparatus relative to the layered stack as seen in the megakaryocyte. In conclusion, we suggest that these results have important implications for organelle structure/function relationships in the mature platelet and the extent to which Golgi apparatus organization is maintained in platelets. Our results suggest that Golgi proteins in circulating platelets are present within a series of scattered, separated structures. As separate elements, selective sets of Golgi enzymes or sugar nucleotides could be secreted during platelet activation. The establishment of the functional importance, if any, of these scattered structures in sequential protein modification in circulating platelets will require further research.
Collapse
Affiliation(s)
- Shilpi Yadav
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Jonathan K Williamson
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Maria A Aronova
- b National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda , MD , USA
| | - Andrew A Prince
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Irina D Pokrovskaya
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Richard D Leapman
- b National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda , MD , USA
| | - Brian Storrie
- a Department of Physiology and Biophysics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
15
|
Abstract
Platelets are anucleate blood cells, long known to be critically involved in hemostasis and thrombosis. In addition to their role in blood clots, increasing evidence reveals significant roles for platelets in inflammation and immunity. However, the notion that platelets represent immune cells is not broadly recognized in the field of Physiology. This article reviews the role of platelets in inflammation and immune responses, and highlights their interactions with other immune cells, including examples of major functional consequences of these interactions.
Collapse
Affiliation(s)
- Fong W Lam
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| |
Collapse
|
16
|
Pothapragada S, Zhang P, Sheriff J, Livelli M, Slepian MJ, Deng Y, Bluestein D. A phenomenological particle-based platelet model for simulating filopodia formation during early activation. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31:e02702. [PMID: 25532469 PMCID: PMC4509790 DOI: 10.1002/cnm.2702] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/29/2014] [Accepted: 12/11/2014] [Indexed: 05/13/2023]
Abstract
We developed a phenomenological three-dimensional platelet model to characterize the filopodia formation observed during early stage platelet activation. Departing from continuum mechanics based approaches, this coarse-grained molecular dynamics (CGMD) particle-based model can deform to emulate the complex shape change and filopodia formation that platelets undergo during activation. The platelet peripheral zone is modeled with a two-layer homogeneous elastic structure represented by spring-connected particles. The structural zone is represented by a cytoskeletal assembly comprising of a filamentous core and filament bundles supporting the platelet's discoid shape, also modeled by spring-connected particles. The interior organelle zone is modeled by homogeneous cytoplasm particles that facilitate the platelet deformation. Nonbonded interactions among the discrete particles of the membrane, the cytoskeletal assembly, and the cytoplasm are described using the Lennard-Jones potential with empirical constants. By exploring the parameter space of this CGMD model, we have successfully simulated the dynamics of varied filopodia formations. Comparative analyses of length and thickness of filopodia show that our numerical simulations are in agreement with experimental measurements of flow-induced activated platelets. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Seetha Pothapragada
- Department of Applied Mathematics and Statistics, Stony Brook University, NY 11794, United States
| | - Peng Zhang
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
| | - Mark Livelli
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
| | - Marvin J. Slepian
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
- Departments of Medicine and Biomedical Engineering and Sarver Heart Center, University of Arizona, Tucson, AZ, 85721, United States
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, NY 11794, United States
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, NY 11794, United States
- Corresponding Author: Danny Bluestein, Ph.D., Department of Biomedical Engineering, Stony Brook University, HSC T15-090, Stony Brook, NY 11794-8151, 631-444-2156, Fax 631-444-7530,
| |
Collapse
|
17
|
Effect of serotonin on platelet function in cocaine exposed blood. Sci Rep 2014; 4:5945. [PMID: 25091505 PMCID: PMC4121605 DOI: 10.1038/srep05945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/18/2014] [Indexed: 11/21/2022] Open
Abstract
5-hydroxytryptamine (5-HT) reuptake inhibitors counteract the pro-thrombotic effect of elevated plasma 5-HT by down-regulating the 5-HT uptake rates of platelets. Cocaine also down-regulates the platelet 5-HT uptake rates but in contrast, the platelets of cocaine-injected mice show a much higher aggregation rate than the platelets of control mice. To examine the involvement of plasma 5-HT in cocaine-mediated platelet aggregation, we studied the function of platelets isolated from wild-type and transgenic, peripheral 5-HT knock-out (TPH1-KO) mice, and cocaine-insensitive dopamine transporter knock in (DAT-KI) mice. In cocaine-injected mice compared to the control mice, the plasma 5-HT level as well as the surface level of P-selectin was elevated; in vitro platelet aggregation in the presence of type I fibrillar collagen was enhanced. However, cocaine injection lowered the 5-HT uptake rates of platelets and increased the plasma 5-HT levels of the DAT-KI mice but did not change their platelets aggregation rates further which are already hyper-reactive. Furthermore, the in vitro studies supporting these in vivo findings suggest that cocaine mimics the effect of elevated plasma 5-HT level on platelets and in 5-HT receptor- and transporter-dependent pathways in a two-step process propagates platelet aggregation by an additive effect of 5-HT and nonserotonergic catecholamine.
Collapse
|
18
|
Arraud N, Linares R, Tan S, Gounou C, Pasquet JM, Mornet S, Brisson AR. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost 2014; 12:614-27. [PMID: 24618123 DOI: 10.1111/jth.12554] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Plasma and other body fluids contain membranous extracellular vesicles (EVs), which are considered to derive from activated or apoptotic cells. EVs participate in physiological and pathological processes and have potential applications in diagnostics or therapeutics. Knowledge on EVs is, however, limited, mainly due to their sub-micrometer size and to intrinsic limitations in methods applied for their characterization. OBJECTIVES Our aim was to provide a comprehensive description of EVs from plasma of healthy subjects. METHODS Cryo-transmission electron microscopy combined with receptor-specific gold labeling was used to reveal the morphology, size and phenotype of EVs. An original approach based on sedimentation on electron microscopy grids was developed for enumerating EVs. A correlation was performed between conventional flow cytometry and electron microscopy results. RESULTS We show that platelet-free plasma samples contain spherical EVs, 30 nm to 1 μm in diameter, tubular EVs, 1-5 μm long, and membrane fragments, 1-8 μm large. We show that only a minority of EVs expose the procoagulant lipid phosphatidylserine, in contrast to the classical theory of EV formation. In addition, the concentrations of the main EV sub-populations are determined after sedimentation on EM grids. Finally, we show that conventional flow cytometry, the main method of EV characterization, detects only about 1% of them. CONCLUSION This study brings novel insights on EVs from normal plasma and provides a reference for further studies of EVs in disease situations.
Collapse
Affiliation(s)
- N Arraud
- Imagerie Moléculaire et NanoBioTechnologie, UMR-5248-CBMN CNRS-University of Bordeaux-IPB, Pessac, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Mercado CP, Quintero MV, Li Y, Singh P, Byrd AK, Talabnin K, Ishihara M, Azadi P, Rusch NJ, Kuberan B, Maroteaux L, Kilic F. A serotonin-induced N-glycan switch regulates platelet aggregation. Sci Rep 2013; 3:2795. [PMID: 24077408 PMCID: PMC3786303 DOI: 10.1038/srep02795] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/30/2013] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT) is a multifunctional signaling molecule that plays different roles in a concentration-dependent manner. We demonstrated that elevated levels of plasma 5-HT accelerate platelet aggregation resulting in a hypercoagulable state in which the platelet surface becomes occupied by several glycoproteins. Here we study the novel hypothesis that an elevated level of plasma 5-HT results in modification of the content of N-glycans on the platelet surface and this abnormality is associated with platelet aggregation. Mass spectrometry of total surface glycoproteins on platelets isolated from wild-type mice infused for 24 hours with saline or 5-HT revealed that the content of glycoproteins on platelets from 5-HT-infused mice switched from predominantly N-acetyl-neuraminic acid (Neu5Ac) to N-glycolyl-neuraminic acid (Neu5Gc). Cytidine monophosphate-N-acetylneuraminate hydroxylase (CMAH) synthesizes Neu5Gc from Neu5Ac. Up-regulation of Neu5Gc content on the platelet surface resulted from an increase in the catalytic function, not expression, of CMAH in platelets of 5-HT-infused mice. The highest level of Neu5Gc was observed in platelets of 5-HT-infused, 5-HT transporter-knock out mice, suggesting that the surface delineated 5-HT receptor on platelets may promote CMAH catalytic activity. These new findings link elevated levels of plasma 5-HT to altered platelet N-glycan content, a previously unrecognized abnormality that may favor platelet aggregation.
Collapse
Affiliation(s)
- Charles P Mercado
- Departments of Biochemistry and Molecular Biology, and Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Knights KM, Mangoni AA, Miners JO. Defining the COX inhibitor selectivity of NSAIDs: implications for understanding toxicity. Expert Rev Clin Pharmacol 2012; 3:769-76. [PMID: 22111779 DOI: 10.1586/ecp.10.120] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hypothesis that the anti-inflammatory activity of NSAIDs derives from COX inhibition is well established. It also underpins the accepted mechanism of the gastrointestinal and renal toxicity of NSAIDs. However, in terms of NSAID-induced cardiovascular toxicity, is COX inhibition then guilty by association? Multiple experimental models of COX-1/COX-2 inhibition have enabled ranking of the relative inhibitory activity of NSAIDs. Inhibition is expressed as an IC(50) value and the index of COX selectivity as the ratio of the IC(50) value for COX-2 and COX-1. These data informed the 'imbalance hypothesis' that the cardiovascular risk of NSAIDs results from an imbalance in the detrimental actions of COX-1-derived thromboxane A(2) and the beneficial actions of COX-2-derived prostacyclin (PGI(2)). Data derived from in vitro models used to generate NSAID IC(50) values are discussed in the context of the difficulties in defining COX selectivity and hence understanding the toxicity of NSAIDs in current clinical use.
Collapse
Affiliation(s)
- Kathleen M Knights
- Department of Clinical Pharmacology, Flinders University, Bedford Park, Adelaide, 5042 Australia
| | | | | |
Collapse
|
21
|
Gyulkhandanyan AV, Mutlu A, Freedman J, Leytin V. Markers of platelet apoptosis: methodology and applications. J Thromb Thrombolysis 2012; 33:397-411. [DOI: 10.1007/s11239-012-0688-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
23
|
Mullier F, Bailly N, Chatelain C, Dogné JM, Chatelain B. More on: calibration for the measurement of microparticles: needs, interests, and limitations of calibrated polystyrene beads for flow cytometry-based quantification of biological microparticles. J Thromb Haemost 2011; 9:1679-81; author reply 1681-2. [PMID: 21645233 DOI: 10.1111/j.1538-7836.2011.04386.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules. Blood 2011; 118:1370-3. [PMID: 21622648 DOI: 10.1182/blood-2011-01-330910] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Platelets are small anucleate blood cells that aggregate to seal leaks at sites of vascular injury and are important in the pathology of atherosclerosis, acute coronary syndromes, rheumatoid arthritis, cancer, and the regulation of angiogenesis. In all cases, platelet aggregation requires release of stored proteins from α-granules. However, how proteins with potentially antagonistic functions are packaged within α-granules is controversial. One possibility is the packaging of functional agonists and antagonists into different α-granule populations. By quantitative immunofluorescence colocalization, we found that pair-wise comparisons of 15 angiogenic-relevant α-granule proteins displayed little, if any, pattern of functional coclustering. Rather, the data suggested a Gaussian distribution indicative of stochastic protein delivery to individual granules. The apparent physiologic paradox raised by these data may be explained through alternate mechanisms, such as differential content release through incomplete granule fusion or dampened and balanced regulatory networks brought about by the corelease of antagonistic factors.
Collapse
|
25
|
Elzagallaai AA, Rieder MJ, Koren G. The in vitro platelet toxicity assay (iPTA): a novel approach for assessment of drug hypersensitivity syndrome. J Clin Pharmacol 2010; 51:428-35. [PMID: 20400650 DOI: 10.1177/0091270010365554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
26
|
|
27
|
Leytin V, Allen DJ, Mutlu A, Gyulkhandanyan AV, Mykhaylov S, Freedman J. Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. J Transl Med 2009; 89:374-84. [PMID: 19238135 DOI: 10.1038/labinvest.2009.13] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The role of the mitochondrial permeability transition pore (MPTP) in apoptosis of nucleated cells is well documented. In contrast, the role of MPTP in apoptosis of anucleated platelets is largely unknown. The aim of this study was to elucidate the contribution of MPTP in the control of different manifestations of platelet apoptosis by analyzing the effect of cyclosporin A (CsA), a potent inhibitor of MPTP formation. Using flow cytometry, we studied the effect of pretreatment of platelets with CsA on apoptotic responses in human platelets stimulated with calcium ionophore A23187. We found that CsA inhibited A23187-stimulated platelet apoptosis, completely preventing (i) depolarization of mitochondrial inner membrane potential (DeltaPsim), (ii) activation of cytosolic apoptosis executioner caspase-3, (iii) platelet shrinkage, and (iv) fragmentation of platelets to microparticles, but (v) only partially (approximately 25%), inhibiting phosphatidylserine (PS) exposure on the platelet surface. This study shows that MPTP formation is upstream of DeltaPsim depolarization, caspase-3 activation, platelet shrinkage and microparticle formation, and stringently controls these apoptotic events in A23187-stimulated platelets but is less involved in PS externalization. These data also indicate that CsA may rescue platelets from apoptosis, preventing caspase-3 activation and inhibiting the terminal cellular manifestations of platelet apoptosis, such as platelet shrinkage and degradation to microparticles. Furthermore, the results suggest a novel potentially useful application of CsA as an inhibitor of platelet demise through apoptosis in thrombocytopenias associated with enhanced platelet apoptosis.
Collapse
Affiliation(s)
- Valery Leytin
- Division of Transfusion Medicine, Department of Laboratory Medicine, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, ON, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
A molecular signaling model of platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 activation. Blood 2008; 112:4069-79. [PMID: 18596227 DOI: 10.1182/blood-2008-05-157883] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To quantify how various molecular mechanisms are integrated to maintain platelet homeostasis and allow responsiveness to adenosine diphosphate (ADP), we developed a computational model of the human platelet. Existing kinetic information for 77 reactions, 132 fixed kinetic rate constants, and 70 species was combined with electrochemical calculations, measurements of platelet ultrastructure, novel experimental results, and published single-cell data. The model accurately predicted: (1) steady-state resting concentrations for intracellular calcium, inositol 1,4,5-trisphosphate, diacylglycerol, phosphatidic acid, phosphatidylinositol, phosphatidylinositol phosphate, and phosphatidylinositol 4,5-bisphosphate; (2) transient increases in intracellular calcium, inositol 1,4,5-trisphosphate, and G(q)-GTP in response to ADP; and (3) the volume of the platelet dense tubular system. A more stringent test of the model involved stochastic simulation of individual platelets, which display an asynchronous calcium spiking behavior in response to ADP. Simulations accurately reproduced the broad frequency distribution of measured spiking events and demonstrated that asynchronous spiking was a consequence of stochastic fluctuations resulting from the small volume of the platelet. The model also provided insights into possible mechanisms of negative-feedback signaling, the relative potency of platelet agonists, and cell-to-cell variation across platelet populations. This integrative approach to platelet biology offers a novel and complementary strategy to traditional reductionist methods.
Collapse
|
29
|
Pommer MS, Zhang Y, Keerthi N, Chen D, Thomson JA, Meinhart CD, Soh HT. Dielectrophoretic separation of platelets from diluted whole blood in microfluidic channels. Electrophoresis 2008; 29:1213-8. [DOI: 10.1002/elps.200700607] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|