1
|
Shakeri M, Kong B, Zhuang H, Bowker B. Potential Role of Ribonucleotide Reductase Enzyme in Mitochondria Function and Woody Breast Condition in Broiler Chickens. Animals (Basel) 2023; 13:2038. [PMID: 37370548 DOI: 10.3390/ani13122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
The cellular events leading to the development of the woody breast myopathy in broiler breast muscle are unclear. Affected woody breast muscle exhibits muscle fiber degeneration/regeneration, connective tissue accumulation, and adverse morphological changes in mitochondria. Ribonucleotide reductase (RNR) is an enzyme for the synthesis of dNTP, which is important for mitochondria DNA content (mtDNA). RNR consists of two subunits: RRM1/RRM2. A decrease in RRM2 is associated with a decrease in mtDNA and mitochondria proteins, leading to impaired ATP production. The objective of this study was to investigate potential RNR differences between woody breast (WB) and normal (N) breast muscle by examining RRM2 expression and associated pathways. Gene expression and enzyme activities were examined by qPCR and commercial kits. Results showed that RRM2 expression reduced for WB (p = 0.01) and genes related to mitochondria, including ATP6 (p = 0.03), COX1 (p = 0.001), CYTB (p = 0.07), ND2 (p = 0.001) and ND4L (p = 0.03). Furthermore, NDUFB7 and COX 14, which are related to mitochondria and ATP synthesis, tended to be reduced in WB. Compared to N, GLUT1 reduced for WB (p = 0.05), which is responsible for glucose transport in cells. Consequently, PDK4 (p = 0.0001) and PPARG (p = 0.008) increased in WB, suggesting increased fatty acid oxidation. Citric synthase activity and the NAD/NADH ratio (p = 0.02) both reduced for WB, while WB increased CHRND expression (p = 0.001), which is a possible indicator of high reactive oxygen species levels. In conclusion, a reduction in RRM2 impaired mitochondria function, potentially ATP synthesis in WB, by increasing fibrosis and the down-regulation of several genes related to mitochondria function.
Collapse
Affiliation(s)
- Majid Shakeri
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Byungwhi Kong
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Hong Zhuang
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| | - Brian Bowker
- U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
| |
Collapse
|
2
|
An automated workflow on data processing (AutoDP) for semiquantitative analysis of urine organic acids with GC-MS to facilitate diagnosis of inborn errors of metabolism. Clin Chim Acta 2023; 540:117230. [PMID: 36682441 DOI: 10.1016/j.cca.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
Determination of urine organic acids (UOAs) is essential to understand the disease progress of inborn errors of metabolism (IEM) and often relies on GC-MS analysis. However, the efficiency of analytical reports is sometimes restricted by data processing due to labor-intensive work if no proper tool is employed. Herein, we present a simple and rapid workflow with an R-based script for automated data processing (AutoDP) of GC-MS raw files to quantitatively analyze essential UOAs. AutoDP features automatic quality checks, compound identification and confirmation with specific fragment ions, retention time correction from analytical batches, and visualization of abnormal UOAs with age-matched references on chromatograms. Compared with manual processing, AutoDP greatly reduces analytical time and increases the number of identifications. Speeding up data processing is expected to shorten the waiting time for clinical diagnosis, which could greatly benefit clinicians and patients with IEM. In addition, with quantitative results obtained from AutoDP, it would be more feasible to perform retrospective analysis of specific UOAs in IEM and could provide new perspectives for studying IEM.
Collapse
|
3
|
Wang W, Liu T, Zhang Y. An integrated targeted metabolomics and network pharmacology approach to exploring the mechanism of ellagic acid against sleep deprivation-induced memory impairment and anxiety. Digit Health 2023; 9:20552076231169846. [PMID: 37101588 PMCID: PMC10123898 DOI: 10.1177/20552076231169846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Background As a neuroprotective agent, ellagic acid (EA) is extremely beneficial. Our previous study found that EA can alleviate sleep deprivation (SD)-induced abnormal behaviors, although the mechanisms underlying this protective effect have not yet been fully elucidated. Objective An integrated network pharmacology and targeted metabolomics approach was utilized in this study to investigate the mechanism of EA against SD-induced memory impairment and anxiety. Methods Behavioral tests were conducted on mice after 72 h of SD. Hematoxylin and eosin staining and nissl staining were then carried out. Integration of network pharmacology and targeted metabolomics was performed. Eventually, the putative targets were further verified using molecular docking analyses and immunoblotting assays. Results The present study findings confirmed that EA ameliorated the behavioral abnormalities induced by SD and prevented histopathological and morphological damage to hippocampal neurons. Through multivariate analysis, clear clustering was obtained among different groups, and potential biomarkers were identified. Four key targets, catechol-O-methyltransferase (COMT), cytochrome P450 1B1 (CYP1B1), glutathione S-transferase A2 (GSTA2), and glutathione S-transferase P1 (GSTP1), as well as the related potential metabolites and metabolic pathways, were determined by further integrated analysis. Meanwhile, in-silico studies revealed that EA is well located inside the binding site of CYP1B1 and COMT. The experimental results further demonstrated that EA significantly reduced the increased expression of CYP1B1 and COMT caused by SD. Conclusion The findings of this study extended our understanding of the underlying mechanisms by which EA treats SD-induced memory impairment and anxiety, and suggested a novel approach to address the increased health risks associated with sleep loss.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianlong Liu
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yi Zhang, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Multi-Omics Approaches in Colorectal Cancer Screening and Diagnosis, Recent Updates and Future Perspectives. Cancers (Basel) 2022; 14:cancers14225545. [PMID: 36428637 PMCID: PMC9688479 DOI: 10.3390/cancers14225545] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) is common Cancer as well as the third leading cause of mortality around the world; its exact molecular mechanism remains elusive. Although CRC risk is significantly correlated with genetic factors, the pathophysiology of CRC is also influenced by external and internal exposures and their interactions with genetic factors. The field of CRC research has recently benefited from significant advances through Omics technologies for screening biomarkers, including genes, transcripts, proteins, metabolites, microbiome, and lipidome unbiasedly. A promising application of omics technologies could enable new biomarkers to be found for the screening and diagnosis of CRC. Single-omics technologies cannot fully understand the molecular mechanisms of CRC. Therefore, this review article aims to summarize the multi-omics studies of Colorectal cancer, including genomics, transcriptomics, proteomics, microbiomics, metabolomics, and lipidomics that may shed new light on the discovery of novel biomarkers. It can contribute to identifying and validating new CRC biomarkers and better understanding colorectal carcinogenesis. Discovering biomarkers through multi-omics technologies could be difficult but valuable for disease genotyping and phenotyping. That can provide a better knowledge of CRC prognosis, diagnosis, and treatments.
Collapse
|
5
|
Troisi J, Tafuro M, Lombardi M, Scala G, Richards SM, Symes SJK, Ascierto PA, Delrio P, Tatangelo F, Buonerba C, Pierri B, Cerino P. A Metabolomics-Based Screening Proposal for Colorectal Cancer. Metabolites 2022; 12:metabo12020110. [PMID: 35208185 PMCID: PMC8878838 DOI: 10.3390/metabo12020110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a high incidence disease, characterized by high morbidity and mortality rates. Early diagnosis remains challenging because fecal occult blood screening tests have performed sub-optimally, especially due to hemorrhoidal, inflammatory, and vascular diseases, while colonoscopy is invasive and requires a medical setting to be performed. The objective of the present study was to determine if serum metabolomic profiles could be used to develop a novel screening approach for colorectal cancer. Furthermore, the study evaluated the metabolic alterations associated with the disease. Untargeted serum metabolomic profiles were collected from 100 CRC subjects, 50 healthy controls, and 50 individuals with benign colorectal disease. Different machine learning models, as well as an ensemble model based on a voting scheme, were built to discern CRC patients from CTRLs. The ensemble model correctly classified all CRC and CTRL subjects (accuracy = 100%) using a random subset of the cohort as a test set. Relevant metabolites were examined in a metabolite-set enrichment analysis, revealing differences in patients and controls primarily associated with cell glucose metabolism. These results support a potential use of the metabolomic signature as a non-invasive screening tool for CRC. Moreover, metabolic pathway analysis can provide valuable information to enhance understanding of the pathophysiological mechanisms underlying cancer. Further studies with larger cohorts, including blind trials, could potentially validate the reported results.
Collapse
Affiliation(s)
- Jacopo Troisi
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (M.L.); (G.S.)
- Correspondence: or (J.T.); (B.P.)
| | - Maria Tafuro
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.T.); (C.B.); (P.C.)
| | - Martina Lombardi
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (M.L.); (G.S.)
| | - Giovanni Scala
- Theoreo srl, Via degli Ulivi 3, 84090 Montecorvino Pugliano, Italy; (M.L.); (G.S.)
- Hosmotic srl, Via R. Bosco 178, 80069 Vico Equense, Italy
| | - Sean M. Richards
- Department of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine, University of Tennessee College of Medicine, 960 East Third Street, Suite 100, 902 McCallie Avenue, Chattanooga, TN 37403, USA; (S.M.R.); (S.J.K.S.)
- Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA
| | - Steven J. K. Symes
- Department of Obstetrics and Gynecology, Section on Maternal-Fetal Medicine, University of Tennessee College of Medicine, 960 East Third Street, Suite 100, 902 McCallie Avenue, Chattanooga, TN 37403, USA; (S.M.R.); (S.J.K.S.)
- Department of Chemistry and Physics, University of Tennessee at Chattanooga, 615 McCallie Ave., Chattanooga, TN 37403, USA
| | - Paolo Antonio Ascierto
- Istituto Nazionale Tumori Fondazione Pascale IRCCS, 80131 Napoli, Italy; (P.A.A.); (P.D.); (F.T.)
| | - Paolo Delrio
- Istituto Nazionale Tumori Fondazione Pascale IRCCS, 80131 Napoli, Italy; (P.A.A.); (P.D.); (F.T.)
| | - Fabiana Tatangelo
- Istituto Nazionale Tumori Fondazione Pascale IRCCS, 80131 Napoli, Italy; (P.A.A.); (P.D.); (F.T.)
| | - Carlo Buonerba
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.T.); (C.B.); (P.C.)
| | - Biancamaria Pierri
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.T.); (C.B.); (P.C.)
- Correspondence: or (J.T.); (B.P.)
| | - Pellegrino Cerino
- Centro di Referenza Nazionale per l’Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy; (M.T.); (C.B.); (P.C.)
| |
Collapse
|
6
|
Mukherjee S, Ray SK. Inborn Errors of Metabolism Screening in Neonates: Current Perspective with Diagnosis and Therapy. Curr Pediatr Rev 2022; 18:274-285. [PMID: 35379134 DOI: 10.2174/1573396318666220404194452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/22/2022]
Abstract
Inborn errors of metabolism (IEMs) are rare hereditary or acquired disorders resulting from an enzymatic deformity in biochemical and metabolic pathways influencing proteins, fats, carbohydrate metabolism, or hampered some organelle function. Even though individual IEMs are uncommon, together, they represent a diverse class of genetic diseases, with new issues and disease mechanisms being portrayed consistently. IEM includes the extraordinary multifaceted nature of the fundamental pathophysiology, biochemical diagnosis, molecular level investigation, and complex therapeutic choices. However, due to the molecular, biochemical, and clinical heterogeneity of IEM, screening alone will not detect and diagnose all illnesses included in newborn screening programs. Early diagnosis prevents the emergence of severe clinical symptoms in the majority of IEM cases, lowering morbidity and death. The appearance of IEM disease can vary from neonates to adult people, with the more serious conditions showing up in juvenile stages along with significant morbidity as well as mortality. Advances in understanding the physiological, biochemical, and molecular etiologies of numerous IEMs by means of modalities, for instance, the latest molecular-genetic technologies, genome engineering knowledge, entire exome sequencing, and metabolomics, have prompted remarkable advancement in detection and treatment in modern times. In this review, we analyze the biochemical basis of IEMs, clinical manifestations, the present status of screening, ongoing advances, and efficiency of diagnosis in treatment for IEMs, along with prospects for further exploration as well as innovation.
Collapse
Affiliation(s)
- Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
7
|
Furlani IL, da Cruz Nunes E, Canuto GAB, Macedo AN, Oliveira RV. Liquid Chromatography-Mass Spectrometry for Clinical Metabolomics: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:179-213. [PMID: 34628633 DOI: 10.1007/978-3-030-77252-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Metabolomics is a discipline that offers a comprehensive analysis of metabolites in biological samples. In the last decades, the notable evolution in liquid chromatography and mass spectrometry technologies has driven an exponential progress in LC-MS-based metabolomics. Targeted and untargeted metabolomics strategies are important tools in health and medical science, especially in the study of disease-related biomarkers, drug discovery and development, toxicology, diet, physical exercise, and precision medicine. Clinical and biological problems can now be understood in terms of metabolic phenotyping. This overview highlights the current approaches to LC-MS-based metabolomics analysis and its applications in the clinical research.
Collapse
Affiliation(s)
- Izadora L Furlani
- Núcleo de Pesquisa em Cromatografia (Separare), Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Estéfane da Cruz Nunes
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Gisele A B Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, BA, Brazil
| | - Adriana N Macedo
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Regina V Oliveira
- Núcleo de Pesquisa em Cromatografia (Separare), Department of Chemistry, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
8
|
Dessì A, Bosco A, Pintus R, Picari G, Mazza S, Fanos V. Epigenetics and Modulations of Early Flavor Experiences: Can Metabolomics Contribute to Prevention during Weaning? Nutrients 2021; 13:nu13103351. [PMID: 34684350 PMCID: PMC8539480 DOI: 10.3390/nu13103351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
The significant increase in chronic non-communicable diseases has changed the global epidemiological landscape. Among these, obesity is the most relevant in the pediatric field. This has pushed the world of research towards a new paradigm: preventive and predictive medicine. Therefore, the window of extreme plasticity that characterizes the first stage of development cannot be underestimated. In this context, nutrition certainly plays a primary role, being one of the most important epigenetic modulators known to date. Weaning, therefore, has a crucial role that must be analyzed far beyond the simple achievement of nutritional needs. Furthermore, the taste experience and the family context are fundamental for future food choices and can no longer be underestimated. The use of metabolomics allows, through the recognition of early disease markers and food-specific metabolites, the planning of an individualized and precise diet. In addition, the possibility of identifying particular groups of subjects at risk and the careful monitoring of adherence to dietary therapy may represent the basis for this change.
Collapse
|
9
|
Li Y, Sun Y, Zhang X, Wang X, Yang P, Guan X, Wang Y, Zhou X, Hu P, Jiang T, Xu Z. Relationship between amniotic fluid metabolic profile with fetal gender, maternal age, and gestational week. BMC Pregnancy Childbirth 2021; 21:638. [PMID: 34537001 PMCID: PMC8449898 DOI: 10.1186/s12884-021-04116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amniotic fluid (AF) provides vital information on fetal development, which is also valuable in identifying fetal abnormalities during pregnancy. However, the relationship between the metabolic profile of AF in the second trimester of a normal pregnancy with several maternal-fetal parameters remains poorly understood, which therefore limits its application in clinical practice. The aim of this study was to explore the association between the metabolic profile of AF with fetal gender, maternal age, and gestational week using an untargeted metabolomics method. METHODS A total of 114 AF samples were analyzed in this study. Clinical data on fetal gender, maternal age, and gestational week of these samples were collected. Samples were analyzed by gas chromatography/time-of-flight-mass spectrometry (GC-TOF/MS). Principal component analysis(PCA), orthogonal partial least square discrimination analysis(OPLS-DA) or partial least square discrimination analysis (PLS-DA) were conducted to compare metabolic profiles, and differential metabolites were obtained by univariate analysis. RESULTS Both PCA and OPLS-DA demonstrated no significant separation trend between the metabolic profiles of male and female fetuses, and there were only 7 differential metabolites. When the association between the maternal age on AF metabolic profile was explored, both PCA and PLS-DA revealed that the maternal age in the range of 21 to 40 years had no significant effect on the metabolic profile of AF, and only four different metabolites were found. There was no significant difference in the metabolic profiles of AF from fetuses of 17-22 weeks, and 23 differential metabolites were found. CONCLUSIONS In the scope of our study, there was no significant correlation between the AF metabolic profile and the fetal gender, maternal age and gestational week of a small range. Nevertheless, few metabolites appeared differentially expressed.
Collapse
Affiliation(s)
- Yahong Li
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China
| | - Yun Sun
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China
| | - Xiaojuan Zhang
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China
| | - Xin Wang
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China
| | - Peiying Yang
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China
| | - Xianwei Guan
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China
| | - Yan Wang
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China
| | - Xiaoyan Zhou
- Department of Obstetrics, The Affiliated Huaian No, 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223001, P. R. China
| | - Ping Hu
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China.
| | - Tao Jiang
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China.
| | - Zhengfeng Xu
- Center for Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfei Road, Nanjing, Jiangsu, 210004, P. R. China.
| |
Collapse
|
10
|
Zhou Y, Tan W, Zou J, Cao J, Huang Q, Jiang B, Yoshida S, Li Y. Metabolomics Analyses of Mouse Retinas in Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 34374743 PMCID: PMC8363770 DOI: 10.1167/iovs.62.10.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Retinal neovascularization is a severe pathological process leading to irreversible blindness. This study aims to identify the altered metabolites and their related pathways that are involved in retinal neovascularization. Methods To reveal the global metabolomic profile change in the retinal neovascularization process, an untargeted metabolomics analysis of oxygen-induced retinopathy (OIR) mice retinas was carried out first, followed by the validation of amino acids and their derivatives through a targeted metabolomics analysis. The involved pathways were predicted by bioinformatic analysis. Results By untargeted metabolomics, a total of 58 and 49 metabolites altered significantly in OIR retinas under cationic and anionic modes, respectively. By bioinformatics analysis, “ABC transporters,” “central carbon metabolism in cancer.” and “alanine, aspartate, and glutamate metabolism” were the most enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with the changed metabolites. By targeted metabolomics, no significant change was found in the assessed amino acids and their derivatives at postnatal day (P) 12, whereas significantly altered amino acids and their derivatives were recognized at P13, P17, and P42 in OIR retinas. Conclusions The metabolomic profile was significantly altered in the neovascularized retinas. In particular, numerous amino acids and their derivatives were significantly changed in OIR retinas. These altered metabolites, together with their associated pathways, might be involved in the pathogenesis of retinal neovascular diseases.
Collapse
Affiliation(s)
- Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jian Cao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Qian Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
11
|
Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Life (Basel) 2021; 11:life11080774. [PMID: 34440518 PMCID: PMC8398872 DOI: 10.3390/life11080774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
A slow rate of new drug discovery and higher costs of new drug development attracted the attention of scientists and physicians for the repurposing and repositioning of old medications. Experimental studies and off-label use of drugs have helped drive data for further studies of approving these medications. A deeper understanding of the pathogenesis of depression encourages novel discoveries through drug repurposing and drug repositioning to treat depression. In addition to reducing neurotransmitters like epinephrine and serotonin, other mechanisms such as inflammation, insufficient blood supply, and neurotoxicants are now considered as the possible involved mechanisms. Considering the mentioned mechanisms has resulted in repurposed medications to treat treatment-resistant depression (TRD) as alternative approaches. This review aims to discuss the available treatments and their progress way during repositioning. Neurotransmitters’ antagonists, atypical antipsychotics, and CNS stimulants have been studied for the repurposing aims. However, they need proper studies in terms of formulation, matching with regulatory standards, and efficacy.
Collapse
|
12
|
Guo N, Chen Y, Yang X, Yan H, Fan B, Quan J, Wang M, Yang H. Urinary metabolomic profiling reveals difference between two traditional Chinese medicine subtypes of coronary heart disease. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122808. [PMID: 34218095 DOI: 10.1016/j.jchromb.2021.122808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
The World Health Organization has shown that coronary heart disease (CHD) is a more common cause of death than cancer. In traditional Chinese medicine (TCM), CHD is classified as a form of thoracic obstruction that can be divided in different subtypes including Qi stagnation with blood stasis (QS) and Qi deficiency with blood stasis (QD). Different treatment strategies are used based on this subtyping. Owing to the lack of scientific markers in the diagnosis of these subtypes, subjective judgments made by clinicians have limited the objective manner for utility of TCM in the treatment of CHD. Untargeted (UHPLC-QTOF-MS) and targeted (UHPLC-MS/MS) metabolomics approaches were employed to search significantly different metabolites related to the QS or QD subtypes of CHD with angina pectoris in this study. A total of 42 metabolites were obtained in the untargeted metabolomics analysis and 34 amino acids were detected in the targeted metabolomics analysis. In total, 16 metabolites were found significantly different among different groups. The results showed distinct metabolic profiles of urine samples not only between CHD patients and healthy controls, but also between the two subtypes of CHD. Pathway analysis of the significantly varied metabolites revealed that there were subtype-related differences in the activity of pathways. Therefore, urinary metabolomics can reveal the pathological changes of CHD in different subtypes, make the diagnosis of CHD in different subtypes in an objective manner and comprehensive and contribute to personalized treatment by providing scientific evidence.
Collapse
Affiliation(s)
- Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing 100700, China; State Key Laboratory of Generic Manufacture Technology of Traditional Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Shandong 276006, China
| | - Yangan Chen
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Xiaofang Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Han Yan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Bin Fan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianye Quan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands; SU BioMedicine, Post Bus 546, 2300 AM Leiden, the Netherlands.
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
13
|
Troisi J, Raffone A, Travaglino A, Belli G, Belli C, Anand S, Giugliano L, Cavallo P, Scala G, Symes S, Richards S, Adair D, Fasano A, Bottigliero V, Guida M. Development and Validation of a Serum Metabolomic Signature for Endometrial Cancer Screening in Postmenopausal Women. JAMA Netw Open 2020; 3:e2018327. [PMID: 32986110 PMCID: PMC7522698 DOI: 10.1001/jamanetworkopen.2020.18327] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Endometrial carcinoma (EC) is the most commonly diagnosed gynecologic cancer. Its early detection is advisable because 20% of women have advanced disease at the time of diagnosis. OBJECTIVE To clinically validate a metabolomics-based classification algorithm as a screening test for EC. DESIGN, SETTING, AND PARTICIPANTS This diagnostic study enrolled 2 cohorts. A multicenter prospective cohort, with 50 cases (postmenopausal women with EC; International Federation of Gynecology and Obstetrics stage I-III and grade G1-G3) and 70 controls (no EC but matched on age, years from menopause, tobacco use, and comorbidities), was used to train multiple classification models. The accuracy of each trained model was then used as a statistical weight to produce an ensemble machine learning algorithm for testing, which was validated with a subsequent prospective cohort of 1430 postmenopausal women. The study was conducted at the San Giovanni di Dio e Ruggi d'Aragona University Hospital of Salerno (Italy) and Lega Italiana per la Lotta contro i Tumori clinic in Avellino (Italy). Data collection was conducted from January 2018 to February 2019, and analysis was conducted from January to March 2019. MAIN OUTCOMES AND MEASURES The presence or absence of EC based on evaluation of the blood metabolome. Metabolites were extracted from dried blood samples from all participants and analyzed by gas chromatography-mass spectrometry. A confusion matrix was used to summarize test results. Performance indices included sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios, and accuracy. Confirmation or exclusion of EC in women with a positive test result was by means of hysteroscopy. Participants with negative results were followed up 1 year after enrollment to investigate the appearance of EC signs. RESULTS The study population consisted of 1550 postmenopausal women. The mean (SD) age was 68.2 (11.7) years for participants with no EC in the training cohort, 69.4 (13.8) years for women with EC in the training cohort, and 59.7 (7.7) years for women in the validation cohort. Application of the ensemble machine learning to the validation cohort resulted in 16 true-positives, 2 false-positives, and 0 false-negatives, and it correctly classified more than 99% of samples. Disease prevalence was 1.12% (16 of 1430). CONCLUSIONS AND RELEVANCE In this study, dried blood metabolomic profile was used to assess the presence or absence of EC in postmenopausal women not receiving hormonal therapy with greater than 99% accuracy.
Collapse
Affiliation(s)
- Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
- Theoreo, Montecorvino Pugliano, Salerno, Italy
- European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Antonio Raffone
- Department of Neurosciences and Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| | - Antonio Travaglino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Gaetano Belli
- Lega Italiana per la Lotta contro i Tumori, Avellino Section, Avellino, Italy
| | - Carmen Belli
- Lega Italiana per la Lotta contro i Tumori, Avellino Section, Avellino, Italy
| | - Santosh Anand
- Università degli Studi di Milano–Bicocca, Milano, Italy
- Faculty of Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Luigi Giugliano
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Pierpaolo Cavallo
- Department of Physics, University of Salerno, Fisciano, Salerno, Italy
- Istituto Sistemi Complessi–Consiglio Nazionale delle Ricerche, Rome, Italy
| | | | - Steven Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga
- Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee College of Medicine at Chattanooga
| | - Sean Richards
- Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee College of Medicine at Chattanooga
- Department of Biology, Geology and Environmental Sciences, The University of Tennessee at Chattanooga
| | - David Adair
- Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee College of Medicine at Chattanooga
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Vincenzo Bottigliero
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy
| | - Maurizio Guida
- Theoreo, Montecorvino Pugliano, Salerno, Italy
- Department of Neurosciences and Reproductive and Dentistry Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|